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Abstract

Neural networks have become standard tools in the analysis of data, but they lack com-
prehensive mathematical theories. For example, there are very few statistical guarantees
for learning neural networks from data, especially for classes of estimators that are used in
practice or at least similar to such. In this paper, we develop a general statistical guarantee
for estimators that consist of a least-squares term and a regularizer. We then exemplify this
guarantee with ℓ1-regularization, showing that the corresponding prediction error increases
at most logarithmically in the total number of parameters and can even decrease in the
number of layers. Our results establish a mathematical basis for regularized estimation of
neural networks, and they deepen our mathematical understanding of neural networks and
deep learning more generally.

Keywords: neural networks, deep learning, prediction guarantees, regularization

1. Introduction

Neural networks have proved extremely useful across a variety of applications, including
speech recognition (Hinton et al., 2012; Graves et al., 2013; Chorowski et al., 2015), natural
language processing (Jozefowicz et al., 2016), object categorization (Girshick et al., 2014;
Szegedy et al., 2015), and image segmentation (Long et al., 2015; Badrinarayanan et al.,
2017). But our mathematical understanding of neural networks and deep learning has not
developed at the same speed.

A central objective is to equip methods for learning neural networks with statistical guar-
antees. Some guarantees are available for unconstrained estimators (Anthony and Bartlett,
2009), but these bounds are linear in the number of parameters, which conflicts with
the large sizes of typical networks. The focus has thus shifted to estimators that in-
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volve constraints or regularizers. Recently surged in popularity have estimators with ℓ1-
regularizers (Bartlett, 1998; Bartlett and Mendelson, 2002; Anthony and Bartlett, 2009;
Barron and Klusowski, 2018, 2019; Liu and Ye, 2019), motivated by the success of this type
of regularization in linear regression (Tibshirani, 1996), compressed sensing (Candès et al.,
2006; Donoho, 2006), and many other parts of data science. A key feature of ℓ1-regularization
is that it is easy to include into optimization schemes and, at the same time, induces sparsity,
which has a number of favorable effects in deep learning (Glorot et al., 2011). There has
been some progress on guarantees for least-squares with constraints based on the sparsity of
the networks (Schmidt-Hieber, 2017) or group-type norms on the weights (Neyshabur et al.,
2015). These developments have provided valuable intuition, for example, about the role of
network widths and depths, but important problems remain: for example, the combinato-
rial constraints in the first paper render the corresponding estimators infeasible in practice,
the exponential dependence of the bounds in the second paper are contrary to the trend
toward very deep networks. More generally, many questions about the statistical properties
of constraint and regularized estimation of neural networks remain open.

In this paper, we introduce a general class of regularized least-squares estimators. Our
strategy is to disentangle the parameters into a “scale” and a “direction”—similarly to intro-
ducing polar coordinates—which allows us to focus the regularization on a one-dimensional
parameter. We call our approach scale regularization. We then equip the scale regular-
ized least-squares estimators with a general statistical guarantee for prediction. A main
feature of this guarantee is that it connects neural networks to standard empirical process
theory through a quantity that we call the effective noise. This connection facilitates the
specification of the bound to different types of regularization.

In a second step, we exemplify the general bound for ℓ1-regularization. We find a
guarantee for the squared prediction error of the order of

(L/2)1/2−L
√

log(P )
log(n)√

n
,

which decreases essentially as 1/
√
n in the number of samples n, increases only logarith-

mically in the total number of parameters P , and—everything else fixed—decreases in the
number of hidden layers L. This result suggests that ℓ1-regularization can ensure accurate
prediction even of very wide and deep networks.

In Section 2, we introduce our regularization scheme and establish a general prediction
bound that allows for different types of regularization. In Section 3, we specify this bound to
ℓ1-regularization. In Section 4, we establish Lipschitz and complexity properties of neural
networks. Section 5, we give detailed proofs. In Section 6, we conclude our paper and
discuss some limitations.

2. Scale regularization for neural networks

We first establish an alternative parametrization of neural networks and use this parame-
terization to define our regularization strategy. We then provide a prediction guarantee for
the corresponding estimators.
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2.1 Alternative parametrization

Consider data (x1, y1), . . . , (xn, yn) ∈ R
d × R that follow a regression model

yi = g∗(xi) + ui for i ∈ {1, . . . , n} (1)

for some function g∗ : R
d → R. We are interested in approximating g∗ based on neural

networks. Following first standard approaches, we consider feedforward neural networks of
the form

gΘ : R
d → R

x 7→ gΘ(x) := WLfL
(
. . .W 1f1(W 0x)

) (2)

indexed by the network parameter Θ = (WL, . . . ,W 0) that summarizes the weight ma-
trices W l ∈ R

pl+1×pl . The xi and yi are the network’s inputs and outputs, respectively,
and the ui are the noise variables. For ease of notation, the xi are fixed except in the
generalization bounds. The network’s architecture is specified by the number of hid-
den layers or depth L ∈ {1, 2, . . . } and by the the number of neurons in each layer or
width p0, . . . , pL+1 ∈ {1, 2, . . . }. The 0th layer is the input layer with p0 = d, and
the (L + 1)th layer is the output layer with pL+1 = 1. The total number of parame-
ters is P :=

∑L
l=0 pl+1pl. The functions f l : R

pl → R
pl are called activation functions.

We omit shifts in the activation functions for notational simplicity, but such can often be
incorporated as additional neurons (Barron and Klusowski, 2018).

The parameter space in the above formulation is

A :=
{
Θ = (WL, . . . ,W 0) : W l ∈ R

pl+1×pl
}
.

In the following, however, we propose an alternative parametrization. We say that a function
q : Rs → R

t is nonnegative homogeneous of degree k ∈ (0,∞) if

q(az) = akq(z) for all a ∈ [0,∞) and z ∈ R
s

and we say that a function q : Rs → [0,∞) is positive definite if

q(z) = 0 ⇔ z = 0s.

The corresponding properties for functions on A are defined accordingly. For example,
every norm on R

s or A is nonnegative homogeneous of degree 1 and positive definite. We
then find the following:

Proposition 1 (Equivalence between neural networks) Assume that the activation

functions f1, . . . ,fL are nonnegative homogeneous of degree 1. Consider a function h :
A → [0,∞) that is nonnegative homogeneous of degree k ∈ (0,∞) and positive definite, and

denote the corresponding unit ball by

Ah :=
{
Θ ∈ A : h(Θ) ≤ 1

}
.

Then, for every Θ ∈ A, there exists a pair of κ ∈ [0,∞) and Ω ∈ Ah such that

gΘ(x) = κgΩ(x) for all x ∈ R
d;

and vice versa, for every pair of κ ∈ [0,∞) and Ω ∈ Ah, there exists a Θ ∈ A such that the

above equality holds.
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Proposition 1 is just a formulation of the known fact that weights can be rescaled across
layers that have nonnegative-homogeneous activations (Du et al., 2018; Hebiri and Lederer,
2020; Neyshabur et al., 2014). The interesting part of this section is not Proposition 1 itself
but the observation that this rescaling can lead to a reparameterization that is particularly
suitable for regularization. Motivated by Proposition 1, we change the parameter space for
estimating the true data generating function g∗ to [0,∞)×Ah and the corresponding space
of networks to {κgΩ : κ ∈ [0,∞),Ω ∈ Ah}. In other words, we study the neural networks

κgΩ : R
d → R

x 7→ κgΩ(x) := κULfL
(
. . . U1f1(U0x)

) (3)

indexed by the parameters κ ∈ [0,∞) and Ω = (UL, . . . , U0) ∈ Ah. We can interpret κ as the
network’s “scale” and Ω as the network’s “orientation.” Proposition 1 ensures equivalence
to the original set of networks if the activations are nonnegative homogeneous (ReLU acti-
vations are popular examples), but we can use the proposed parametrization more generally.
We now argue that the scale parameter is particularly suitable for regularizing the “overall
size” of the network and the orientation parameter for specifying the desired “type” of the
network. In particular, rather than naively transferring standard regularization schemes
from other parts of machine learning, we propose to tailor these regularization schemes to
the characteristics of neural networks as captured by the above parameterization. We detail
this argument in the following sections, where we introduce concrete regularization schemes
and develop statistical guarantees. These statistical guarantees are the main result of this
paper.

2.2 Estimation

The most basic approach to fit the model parameters of the network (2) to the model (1)
is the least-squares estimator

Θ̂LS ∈ argmin
Θ∈A

{
1

n

n∑

i=1

(
yi − gΘ(xi)

)2
}
.

But to account for the high-dimensionality of the parameter space A, the least-squares
estimator is often complemented with a regularizer h : A → [0,∞); popular choices for h
are the ℓ1-norm (Zhang et al., 2016) or group versions of it (Scardapane et al., 2017). A
straightforward way to incorporate such regularizers is

Θ̂reg,h ∈ argmin
Θ∈A

{
1

n

n∑

i=1

(
yi − gΘ(xi)

)2
+ λh(Θ)

}
,

where λ ∈ [0,∞) is a tuning parameter. But in neural network frameworks, it turns out
difficult to analyze such estimators statistically.

We introduce, therefore, a different way to incorporate regularizers. The approach is
based on our new parametrization. The equivalent of the above least-squares estimator in
the framework (3) is

(κ̂LS, Ω̂LS) ∈ argmin
κ∈[0,∞)
Ω∈Ah

{
1

n

n∑

i=1

(
yi − κgΩ(xi)

)2
}
.
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It holds that gΘ̂LS
= κ̂LSgΩ̂LS

under the conditions of Proposition 1, but we can take this
estimator as a starting point more generally. This allows us to focus the regularization on
the scale-parameter κ; in other words, we propose the estimators

(κ̂h, Ω̂h) ∈ argmin
κ∈[0,∞)
Ω∈Ah

{
1

n

n∑

i=1

(
yi − κgΩ(xi)

)2
+ λκ

}
, (4)

where λ ∈ [0,∞) is a tuning parameter. The fixed constraint Ω ∈ Ah captures the type of
regularization (such as ℓ1), while the actual regularization concerns only on the scale κ ∈
[0,∞). We thus call our approach scale regularization.

The concentration of the regularization on a one-dimensional parameter greatly facili-
tates the statistical analysis. Specifically, it will allow us to focus our attention on

zh := sup
Ω∈Ah

∣∣∣ 2
n

n∑

i=1

gΩ(xi)ui

∣∣∣. (5)

This quantity is related to the Gaussian and Rademacher complexities of the function class
{gΩ : Ω ∈ Ah}. For example, the expectation of zh is the Gaussian complexity of the
function class {gΩ : Ω ∈ Ah} if the ui’s are i.i.d. standard normal random variables—
cf. (Bartlett and Mendelson, 2002), for example. But while the Gaussian and Rademacher
complexities are standard measures for function classes, there are two important subtleties
here: first, Gaussian and Rademacher complexities require the specification of a distribution
over the data, which we can avoid at this point; second, the function class at hand does
not contain the entire networks κgΩ but only their “orientation parts” gΩ. Therefore, we
should rather think of zh as the neural-network equivalent of what high-dimensional linear
regression refers to as the effective noise (Lederer and Vogt, 2020).

We need to ensure—just as in high-dimensional linear regression—that the effective
noise is controlled by the tuning parameter with high probability. In this spirit, we define
quantiles λh,t of the effective noise for given level t ∈ [0, 1] through

λh,t ∈ min
{
δ ∈ [0,∞) : P

(
zh ≤ δ) ≥ 1− t

}
. (6)

In other words, λh,t is the smallest tuning parameter that controls the effective noise zh at
level 1− t.

To measure the accuracy of the regularized estimators, we consider the (in-sample-) pre-
diction error (also called “denoising error”) with respect to the data generating function g∗:

err(κgΩ) :=

√√√√ 1

n

n∑

i=1

(
κgΩ(xi)− g∗(xi)

)2
for κ ∈ [0,∞),Ω ∈ Ah. (7)

This is a standard measure of how well the data generating function is learned. An interest-
ing feature of the in-sample-prediction error is that it avoids any distributional assumptions
on the data. Moreover, it also entails bounds on the generalization error (also called “out-
of-sample-prediction error” or “prediction risk”) for a new sample (x, y) ∈ R

d × R

risk(κgΩ) := E(x,y)

[(
κgΩ(x)− y

)2]
for κ ∈ [0,∞),Ω ∈ Ah ,
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which is more common in the deep-learning literature—see Lemma 5.
We find the following guarantee:

Theorem 2 (Prediction guarantee) Assume that λ ≥ λh,t for a t ∈ [0, 1]. Then,

err2(κ̂hgΩ̂h
) ≤ inf

κ∈[0,∞)
Ω∈Ah

{
err2(κgΩ) + 2λκ

}

with probability at least 1− t.

The bound is an analog of what has been called sparsity-bound in high-dimensional linear
regression (Lederer et al., 2019). For neural networks, however, it is the first such bound.
It states that the squared prediction error of the regularized estimator is governed by an
approximation error or squared bias err2(κgΩ) and an excess error or variance 2λκ. In other
words, the estimator is guaranteed to have a small prediction error if (i) the quantile λh,t is
small and (ii) the data generating function can be represented well by a neural network with
reasonably small κ. A typical example for (i) is provided in the following section; recent re-
sults on approximation theory support (ii) especially for wide and deep networks (Yarotsky,
2017).

Since zh is a supremum over an empirical process, it allows us to connect our statistical
theories with theories on empirical processes. Deviation inequalities that bound quantities
such as λh,t have been established even for noise ui that has very heavy tails (Lederer and van de Geer,
2014). In Section 3, we derive an explicit bound for λh,t for ℓ1-regularization and sub-
Gaussian noise. Crucial in this derivation, and in controlling zh in general, is that the index
set of the empirical process is the constraint parameter space Ah rather than the entire
parameter space A. This key feature of zh is due to our novel way of regularizing.

The standard parametrization Θ ∈ A of neural networks is ambiguous: there are typi-
cally uncountably many parameters Θ ∈ A that yield the same network gΘ. This ambiguity
remains in our new framework with (κ,Ω) ∈ [0,∞)×Ah. But importantly, our guarantees
hold for every solution (κ̂h, Ω̂h).

3. An example: ℓ1-regularization

In view of its long-standing tradition in other parts of statistics and machine learning,
sparsity-inducing regularization with ℓ1-terms has already sparked some theoretical re-
search. This existing research has two components: first, general risk bounds in terms of the
fat-shattering dimension or the Rademacher complexity such as Bartlett (1998, Theorem 2)
and Bartlett and Mendelson (2002, Theorem 8), respectively; and second, bounds for the
fat-shattering dimension and Rademacher complexity of classes of ℓ1-constraint neural net-
works such as Bartlett (1998, Section IV.B) and Golowich et al. (2018); Neyshabur et al.
(2015), respectively. But these results have severe limitations: for example, they require
bounded losses (which excludes the least-squares loss, for example); they consider con-
straints rather than regularization terms (which is the version used in practice); they do
not provide insights into how the tuning parameters should scale with the dimensions of the
problem, such as the sample size, the network size, and so forth (which can eventually lead
to practical advise); and they have—except for Golowich et al. (2018)—a strong dependence
on the network depth (which contradicts the current trend toward deep learning).
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It turns out that our general theory applied to ℓ1-regularization can do away with these
limitations. We define h as

h(Ω) := |||Ω|||1 :=
L∑

l=0

pl+1∑

k=1

pl∑

j=1

|U l
kj|.

And to fix ideas, we impose two assumptions on the activation functions and the noise:
First, we assume that the activation functions satisfy f l(0pl) = 0pl and are aLip-Lipschitz
continuous for a constant aLip ∈ [0,∞) and with respect to the Euclidean norms on their
input and output spaces:

||f l(z)− f l(z′)||2 ≤ aLip||z − z′||2 for all z,z′ ∈ R
pl.

This assumption is satisfied by many popular activation functions: for example, the coordi-
nates of the activation functions could be ReLU functions x 7→ 0 ∨ x (Nair and Hinton,
2010), “leaky” versions of ReLU x 7→ (0 ∨ x) + (0 ∧ cx) for c ∈ (0, 1), ELU func-
tions x 7→ x ∨ 0 + c(ex∧0 − 1) for c ∈ (0, 1] (Clevert et al., 2015), hyperbolic tangent func-
tions x 7→ (e2x−1)/(e2x+1), or SiL/Swish functions x 7→ x/(1+e−x) (Ramachandran et al.,
2017; Elfwing et al., 2018) (throughout, we use the shorthands r∨s := max{r, s} and r∧s :=
min{r, s} for r, s ∈ R). Feasible Lipschitz constants for these examples are aLip = 1.1 for
SiL/Swish and aLip = 1 for all other functions.

Second, we assume that the noise variables ui are independent, centered, and uniformly
sub-Gaussian for constants K, γ ∈ (0,∞) (van de Geer, 2000, Page 126; Vershynin, 2018,
Section 2.5):

max
i∈{1,...,n}

K2(Ee
|ui|

2

K2 − 1) ≤ γ2.

Using the shorthands A1 := {Θ ∈ A : |||Θ|||1 ≤ 1} and ||x||n :=
√∑n

i=1 ||xi||22/n, we then

find the following prediction guarantee for the estimator in (4):

Theorem 3 (Prediction guarantee for ℓ1-regularization) Assume that

λ ≥ a
(2aLip

L

)L
||x||n

√
L log(2P )

log(2n)√
n

,

where a ∈ (0,∞) is a constant that depends only on the sub-Gaussian parameters K and γ
of the noise. Then, for n large enough,

err2(κ̂hgΩ̂h
) ≤ inf

κ∈[0,∞)
Ω∈A1

{
err2(κgΩ) + 2λκ

}

with probability at least 1− 1/n.

The bound establishes essentially a 1/
√
n-decrease of the error in the sample size n, a mild

logarithmic increase in the number of parameters P , and an almost exponential decrease in
the number of hidden layers L if everything else is fixed (for example, the number of param-
eters P can depend on the number of hidden layers L). The dependencies on the sample
size n and the number of parameters P match those of standard bounds in ℓ1-regularized
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linear regression (Hebiri and Lederer, 2013). But one can argue that the logarithmic de-
pendence on the number of parameters is even more crucial for neural networks: already a
small network with L = 10, p0 = 100, and p1, . . . , pL = 50 involves P = 27550 parameters,
which highlights that neural networks typically involve very large P .

As an illustration, we can simplify Theorem 3 further in a parametric setting:

Corollary 4 (Parametric setting) Assume that

λ = a
(2aLip

L

)L
||x||n

√
L log(2P )

log(2n)√
n

and that there exist parameters (κ∗,Ω∗) ∈ [0,∞) × A1 such that κ∗gΩ∗(xi) = g∗(xi) for

all i ∈ {1, . . . , n}. Then, for n large enough,

err2(κ̂hgΩ̂h
) ≤ 2aκ∗

(2aLip
L

)L
||x||n

√
L log(2P )

log(2n)√
n

with probability at least 1− 1/2n.

The above choice of h is not the only way to formulate ℓ1-constraints. Another way is, for
example, h(Ω) := maxl∈{0,...,L}

∑pl+1

k=1

∑pl
j=1 |U l

kj|. The proofs and results remain virtually
the same, and one may choose in practice whatever regularizer is more appropriate or
easier to compute. And more broadly, our theories provide a general scheme for deriving
prediction guarantees that could account for different regularizers (such as grouped versions
of ℓ1), activation functions (such as non-Lipschitz functions), and noise (such as heavy-tailed
noise) through corresponding bounds for zh.

The bounds in the in-sample-prediction error also entail bounds in the generalization
error. We illustrate this here in the case of ℓ1-regularization. We assume that the input
data are random and find:

Lemma 5 (Generalization guarantee for ℓ1-regularization) Assume that the condi-

tions of Corollary 4 are satisfied and that the inputs x1, . . . ,xn are independent random

vectors. Then, for n large enough,

risk(κ̂hgΩ̂h
) ≤ 1.01 risk(κ∗gΩ∗) + aκ∗

(2aLip
L

)L
||x||n

√
L log(2P )

log(2n)√
n

+ a(κ∗)
2
(2aLip

L

)2L
√√√√L2 log(2P )

n∑

i=1

||xi||42
log(2n)

n

with probability at least 1 − 1/n, where a ∈ (0,∞) is a constant that depends only on the

sub-Gaussian parameters K and γ of the noise.

The result ensures that the estimator approaches the oracle risk at the above-discussed rate.
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4. Further technical results

We now establish Lipschitz and complexity properties of neural networks. These results are
used in our proofs but might also be of interest by themselves. To start, we define operator
norms of the parameters and the weight matrices by

|||Θ|||2 :=

√√√√
L∑

l=0

||W l||22 and ||W l||2 := σmax(W
l),

respectively, where σmax(W
l) is the largest singular value of W l. We also define Frobenius

norms of the parameter and weight matrices by

|||Θ|||F :=

√√√√
L∑

l=0

||W l||2F and ||W l||F :=

√√√√
pl+1∑

k=1

pl∑

j=1

(W l
kj)

2.

We then define the Euclidean norm of vectors by ||v||2 :=
√∑d

i=1(vi)
2 for v ∈ R

d. And
finally, the prediction distance of any two networks gΘ and gΓ with Θ,Γ ∈ A is

||gΘ − gΓ||n :=

√√√√ 1

n

n∑

i=1

(
gΘ(xi)− gΓ(xi)

)2
,

and similarly,

||gΘ||n :=

√√√√ 1

n

n∑

i=1

(
gΘ(xi)

)2
.

The Lipschitz property of neural networks is then as follows.

Proposition 6 (Lipschitz property of neural networks) Assume that the activation
functions f l : R

pl → R
pl are aLip-Lipschitz with respect to the Euclidean norms on their

input and output spaces. Then, it holds for every x ∈ R
d and Θ = (WL, . . . ,W 0),Γ =

(V L, . . . , V 0) ∈ A that

|gΘ(x)− gΓ(x)| ≤ cLip(x)|||Θ − Γ|||F
with cLip(x) := 2(aLip)

L
√
L||x||2 maxl∈{0,...,L}

∏
j∈{0,...,L},j 6=l(||W j ||2 ∨ ||V j ||2).

And similarly, it holds that

||gΘ − gΓ||n ≤ cLip|||Θ − Γ|||F

with cLip := 2(aLip)
L
√
L||x||nmaxl∈{0,...,L}

∏
j∈{0,...,L},j 6=l(||W j ||2 ∨ ||V j ||2).

This property is helpful in bounding the quantiles of the empirical processes. In particular,
it can be used to show that the networks are Lipschitz and bounded over typical sets that
originate from our regularization scheme. Such a result is given in the following lemma.
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Lemma 7 (Lipschitz and boundedness on A1) Under the conditions of Proposition 6,

it holds for every Ω,Γ ∈ A1 that

||gΩ − gΓ||n ≤ cLip1|||Ω− Γ|||F

and that

||gΩ||n ≤ cLip1

with cLip1 := 2(2aLip/L)
L
√
L||x||n.

To derive the complexity properties, we denote covering numbers by N(r,T , || · ||) and
entropy by H(r,T , || · ||) := logN(r,T , || · ||), where r ∈ (0,∞), T is a set, and || · || is a
(pseudo-)norm on an ambient space of T (van der Vaart and Wellner, 1996, Page 98). We
use these numbers to define a complexity measure for a collection of networks Gh := {gΩ :
Ω ∈ Ah} by

J(δ, σ,Ah) :=

∫ ∞

δ/(8σ)
H1/2

(
r,Gh, || · ||n

)
dr (8)

for δ, σ ∈ (0,∞) (van de Geer, 2000, Section 3.3). Almost in line with standard terminology,
we call this complexity measure the Dudley integral (Vershynin, 2018, Section 8.1). We can
bound the complexity of the class of neural networks G1 := {gΩ : Ω ∈ A1} that have
parameters in the constraint set A1 as follows:

Proposition 8 (Complexity properties of neural networks) Assume that the acti-
vation functions f l : Rpl → R

pl are aLip-Lipschitz continuous with respect to the Euclidean

norms on their input and output spaces. Then, it holds for every r ∈ (0,∞) and δ, σ ∈ (0,∞)
that satisfy δ ≤ 8σcLip1 that

H
(
r,G1, || · ||n

)
≤ 6(cLip1)

2

r2
log

(
ePr2

(cLip1)2
∨ 2e

)

and

J(δ, σ,A1) ≤
5cLip1

2

√
log (eP ∨ 2e) log

(8σcLip1
δ

)
,

where we recall that cLip1 = 2(2aLip/L)
L
√
L||x||n.

5. Additional materials and proofs

We now state some auxiliary results and then prove our claims.

5.1 Additional materials

We first provide three auxiliary results that we use in our proofs. We start with a slightly
adapted version of van de Geer (2000, Corollary 8.3):

Lemma 9 (Suprema over Gaussian processes) Consider a set A′ ⊂ A and a con-

stant R ∈ [0,∞) such that supΘ∈A′ ||gΘ||n ≤ R. Assume that the noise random vari-

ables u1, . . . , un are independent, centered, and uniformly sub-Gaussian as specified on
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Page 7. Then, there is a constant asub ∈ (0,∞) that depends only on K and γ such

that for all δ, σ ∈ (0,∞) that satisfy δ < σR and

√
nδ ≥ asub

(
J(δ, σ,A′) ∨R

)
,

it holds that

P

({
sup
Θ∈A′

∣∣∣∣
1

n

n∑

i=1

gΘ(xi)ui

∣∣∣∣ ≥ δ

}
∩
{
1

n

n∑

i=1

(ui)
2 ≤ σ2

})
≤ asube

− nδ2

(asubR)2 .

This result is used to bound λℓ1,t.

We then turn to a Lipschitz property of metric entropy:

Lemma 10 (Entropy transformation for Lipschitz functions) Consider sets A′ ⊂
A and G′ := {gΘ : Θ ∈ A′} and a metric ρ : A′ ×A′ → R. Assume that |gΘ(x)− gΓ(x)| ≤
kLip(x)ρ(Θ,Γ) for every Θ,Γ ∈ A′ and x ∈ R

d and a fixed function kLip : R
d → [0,∞).

Then,

H(r,G′, || · ||n) ≤ H

(
r

||kLip||n
,A′, ρ

)
for all r ∈ (0,∞),

where ||kLip||n :=
√∑n

i=1(kLip(xi))2/n.

We use the convention a/0 = ∞ for a ∈ (0,∞). The result allows us to bound entropies on
the parameter spaces instead of the network spaces. We prove the lemma in the following
section.

We conclude with a deviation inequality for the noise.

Lemma 11 (Deviation of sub-Gaussian noise) Assume that the noise variables u1, . . . ,
un are independent, centered, and uniformly sub-Gaussian as stipulated on Page 7. Then,

P

(
1

n

n∑

i=1

(ui)
2 ≥ v

)
≤ e−

nv
12K2 for all v ∈ [2γ2,∞).

This deviation inequality is tailored to our needs in the proof of Theorem 3.

5.2 Proofs

We provide here the proofs of our claims.

5.2.1 Proof of Proposition 1

Proof We prove the two directions in order.

Direction 1: Fix a Θ = (WL, . . . ,W 0) ∈ A. Assume first that W l = 0pl+1×pl for
an l ∈ {0, . . . , L}. In view of the definition of neural networks in (2) and the assumed
nonnegative homogeneity of the activation functions, it then holds that

gΘ(x) = WLfL(. . . 0pl+1×plf
l(. . .W 1f1(W 0x)))

= WLfL(. . . 0 · 0pl+1×plf
l(. . . W 1f1(W 0x))) = 0

11



for all x ∈ R
d. Therefore, κ := 0 and all Ω ∈ Ah satisfy κgΩ = gΘ, as desired .

Assume now that W l 6= 0pl+1×pl for all l ∈ {0, . . . , L}. Define κ := (h(Θ))(L+1)/k

and Ω := Θ/κ1/(L+1) = (WL/κ1/(L+1), . . . ,W 0/κ1/(L+1)) if κ1/(L+1) 6= 0. We need to show
that 1. κ ∈ (0,∞) and Ω ∈ Ah and 2. gΘ = κgΩ.

Since h is assumed positive definite, it holds that h(Θ) ∈ (0,∞) and, therefore, κ ∈
(0,∞). The fact that κ > 0 also ensures that the parameter Ω is well-defined, and we can
invoke the assumed nonnegative homogeneity of degree k of h to derive

h(Ω) = h
(
Θ/κ1/(L+1)

)
=
(
κ−1/(L+1)

)k
h(Θ) =

(
(h(Θ))(L+1)/k

)−k/(L+1)
h(Θ) = 1.

This verifies 1.

We can then invoke the assumed nonnegative homogeneity of degree 1 of the activation
functions to derive for all x ∈ R

d that

κgΩ(x) = κ
WL

κ1/(L+1)
fL

(
. . .

W 1

κ1/(L+1)
f1
( W 0

κ1/(L+1)
x
))

= κ
WL

κ1/(L+1)
fL

(
. . .

W 1

(
κ1/(L+1)

)2f
1(W 0x)

)

= . . .

=
κ

(
κ1/(L+1)

)(L+1)
WLfL

(
. . .W 1f1(W 0x)

)

= WLfL
(
. . .W 1f1(W 0x)

)

= gΘ(x).

This verifies 2.

Direction 2: Fix a κ ∈ [0,∞) and a Ω = (UL, . . . , U0) ∈ Ah, and define Θ :=
κ1/(L+1)Ω = (κ1/(L+1)UL, . . . , κ1/(L+1)U0). We then invoke the assumed nonnegative ho-
mogeneity of degree 1 of the activation functions to derive for all x ∈ R

d that

gΘ(x) = κ1/(L+1)ULfL
(
. . . κ1/(L+1)U1f1

(
κ1/(L+1)U0x

))

= κ1/(L+1)ULfL
(
. . .
(
κ1/(L+1)

)2
U1f1(U0x)

)

= . . .

=
(
κ1/(L+1)

)(L+1)
ULfL

(
. . . U1f1(U0x)

)

= κULfL
(
. . . U1f1(U0x)

)

= κgΩ(x),

as desired.
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5.2.2 Proof of Theorem 2

Proof Since (κ̂h, Ω̂h) is a minimizer of the objective function in (4), we find for every κ ∈
[0,∞) and Ω ∈ Ah that

1

n

n∑

i=1

(
yi − κ̂hgΩ̂h

(xi)
)2

+ λκ̂h ≤ 1

n

n∑

i=1

(
yi − κgΩ(xi)

)2
+ λκ.

Replacing the yi’s via the model in (1) then yields

1

n

n∑

i=1

(
g∗(xi) + ui − κ̂hgΩ̂h

(xi)
)2

+ λκ̂h ≤ 1

n

n∑

i=1

(
g∗(xi) + ui − κgΩ(xi)

)2
+ λκ.

Expanding the squared-terms and rearranging terms, we get

1

n

n∑

i=1

(
κ̂hgΩ̂h

(xi)− g∗(xi)
)2 ≤ 1

n

n∑

i=1

(
κgΩ(xi)− g∗(xi)

)2

+
2

n

n∑

i=1

κ̂hgΩ̂h
(xi)ui −

2

n

n∑

i=1

κgΩ(xi)ui + λκ− λκ̂h.

We can then bound the sums on the second line to obtain

1

n

n∑

i=1

(
κ̂hgΩ̂h

(xi)− g∗(xi)
)2 ≤ 1

n

n∑

i=1

(
κgΩ(xi)− g∗(xi)

)2

+ κ̂h sup
Ω∈Ah

∣∣∣ 2
n

n∑

i=1

gΩ(xi)ui

∣∣∣+ κ sup
Ω∈Ah

∣∣∣ 2
n

n∑

i=1

gΩ(xi)ui

∣∣∣+ λκ− λκ̂h.

The second line can then be consolidated by virtue of the assumption on λ: with probability
at least 1− t, it holds that

1

n

n∑

i=1

(
κ̂hgΩ̂h

(xi)− g∗(xi)
)2 ≤ 1

n

n∑

i=1

(
κgΩ(xi)− g∗(xi)

)2
+ 2λκ.

Taking the infimum over κ ∈ [0,∞) and Ω ∈ Ah and invoking the definition of err2(·) on
Page 5 gives the desired result.

5.2.3 Proof of Theorem 3

Proof The idea of the proof is to bound the effective noise and then apply Theorem 2.
If cLip1 = 0, then gΩ(xi) = 0 for all Ω ∈ A1 and i ∈ {1, . . . , n} in view of Lemma 7.

Hence,

P

(
sup
Ω∈A1

∣∣∣∣
2

n

n∑

i=1

gΩ(xi)ui

∣∣∣∣ ≤ δ

)
= P(0 ≤ δ) = 1 for all δ ∈ (0,∞),

which makes a proof straightforward. We can thus assume cLip1 > 0 in the following.
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Our first step is to apply Lemma 9 about suprema of empirical processes with A′ := A1.
For this, we need to find 1. a constant R ∈ [0,∞) that satisfies supΩ∈A1

||gΩ||n ≤ R and
2. suitable δ, σ ∈ (0,∞) that satisfy δ < σR and

√
n ≥ asub

δ

(
J(δ, σ,A1) ∨R

)
.

Condition 1 is verified by R := cLip1 according to Lemma 7.
For Condition 2, we define δ ≡ δ(n, P, asub, cLip1) := 10asubcLip1

√
log(2P )/n log(2n) ∈

(0,∞) and σ := (2δ/cLip1) ∨ (
√
2γ). Then, δ < σR by the definitions of δ, σ,R. Moreover,

Proposition 8, the definitions of δ and R, and

8σcLip1
δ

= 16 ∨ 8
√
2γcLip1

10asubcLip1
√

log(2P )/n log(2n)
≤ 16 ∨ 2γ

√
n

asub
≤ 16

√
n

(we assume that asub ≥ γ/8 without loss of generality and use that log(2) ≥ 0.69) yield

asub
δ

(
J(δ, σ,A1) ∨ cLip1

)

≤ asub
δ

(
5cLip1

2

√
log
(
eP ∨ 2e

)
log
(8σcLip1

δ

)
∨ cLip1

)

≤
√
nasub

10asubcLip1
√

log(2P ) log(2n)

(5cLip1
2

√
log(eP ∨ 2e) log(16

√
n) ∨ cLip1

)

≤
√
nasub

10asubcLip1
√

log(2P ) log(2n)

(
10cLip1

√
log(2P ) log(2n) ∨ cLip1

)

=
√
n,

which verifies Condition 2.
We can thus apply Lemma 9 with the above-specified parameters to obtain that

P

({
sup
Ω∈A1

∣∣∣∣
1

n

n∑

i=1

gΩ(xi)ui

∣∣∣∣ ≥ δ

}
∩
{
1

n

n∑

i=1

(ui)
2 ≤ σ2

})
≤ asube

− nδ2

(asubcLip1)
2
.

We use that P(C ∩D) ≤ α implies P(C∁ ∪D∁) ≥ 1−α and that P(C∁) ≥ P(C∁ ∪D∁)−P(D∁)
to rewrite this inequality as

P

(
sup
Ω∈A1

∣∣∣∣
1

n

n∑

i=1

gΩ(xi)ui

∣∣∣∣ ≤ δ

)
≥ P

(
sup
Ω∈A1

∣∣∣∣
1

n

n∑

i=1

gΩ(xi)ui

∣∣∣∣ < δ

)

≥ 1− asube
− nδ2

(asubcLip1)
2 − P

(
1

n

n∑

i=1

(ui)
2 > σ2

)
.

Since σ2 ≥ 2γ2 by the definition of σ, Lemma 11 with v := σ2 allows us to bound the last
term according to

P

(
1

n

n∑

i=1

(ui)
2 > σ2

)
≤ P

(
1

n

n∑

i=1

(ui)
2 ≥ σ2

)
≤ e−

nσ2

12K2 .
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Combining this inequality with the previous one yields

P

(
sup
Ω∈A1

∣∣∣∣
1

n

n∑

i=1

gΩ(xi)ui

∣∣∣∣ ≤ δ

)
≥ 1− asube

− nδ2

(asubcLip1)
2 − e−

nσ2

12K2 .

By the definitions of δ and σ, and assuming that n is large enough (depending on γ,K),
we find that

asube
− nδ2

(asubcLip1)
2
+ e−

nσ2

12K2

≤ asube
−102 log(2P )(log(2n))2 + e−

4·102(asub)2 log(2P )(log(2n))2

12K2 + e−
nγ2

6K2

≤ e− log(4n) + e− log(4n) + e−
nγ2

6K2

≤ 1

n
,

that is,

P

(
sup
Ω∈A1

∣∣∣∣
1

n

n∑

i=1

gΩ(xi)ui

∣∣∣∣ ≤ δ

)
≥ 1− 1

n
.

In other words, λh,t ≤ 2δ for t = 1/n.
The claim then follows directly from Theorem 2 with λ ≥ 2δ = 20asubcLip1

√
log(2P )/n

log(2n), cLip1 = 2(2aLip/L)
L
√
L||x||n (see Lemma 7), and a := 40asub.

5.2.4 Proof of Lemma 5

Proof The idea of the proof is to disentangle the generalization error into the prediction
error and additional terms. We then bound the prediction error by using Corollary 4 and
the additional terms by using empirical-process theory.

We 1. replace the output y by using the model in (1), 2. use monotone convergence
together with the fact that (r + s)2 ≤ br2 + 1.01s2 for a numerical constant b ∈ (0,∞),
3. use the linearity of expectations, 4. add a zero-valued term, and 5. take an absolute value
to get

E(x,y)

[(
κ̂hgΩ̂h

(x)− y
)2]

= E(x,y)

[(
κ̂hgΩ̂h

(x)− g∗(x)− u
)2]

≤ E(x,y)

[
b
(
κ̂hgΩ̂h

(x)− g∗(x)
)2

+ 1.01u2
]

= bE(x,y)

[(
κ̂hgΩ̂h

(x)− g∗(x)
)2]

+ 1.01E(x,y)[u
2]

=
b

n

n∑

i=1

(
κ̂hgΩ̂h

(xi)− g∗(xi)
)2

+ 1.01E(x,y)[u
2]

− b

n

n∑

i=1

(
κ̂hgΩ̂h

(xi)− g∗(xi)
)2

+ bE(x,y)

[(
κ̂hgΩ̂h

(x)− g∗(x)
)2]
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≤ b

n

n∑

i=1

(
κ̂hgΩ̂h

(xi)− g∗(xi)
)2

+ 1.01E(x,y)[u
2]

+

∣∣∣∣
b

n

n∑

i=1

(
κ̂hgΩ̂h

(xi)− g∗(xi)
)2 − bE(x,y)

[(
κ̂hgΩ̂h

(x)− g∗(x)
)2]
∣∣∣∣.

The remaining challenge is now to bound the last term of this display. We devise an
approach based on symmetrization for probabilities (van de Geer, 2016, Lemma 16.1). We
first use 1. the fact that Ω̂h ∈ A1 and 2. the independence assumption on the data to get

∣∣∣∣
b

n

n∑

i=1

(
κ̂hgΩ̂h

(xi)− g∗(xi)
)2 − bE(x,y)

[(
κ̂hgΩ̂h

(x)− g∗(x)
)2]
∣∣∣∣

≤ sup
Ω∈A1

∣∣∣∣
b

n

n∑

i=1

(
κ̂hgΩ(xi)− g∗(xi)

)2 − bE(x,y)

[(
κ̂hgΩ(x)− g∗(x)

)2]
∣∣∣∣

= sup
Ω∈A1

∣∣∣∣
b

n

n∑

i=1

((
κ̂hgΩ(xi)− g∗(xi)

)2 − E(x1,y1),...,(xn,yn)

[(
κ̂hgΩ(xi)− g∗(xi)

)2])
∣∣∣∣.

We now prepare the application of van de Geer (2016, Lemma 16.1). We use 1. the
definition of (RA)

2, which is called “R2” in van de Geer (2016, Lemma 16.1), 2. the fact
that (r + s)4 ≤ 8r4 + 8s4 and dominated convergence, 3. the fact that κ∗gΩ∗(xi) = g∗(xi)
by assumption and the linearity of finite sums and expectations, 4. again the linearity of
finite sums and expectations, the fact that Ω∗ ∈ A1, and dominated convergence, 5. the
fact that

∑n
i=1(gΩ(xi))

4/n ≤ 16(2aLip/L)
4LL2

∑n
i=1 ||xi||42/n and analogs of Proposition 6

and Lemma 7, 6. κ̂h ≤ 3κ∗, which can be proved easily along the lines of the proof of
Theorem 2 (just double the tuning parameter), and once more the linearity of integrals,
and 7. a simplification with a numerical constant ã ∈ (0,∞), which may change from line
to line in the proof, to obtain

(RA)
2 = sup

Ω∈A1

1

n

n∑

i=1

E(xi,yi)

[(
κ̂hgΩ(xi)− g∗(xi)

)4]

≤ sup
Ω∈A1

1

n

n∑

i=1

E(xi,yi)

[
8
(
κ̂hgΩ(xi)

)4
+ 8
(
g∗(xi)

)4]

= 8(κ̂h)
4 sup
Ω∈A1

1

n

n∑

i=1

E(xi,yi)

[(
gΩ(xi)

)4]
+

8(κ∗)
4

n

n∑

i=1

E(xi,yi)

[(
gΩ∗(xi)

)4]

≤ 8
(
(κ̂h)

4 + (κ∗)
4
)
E(x1,y1),...,(xn,yn)

[
sup
Ω∈A1

1

n

n∑

i=1

(
gΩ(xi)

)4
]

≤ 8
(
(κ̂h)

4 + (κ∗)
4
)
E(x1,y1),...,(xn,yn)

[
16

(
2aLip
L

)4LL2

n

n∑

i=1

||xi||42

]

≤ 128
(
(3κ∗)

4 + (κ∗)
4
)(2aLip

L

)4L

L2
E(x1,y1),...,(xn,yn)

[
1

n

n∑

i=1

||xi||42
]
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= ã(κ∗)
4

(
2aLip
L

)4L

L2
E(x1,y1),...,(xn,yn)

[
1

n

n∑

i=1

||xi||42
]
.

Then, we use 1. the penultimate inequality and a rearrangement, 2. the symmetrization
bound of van de Geer (2016, Lemma 16.1) with an i.i.d. Rademacher variables ζ1, . . . , ζn ∈
{±1} that are independent of the data, 3. multiplying by a one-valued factor, 4 the con-
traction principle (Ledoux and Talagrand, 1991, Theorem 4.4) with αi = (κ̂hgΩ(xi) −
g∗(xi))

2/(2(κ̂hgΩ(xi))
2 + 2(g∗(xi))

2) ∈ [0, 1], 5. the fact that P(r + s > w) ≤ P(r >
w/2) + P(s > w/2), 6. the linearity of finite sums, κ∗gΩ∗(xi) = g∗(xi), and the fact
that Ω∗ ∈ A1, and 7. κ̂h ≤ 3κ∗ to get for all t ∈ [4,∞)

P

(∣∣∣∣
b

n

n∑

i=1

(
κ̂hgΩ̂h

(xi)− g∗(xi)
)2 − bE(x,y)

[(
κ̂hgΩ̂h

(x)− g∗(x)
)2]
∣∣∣∣ > 4bRA

√
2t

n

)

≤ P

(
sup
Ω∈A1

∣∣∣∣
1

n

n∑

i=1

((
κ̂hgΩ(xi)− g∗(xi)

)2 − E(x1,y1),...,(xn,yn)

[(
κ̂hgΩ(xi)− g∗(xi)

)2])
∣∣∣∣ > 4RA

√
2t

n

)

≤ 4P

(
sup
Ω∈A1

∣∣∣∣
1

n

n∑

i=1

ζi
(
κ̂hgΩ(xi)− g∗(xi)

)2
∣∣∣∣ > RA

√
2t

n

)

= 4P

(
sup
Ω∈A1

∣∣∣∣∣
1

n

n∑

i=1

ζi

(
2
(
κ̂hgΩ(xi)

)2
+ 2
(
g∗(xi)

)2)
(
κ̂hgΩ(xi)− g∗(xi)

)2

2
(
κ̂hgΩ(xi)

)2
+ 2
(
g∗(xi)

)2

∣∣∣∣∣ > RA

√
2t

n

)

≤ 8P

(
sup
Ω∈A1

∣∣∣∣
1

n

n∑

i=1

ζi

(
2
(
κ̂hgΩ(xi)

)2
+ 2
(
g∗(xi)

)2)
∣∣∣∣ > RA

√
2t

n

)

≤ 8P

(
sup
Ω∈A1

∣∣∣∣
1

n

n∑

i=1

2ζi
(
κ̂hgΩ(xi)

)2
∣∣∣∣ >

RA

2

√
2t

n

)
+ 8P

(∣∣∣∣
1

n

n∑

i=1

2ζi
(
g∗(xi)

)2
∣∣∣∣ >

RA

2

√
2t

n

)

= 8P

(
sup
Ω∈A1

∣∣∣∣
2(κ̂h)

2

n

n∑

i=1

ζi
(
gΩ(xi)

)2
∣∣∣∣ >

RA

2

√
2t

n

)
+ 8P

(
sup
Ω∈A1

∣∣∣∣
2(κ∗)

2

n

n∑

i=1

ζi
(
gΩ(xi)

)2
∣∣∣∣ >

RA

2

√
2t

n

)

≤ 16P

(
sup
Ω∈A1

∣∣∣∣
18(κ∗)

2

n

n∑

i=1

ζi
(
gΩ(xi)

)2
∣∣∣∣ >

RA

2

√
2t

n

)
.

In the case κ∗ = 0, the probability equals zero (notice that RA ∈ [0,∞), t ∈ [4,∞), and
n ∈ [1,∞)), which is commensurate with the bound in Lemma 5. So, for the rest of the
proof we can assume without loss of generality that κ∗ > 0. Rearranging the above display
then gives

P

(∣∣∣∣
b

n

n∑

i=1

(
κ̂hgΩ̂h

(xi)− g∗(xi)
)2 − bE(x,y)

[(
κ̂hgΩ̂h

(x)− g∗(x)
)2]
∣∣∣∣ > 4bRA

√
2t

n

)

≤ 16P

(
sup
Ω∈A1

∣∣∣∣
1

n

n∑

i=1

ζi
(
gΩ(xi)

)2
∣∣∣∣ >

RA

36(κ∗)2

√
2t

n

)
.
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Following the same approach as in the proof of Theorem 3 (with δ = 1280asub(2aLip/L)
2L

√
L2 log(2P )

∑n
i=1 ||xi||42/n2 log(2n)), we get

P

(
sup
Ω∈A1

∣∣∣∣
1

n

n∑

i=1

ζi
(
gΩ(xi)

)2
∣∣∣∣ ≤

RA

36(κ∗)2

√
2t

n

)
≥ 1− 1

32n

for t := (ãasub(κ∗)
2(2aLip/L)

2L
√

L2 log(2P )
∑n

i=1 ||xi||42/n log(2n)/RA)
2/2. (note that t ∈

[4,∞) as long as n is large enough such that ã(asub)
2 log(2P )(log(2n))2 ≥ 4; and also let

remind our assumption in Theorem 3 that asub ≥ γ/8 ). Hence, we obtain

P

(
sup
Ω∈A1

∣∣∣∣
1

n

n∑

i=1

ζi
(
gΩ(xi)

)2
∣∣∣∣ >

RA

36(κ∗)2

√
2t

n

)
<

1

32n
.

Now, we combine the above inequality with the previous result and using some rearrange-
ments to obtain

P

(∣∣∣∣
b

n

n∑

i=1

((
κ̂hgΩ̂h

(xi)− g∗(xi)
)2)− bE(x,y)

[(
κ̂hgΩ̂h

(x)− g∗(x)
)2]
∣∣∣∣ > 4bRA

√
2t

n

)
<

1

2n
.

Collecting all pieces of the proof, we obtain

E(x,y)

[(
κ̂hgΩ̂h

(x)− y
)2]

≤ b

n

n∑

i=1

(
κ̂hgΩ̂h

(xi)− g∗(xi)
)2

+ 1.01E(x,y)[u
2]

+

∣∣∣∣
b

n

n∑

i=1

(
κ̂hgΩ̂h

(xi)− g∗(xi)
)2 − bE(x,y)

[(
κ̂hgΩ̂h

(x)− g∗(x)
)2]
∣∣∣∣

≤ b

n

n∑

i=1

(
κ̂hgΩ̂h

(xi)− g∗(xi)
)2

+ 1.01E(x,y)[u
2]

+ ãbasub(κ∗)
2
(2aLip

L

)2L
√

L2 log(2P )
∑n

i=1 ||xi||42
n2

log(2n)

with probability at least 1− 1/2n.
We finally 1. invoke the inequality of Corollary 4 to bound the in-sample-prediction error

in the above display with probability at least 1− 1/2n, 2. define a := ãbasub and 3. use the
fact that risk(κ∗gΩ∗) = E(x,y)[u

2] to get the desired bound with probability at least 1−1/n.

5.2.5 Proof of Proposition 6

Proof The proof peels the networks into inner and outer subnetworks. The inner subnet-
works of a network gΘ ∈ G := {gΘ : Θ ∈ A} are vector-valued functions defined by

S0gΘ : R
d → R

d

x 7→ S0gΘ(x) := x
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and

SlgΘ : R
d → R

pl

x 7→ SlgΘ(x) := f l
(
W l−1f l−1

(
. . . W 1f1(W 0x)

))

for l ∈ {1, . . . , L}. Similarly, the outer subnetworks of gΘ are real-valued functions defined
by

SlgΘ : R
pl−1 → R

z 7→ SlgΘ(z) := WLfL
(
. . .W lf l(W l−1z)

)

for l ∈ {1, . . . , L} and

SL+1gΘ : R
L → R

z 7→ SL+1gΘ(z) := WLz.

The initial network can be split into an inner and an outer network along every layer l ∈
{1, . . . , L+ 1}:

gΘ(x) = SlgΘ
(
Sl−1gΘ(x)

)
.

This observation is the basis for the following derivations.
We now show a contraction property for the inner subnetworks and a Lipschitz property

for the outer subnetworks. Using the assumption that z 7→ f l−1(z) is aLip-Lipschitz, we
get for every Θ = (WL, . . . ,W 0) and x ∈ R

d that

||Sl−1gΘ(x)||2 = ||f l−1
(
W l−2Sl−2gΘ(x)

)
||2

≤ aLip||W l−2Sl−2gΘ(x)||2
≤ aLip||W l−2||2||Sl−2gΘ(x)||2
≤ . . .

≤ (aLip)
l−1||x||2

l−2∏

j=0

||W j||2

for all l ∈ {2, . . . , L+1}; and one can verify readily that ||S0gΘ(x)||2 = ||x||2. In other words,
x 7→ Sl−1gΘ(x) and x 7→ S0gΘ(x) are “contractions” with constants (aLip)

l−1
∏l−2

j=0 ||W j||2
and 1, respectively, with respect to the Euclidean norms on the input space R

d and output
spaces Rpl−1 and R

d, respectively.
By similar arguments, we get for every z1,z2 ∈ R

pl that

|Sl+1gΘ(z1)− Sl+1gΘ(z2)|
=
∣∣WLfL

(
. . .W l+1f l+1(W lz1)

)
−WLfL

(
. . .W l+1f l+1(W lz2)

)∣∣

≤ ||WL||2||fL
(
. . .W l+1f l+1(W lz1)

)
− fL

(
. . .W l+1f l+1(W lz2)

)
||2

≤ aLip||WL||2||WL−1fL−1
(
. . .W l+1f l+1(W lz1)

)
−WL−1fL−1

(
. . .W l+1f l+1(W lz2)

)
||2

≤ . . .
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≤ (aLip)
L−l||z1 − z2||2

L∏

j=l

||W j||2

for l ∈ {0, . . . , L}. In other words, z 7→ Sl+1gΘ(z) is Lipschitz with constant (aLip)
L−l

∏L
j=l ||W j||2

with respect to the Euclidean norms on the input space R
pl and output space R.

We now use these contraction and Lipschitz properties for the subnetworks to derive
a Lipschitz property for the entire network. We consider two networks gΘ and gΓ with
parameters Θ = (WL, . . . ,W 0) ∈ A and Γ = (V L, . . . , V 0) ∈ A, respectively. Our above
splitting of the networks applied to l = 1 and l = L + 1 and the fact that S0gΘ(x) =
S0gΓ(x) = x yield

|gΘ(x)− gΓ(x)| =
∣∣S1gΘ

(
S0gΘ(x)

)
− SL+1gΓ

(
SLgΓ(x)

)∣∣

=
∣∣S1gΘ

(
S0gΓ(x)

)
− SL+1gΓ

(
SLgΓ(x)

)∣∣.

Elementary algebra and the fact that Sl+1gΘ(SlgΓ(x)) = Sl+1gΘ(f
l(V l−1Sl−1gΓ(x))) =

Sl+2gΘ(f
l+1(W lSlgΓ(x))) then allow us to derive

|gΘ(x)− gΓ(x)|

=

∣∣∣∣S
1gΘ
(
S0gΓ(x)

)
−

L−1∑

l=1

(
Sl+1gΘ

(
SlgΓ(x)

)
− Sl+1gΘ

(
SlgΓ(x)

))

−
(
SL+1gΘ

(
SLgΓ(x)

)
− SL+1gΘ

(
SLgΓ(x)

))
− SL+1gΓ

(
SLgΓ(x)

)∣∣∣∣

=

∣∣∣∣S
2gΘ

(
f1
(
W 0S0gΓ(x)

))

−
L−1∑

l=1

(
Sl+1gΘ

(
f l
(
V l−1Sl−1gΓ(x)

))
− Sl+2gΘ

(
f l+1

(
W lSlgΓ(x)

)))

− SL+1gΘ

(
fL
(
V L−1SL−1gΓ(x)

))
+ SL+1gΘ

(
SLgΓ(x)

)
− SL+1gΓ

(
SLgΓ(x)

)∣∣∣∣

=

∣∣∣∣
L∑

l=1

(
Sl+1gΘ

(
f l
(
W l−1Sl−1gΓ(x)

))
− Sl+1gΘ

(
f l
(
V l−1Sl−1gΓ(x)

)))

+ SL+1gΘ
(
SLgΓ(x)

)
− SL+1gΓ

(
SLgΓ(x)

)∣∣∣∣

=

∣∣∣∣
L∑

l=1

(
Sl+1gΘ

(
f l
(
W l−1Sl−1gΓ(x)

))
− Sl+1gΘ

(
f l
(
V l−1Sl−1gΓ(x)

)))

+WLSLgΓ(x)− V LSLgΓ(x)

∣∣∣∣

≤
L∑

l=1

∣∣∣Sl+1gΘ

(
f l
(
W l−1Sl−1gΓ(x)

))
− Sl+1gΘ

(
f l
(
V l−1Sl−1gΓ(x)

))∣∣∣

+
∣∣(WL − V L)SLgΓ(x)

∣∣.
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We bound this further by using 1. the above-derived Lipschitz property of Sl+1gΘ, 2. the
assumption that the f l are aLip-Lipschitz, 3. the properties of the ℓ2-norm, and 4. the
above-derived contraction property of Sl−1gΓ:

|gΘ(x)− gΓ(x)|

≤
L∑

l=1

[
(aLip)

L−l
L∏

j=l

||W j||2
]
||f l
(
W l−1Sl−1gΓ(x)

)
− f l

(
V l−1Sl−1gΓ(x)

)
||2

+
∣∣(WL − V L)SLgΓ(x)

∣∣

≤
L∑

l=1

[
(aLip)

L−l+1
L∏

j=l

||W j||2
]
||W l−1Sl−1gΓ(x)− V l−1Sl−1gΓ(x)||2+

∣∣(WL − V L)SLgΓ(x)
∣∣

≤
L∑

l=1

[
(aLip)

L−l+1
L∏

j=l

||W j||2
]
||W l−1 − V l−1||2||Sl−1gΓ(x)||2 + ||WL − V L||2||SLgΓ(x)||2

≤
L∑

l=1

[
(aLip)

L−l+1
L∏

j=l

||W j||2
]
||W l−1 − V l−1||2

[
(aLip)

l−1
l−2∏

j=0

||V j||2
]
||x||2

+ ||WL − V L||2
[
(aLip)

L
L−1∏

j=0

||V j||2
]
||x||2,

where we set
∏−1

j=0 ||V j||2 := 1. Consolidating and rearranging then yields

|gΘ(x)− gΓ(x)|

≤ (aLip)
L

(
L∑

l=1

[ ∏

j∈{0,...,L}
j 6=l−1

(
||W j||2 ∨ ||V j ||2

)]
||W l−1 − V l−1||2||x||2

+

[L−1∏

j=0

(
||W j||2 ∨ ||V j ||2

)]
||WL − V L||2||x||2

)

= (aLip)
L

L+1∑

l=1

[ ∏

j∈{0,...,L}
j 6=l−1

(
||W j||2 ∨ ||V j ||2

)]
||W l−1 − V l−1||2||x||2

≤ (aLip)
L||x||2 max

l∈{1,...,L+1}

{ ∏

j∈{0,...,L}
j 6=l−1

(
||W j||2 ∨ ||V j ||2

)} L+1∑

m=1

||Wm−1 − V m−1||2

= (aLip)
L||x||2 max

l∈{0,...,L}

{ ∏

j∈{0,...,L}
j 6=l

(
||W j ||2 ∨ ||V j ||2

)} L∑

m=0

||Wm − V m||2.
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We now study the last sum in that bound: First, we observe that

L∑

m=0

||Wm − V m||2 =

√√√√
( L∑

m=0

||Wm − V m||2
)2

≤

√√√√(L+ 1)

L∑

m=0

||Wm − V m||22

=
√
L+ 1

√√√√
L∑

m=0

||Wm − V m||22,

where we use
(∑L

m=0 am
)2 ≤ (L+1)

∑L
m=0(am)2 with am := ||Wm−V m||2. We then bound

the last line further to obtain

L∑

m=0

||Wm − V m||2 ≤
√
L+ 1|||Θ − Γ|||2

≤ 2
√
L|||Θ− Γ|||2

≤ 2
√
L|||Θ− Γ|||F,

where we use 1. the definition of the operator norm on Page 9, 2.
√
1 + L ≤ 2

√
L, and

3. |||Θ− Γ|||2 ≤ |||Θ − Γ|||F. Combining this result with the previous display yields

|gΘ(x)− gΓ(x)| ≤ 2(aLip)
L
√
L||x||2 max

l∈{0,...,L}

{ ∏

j∈{0,...,L}
j 6=l

(
||W j ||2 ∨ ||V j ||2

)}
|||Θ − Γ|||F

= cLip(x)|||Θ − Γ|||F,

as desired.
The second claim then follows readily:

||gΘ − gΓ||n =

√√√√ 1

n

n∑

i=1

(
gΘ(xi)− gΓ(xi)

)2

≤

√√√√ 1

n

n∑

i=1

(
cLip(xi)|||Θ− Γ|||F

)2

=

√√√√√
1

n

n∑

i=0

(
2(aLip)L

√
L||xi||2 max

l∈{0,...,L}

{ ∏

j∈{0,...,L}
j 6=l

(
||W j||2 ∨ ||V j||2

)}
|||Θ − Γ|||F

)2

= 2(aLip)
L
√
L

√√√√ 1

n

n∑

i=0

||xi||22 max
l∈{0,...,L}

{ ∏

j∈{0,...,L}
j 6=l

(
||W j||2 ∨ ||V j||2

)}
|||Θ − Γ|||F

= cLip|||Θ− Γ|||F,
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as desired.

5.2.6 Proof of Lemma 7

Proof The proof follows from Proposition 6 and restricting the parameter space to A1.
Since Ω,Γ ∈ A1, we can get

L∑

j=0

(
||W j||2 ∨ ||V j ||2

)
≤

L∑

j=0

(
||W j||2 + ||V j ||2

)

≤
L∑

j=0

(
||W j ||1 + ||V j||1

)

= |||Ω|||1 + |||Γ|||1
≤ 2.

Using 1. the inequality of arithmetic and geometric means, 2. the nonnegativity of norms
(|| · ||2 ≥ 0), and 3. the above display, we obtain

max
l∈{0,...,L}

∏

j∈{0,...,L}
j 6=l

(
||W j||2 ∨ ||V j ||2

)
≤ max

l∈{0,...,L}

(
1

L

L∑

j=0,j 6=l

(
||W j ||2 ∨ ||V j ||2

)
)L

≤
(
1

L

L∑

j=0

(
||W j||2 ∨ ||V j ||2

)
)L

≤
( 2
L

)L
.

We can plug this inequality into the definition of cLip in Proposition 6 to get

cLip1 = 2(aLip)
L
√
L||x||n

( 2
L

)L
,

as desired in the first claim. The second claim then follows by setting Γ equal to the all-zeros
parameter in the first claim.

5.2.7 Proof of Proposition 8

Proof We prove the two claims in order.
Claim 1: entropy bound
Our strategy is to move from H(r,G1, || · ||n) to H(r/cLip1,A1, ||| · |||F) via Proposition 6

and Lemma 10 and then bound the latter covering number using a bound on the entropy
of ℓ1-balls.

Lemma 7 ensures that the function Ω 7→ gΩ restricted to the parameter space A1

is cLip1-Lipschitz with respect to the prediction distance || · ||n on the network space and
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Frobenius norm |||·|||F on the parameter space with cLip1 = 2(2aLip/L)
L
√
L||x||n. If cLip1 = 0,

then N(r,G1, || · ||n) = 1 for all r ∈ (0,∞) and, therefore, H(r,G1, || · ||n) = 0 for all r ∈ (0,∞),
which is commensurate with the alleged bound. We can thus assume cLip1 > 0 in the
following.

Since ||gΓ−g0A
||n = ||gΓ||n ≤ supΩ∈A1

||gΩ||n =: R for all Γ ∈ A1 and 0A := (0pL+1×pL , . . . ,0p1×p0),
it holds that N(r,G1, || · ||n) = 1 for all r > R and, consequently, H(r,G1, || · ||n) = 0 for
all r > R, which is commensurate with the alleged bound. We can thus assume r ≤ R in
the following.

We then apply Lemma 10 with A′ := A1, G′ := G1, ||kLip||n := cLip1, and ρ := ||| · |||F to
obtain

H
(
r,G1, || · ||n

)
≤ H

( r

cLip1
,A1, ||| · |||F

)
.

We now think of A1 as a set in R
P . Defining A′′ := {ω = (ω1, . . . , ωP )

⊤ ∈ R
P :∑P

j=1 |ωj| ≤ 1}, we find for every r ≤ R and ǫ := r/(
√
2cLip1) ∈ (0, 1), where ǫ ∈ (0, 1)

comes by the definition of ǫ together with r ≤ R and R ≤ cLip1 (by Lemma 7),

H
( r

cLip1
,A1, ||| · |||F

)
= H

(√
2ǫ,A′′, || · ||2

)
.

We then bound the right-hand side of this equality using 1. the definition of the entropy,
2. the entropy bound of Lederer (2010, Page 9) (with k = ⌈2nA2M2/ǫ2⌉, M = 1, and
A = 1/

√
n), and 3. a simplification (by ǫ ∈ (0, 1)) to get

H
(√

2ǫ,A′′, || · ||2
)
= logN

(√
2ǫ,A′′, || · ||2

)

≤
( 2

ǫ2
+ 1
)
log
(
e(1 + Pǫ2)

)

≤ 3

ǫ2
log(2ePǫ2 ∨ 2e).

Collecting the pieces and recalling that ǫ = r/(
√
2cLip1) then yields

H
(
r,G1, || · ||n

)
≤ H

(√
2ǫ,A′′, || · ||2

)

≤ 6(cLip1)
2

r2
log

(
ePr2

(cLip1)2
∨ 2e

)
,

as desired.

Claim 2: Dudley bound

Our strategy is to use Claim 1 to prove that

J(δ, σ,A1) ≤
5cLip1

2

√
log (eP ∨ 2e) log

(8σR
δ

)

and then to use Lemma 7 to formulate the bound in the desired way.

We first split the Dudley integral into two parts according to

J(δ, σ,A1) =

∫ R

δ/(8σ)
H1/2

(
r,G1, || · ||n

)
dr +

∫

r>R
H1/2

(
r,G1, || · ||n

)
dr.
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Recalling H
(
r,G1, || · ||n

)
= 0 for all r > R, the Dudley integral simplifies to

J(δ, σ,A1) =

∫ R

δ/(8σ)
H1/2

(
r,G1, || · ||n

)
dr.

Using this equality together with the bound from Claim 1, we obtain that

J(δ, σ,A1) =

∫ R

δ/(8σ)
H1/2

(
r,G1, || · ||n

)
dr

≤
∫ R

δ/(8σ)

(
6(cLip1)

2

r2
log

(
ePr2

(cLip1)2
∨ 2e

))1/2

dr

≤ 5cLip1
2

√
log

(
ePR2

(cLip1)2
∨ 2e

)∫ R

δ/(8σ)

1

r
dr

=
5cLip1

2

√
log

(
ePR2

(cLip1)2
∨ 2e

)
log
(8σR

δ

)
.

Since R ≤ cLip1 by Lemma 7, we can get

J(δ, σ,A1) ≤
5cLip1

2

√
log (eP ∨ 2e) log

(8σcLip1
δ

)
,

as desired.

5.2.8 Proof of Lemma 10

Proof The case ||kLip||n = 0 follows directly from our convention a/0 = ∞ for a ∈ (0,∞)
on Page 11 and the definition of the entropy on Page 10. We thus assume ||kLip||n > 0 in
the following.

Using the definition of the prediction distance on Page 9 and the Lipschitz property
stipulated in the lemma, we find that

||gΘ − gΓ||n =

√√√√ 1

n

n∑

i=1

(
gΘ(xi)− gΓ(xi)

)2

≤

√√√√ 1

n

n∑

i=1

(
kLip(xi)

)2(
ρ(Θ,Γ)

)2

= ||kLip||nρ(Θ,Γ).

Now, let A′
r be an r/||kLip||n-covering of A′ with respect to the metric ρ. This means

that for every Θ ∈ A′, there is a Θr ∈ A′
r such that ρ(Θ,Θr) ≤ r/||kLip||n. This insight

together with the first display applied to Γ = Θr yield that for every function gΘ ∈ G′, there
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is a gΘr ∈ {gΘr : Θr ∈ A′
r} such that

||gΘ − gΘr ||n ≤ ||kLip||nρ(Θ,Θr)

≤ ||kLip||n · r

||kLip||n
= r.

Hence, {gΘr : Θr ∈ A′
r} is an r-covering of G′ with respect to || · ||n. The proof then follows

directly from the definition of the entropy on Page 10 as the logarithm of the covering
number.

5.2.9 Proof of Lemma 11

Proof There are several ways to derive such a deviation inequality. We choose an approach
based on a version of Bernstein’s inequality.

A Taylor expansion of the sub-Gaussian assumption on Page 7 gives

max
i∈{1,...,n}

K2
(
E
[
|ui|2/K2 +

(
|ui|2/K2

)2
/2! +

(
|ui|2/K2

)3
/3! + . . .

])
≤ γ2.

Hence, the individual terms of the expansion satisfy the moment inequality

max
i∈{1,...,n}

K2
E

[(
|ui|2/K2

)m
/m!

]
≤ γ2 for all m ∈ {1, 2, . . . }.

By exchanging the maximum for an average, we then find

1

n

n∑

i=1

K2
E

[(
|ui|2/K2

)m
/m!

]
≤ γ2 for all m ∈ {1, 2, . . . },

which can be reformulated as

n∑

i=1

E

[(
|ui|2

)m] ≤ m!

2
(2nγ2K2)(K2)m−2 for all m ∈ {1, 2, . . . }.

This means that the squared noise random variables satisfy a “Bernstein condition” (van de Geer and Lederer,
2013).

We can thus apply a Bernstein-type deviation inequality such as Boucheron et al. (2013,
Corollary 2.11) to derive

P

( n∑

i=1

(
(ui)

2 − E
[
(ui)

2
])

≥ nv

2

)
≤ e

−
n2v2/4

2(2nγ2K2+K2nv/2) ,

which can be reformulated as

P

(
1

n

n∑

i=1

(
(ui)

2 − E
[
(ui)

2
])

≥ v

2

)
≤ e

− nv2

16γ2K2+4vK2 .
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Using that v ≥ 2γ2 by assumption, we then find further

P

(
1

n

n∑

i=1

(
(ui)

2 − E
[
(ui)

2
])

≥ v

2

)
≤ e

− nv2

8vK2+4vK2 = e−
nv

12K2 .

By 1. adding a zero-valued term, 2. invoking the above-derived property on the (ui)
2

(set m = 1), 3. using again that v ≥ 2γ2, and 4. invoking the above display, we conclude
that

P

(
1

n

n∑

i=1

(ui)
2 ≥ v

)
= P

(
1

n

n∑

i=1

(
(ui)

2 − E
[
(ui)

2
])

≥ v − 1

n

n∑

i=1
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)
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(
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2 − E
[
(ui)

2
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≥ v

2

)

≤ e−
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12K2 ,

as desired.

6. Discussion

Our theories in Section 3 show that ℓ1-regularization can guarantee accurate prediction
even when the neural networks are very wide (see the logarithmic increase of the error in
the number of parameters) and deep (see the decrease of the error in the number of layers).
More generally, our theories in Section 2 facilitate the derivation of concrete guarantees by
connecting regularization with the rich literature on suprema of empirical processes.

Another related contribution is Schmidt-Hieber (2017), which uses ideas from nonpa-
rameteric statistics to derive bounds for empirical-risk minimization over classes of sparse
networks. Direct sparsity constraints, in contrast to ℓ1-regularization, are not feasible in
practice. But Schmidt-Hieber (2017) provides a number of new insights, two of which
are also important here: first, it highlights the statistical benefits of sparsity and, there-
fore, supports our results in Section 3; and second, it indicates that—arguably under strict
assumptions—one can achieve the rate 1/n rather than 1/

√
n. However, again, we be-

lieve that the 1/
√
n-rate cannot be improved in general: while a formal proof still needs

to be established, a corresponding statement has already been proved for ℓ1-regularized
linear regression (Dalalyan et al., 2017, Proposition 4). In this sense, we might claim some
optimality of our results.

Our theory considers only global minima of the estimators’ objective functions, while
the objective functions might also have saddle points or suboptimal local minima. However,
current research suggests that at least for wide networks, global optimization is feasible—see
Lederer (2020) and references therein.

In summary, our paper highlights the effectiveness of regularisation in deep learning, and
it furthers the mathematical understanding of neural networks more broadly. As practical
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advice, our results suggest the use of wide networks (to minimize approximation errors and
to facilitate optimizations) with many layers (to improve statistical accuracy) together with
regularization (to avoid overfitting).
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