2103.07554v1 [cs.LG] 12 Mar 2021

arXiv

A Distributed Optimisation Framework Combining Natural Gradient
with Hessian-Free for Discriminative Sequence Training

Adnan Haider!?, Chao Zhang?, Florian L. Kreyssig® and Philip C. Woodland*

Cambridge University Engineering Department, Trumpington Street, Cambridge, CB2 1PZ U.K.

ARTICLE INFO

Keywords:

Second-order Optimisation
Hessian-free

Natural Gradient

Conjugate Gradient
Discriminative Sequence Training

ABSTRACT

This paper presents a novel natural gradient and Hessian-free (NGHF) optimisation framework for
neural network training that can operate efficently in a distributed manner. It relies on the linear
conjugate gradient (CG) algorithm to combine the natural gradient (NG) method with local curvature
information from Hessian-free (HF) or other second-order methods. A solution to a numerical issue in
CG allows effective parameter updates to be generated with far fewer CG iterations than usually used
(e.g. 5-8 instead of 200). This work also presents a novel preconditioning approach to improve the
progress made by individual CG iterations for models with shared parameters. Although applicable
to other training losses and model structures, NGHF is investigated in this paper for lattice-based
discriminative sequence training for hybrid hidden Markov model acoustic models using a standard
recurrent neural network, long short-term memory, and time delay neural network models for output
probability calculation. Automatic speech recognition experiments are reported on the multi-genre
broadcast data set for a range of different acoustic model types. These experiements show that NGHF
achieves larger word error rate reductions than standard stochastic gradient descent or Adam, while

requiring orders of magnitude fewer parameter updates.

1. Introduction

With the availability of increased computing power and
appropriate parameter initialisation methods (Hinton et al.,
2006, 2012; Glorot and Bengio, 2010), the hybrid automatic
speech recognition (ASR) approach, i.e. the use of hidden
Markov model (HMM) acoustic model with neural networks
(NNs) for observation probability calculation, has achieved
state-of-the-art performance on large vocabulary continuous
speech recognition (LVCSR) tasks (Xiong et al., 2016; Saon
et al., 2016). Whilst NNs can model the underlying non-
linear manifold of speech data well (Hinton et al., 2012),
their deep structures create complex dependencies among
parameters that can make these models difficult to train with
standard, or variants of, stochastic gradient descent (SGD)
(Desjardins et al., 2015; Grosse and Salakhudinov, 2015).

Due to the sequential nature of speech, sequence-level
training objectives are often used for ASR. It has been ob-
served that training acoustic models using a discriminative
loss function that not only maximises the probability of the
reference transcription or recognition accuracy but also min-
imises that of all competing hypotheses often improves ASR
performance by a significant margin (Valtchev et al., 1997;
Povey, 2005; Graves and Jaitly, 2014; Povey et al., 2016).
Therefore discriminative loss functions have become a stan-
dard choice for state-of-the-art ASR systems (Saon et al.,
2016; Xiong et al., 2016; Chiu et al., 2018; Liischer et al.,
2019). For training NNs with such a loss, SGD with train-
ing data shuffled at the utterance level is widely used. Often

*Corresponding author.
2] adnan_haider@apple.com (A. Haider); cz277@cam. ac.uk (C. Zhang);
flk24@cam.ac.uk (F.L. Kreyssig); pcweeng. cam. ac.uk (P.C. Woodland)
'Work was done while Adnan Haider was at Cambridge University
2Equal contributions.
3Funded by an EPSRC Doctoral Training Partnership Award.

this use of SGD requires considerable skill in choosing suit-
able values for hyper-parameters such as the learning rate
or the momentum coefficient, while second-order optimisa-
tion methods require fewer hyper-parameters and can lead
to more effective parameter updates compared to SGD (Xu
et al., 2020). These approaches leverage the local curvature
information contained in the Hessian matrix (i.e. the second-
order derivatives w.r.t. the model parameters) to overcome
the issues that SGD encounters with highly non-linear and
ill-conditioned loss functions (Becker and LeCun, 1988).
However, a major weakness of second-order methods is that
they are computationally inefficient for models with a large
number of parameters. This is because scaling the gradi-
ent directions by the inverse of the Hessian matrix requires
computation on the order of O(D3) where D is the number
of model parameters.

A large batch second-order approach, the Hessian-free
(HF) method, was proposed by Martens (2010). Instead of
computing the Hessian matrix explicitly, HF finds an ap-
proximate solution by solving an equivalent system using the
conjugate gradient (CG) algorithm. Compared to SGD with
mini-batches typically containing only a few utterances, HF
can yield more effective updates based on very large batches
(e.g. thousands of utterances) and requires far fewer param-
eter updates to converge. Hence, it is easier to parallelise
HF than SGD by distributing the training data in each large
batch among all available computation units and accumulat-
ing the outcomes to yield a parameter update. However, in
practice, HF can require more computation than SGD, since
it often needs a large number (e.g. 200) of CG iterations
for each parameter update (Martens, 2010; Kingsbury et al.,
2012; Wiesler et al., 2013; Martens and Grosse, 2015).

Recently, the natural gradient (NG) method, which was
originally proposed for training small models with maxi-
mum likelihood (ML) (Amari, 1997), has received renewed

Adnan Haider et al.: Preprint submitted to Elsevier

Page 1 of 15

popularity for training deep NN models (Pascanu and Ben-
gio, 2013; Desjardins et al., 2015). NG computes the steep-
est descent direction in the space of the model output distri-
butions instead of the space of the model parameters, and can
result in fewer generalisation errors and faster convergence
(Roux et al., 2008; Bernacchia et al., 2018). NG requires cal-
culating the product of the inverse of the Fisher information
(FI) matrix with the gradient estimate. As for second-order
approaches, directly calculating the inverse of the FI matrix
has a O(D?) computational complexity, rendering it unus-
able for large models. To reduce this cost, approaches such
as enforcing a block diagonal structure on the FI matrix and
approximating the diagonal blocks as the Kronecker product
of two smaller matrices have been introduced (Povey et al.,
2015; Martens and Grosse, 2015; Grosse and Salakhudinov,
2015; George et al., 2018).

In this paper, we propose an approach to stabilise the
computation of the directional derivative that alleviates the
numerical instability that can accompany CG when applied
to NNs. To improve training on models with shared archi-
tectures, this work proposes a novel a preconditioning ap-
proach to speed up the progress made by CG. Furthermore,
in order to estimate the inverse of the FI matrix without
making any assumptions about its structure, we propose ap-
plying CG to NG for discriminative sequence training. As
a result, CG can provide a common optimisation frame-
work to use NG jointly with HF or other second-order ap-
proaches. We, therefore, propose the NGHF method that
combines the advantages of NG and HF and further im-
proves the stability and performance of NN model training.
The efficacy of the proposed optimisation framework and the
NGHF method is evaluated by conducting ASR experiments
on a 200 hour multi-genre broadcast (MGB) speech recog-
nition dataset (Bell et al., 2015; Woodland et al., 2015). Dis-
criminative sequence training with hybrid HMM acoustic
models is studied, which use long short-term memory net-
works (LSTMs) (Hochreiter and Schmidhuber, 1997), recur-
rent neural networks (RNNs) (Rumelhart et al., 1986; Elman,
1990), or time-delayed neural networks (TDNNs) (Waibel
et al., 1989; Peddinti et al., 2015) for output probability cal-
culations. Compared to SGD and Adam (Kingma and Ba,
2015), NGHF is demonstrated to have a faster convergence
speed and can result in lower word error rates (WERs).

This paper is organised as follows. Section 2 and 3
review related work on training NNs and the HF method
with CG. Section 4 presents our improved implementation
of CG along with the distributed optimisation framework.
Sections 5 and 6 describe the proposed CG-based NG and
NGHF methods for discriminative sequence training. The
experimental setup and results are given in Sec. 7 and Sec. 8,
followed by a discussion in Sec. 9 and finally conclusions.

Compared to our previous papers (Haider and Woodland,
2017, 2018), this paper proposes a more general approach
to regulate the scaling and rotation induced on the gradi-
ent direction during NG descent learning with second-order
methods (Sec. 6). All techniques are described more com-
pletely and comprehensively. The design of the distributed

CG-based optimisation method is fully presented (Sec. 4.1).
The description and analysis of how to improve the numeri-
cal stability of CG (Sec. 4.2) and a preconditioning method
that improves the performance for models with shared pa-
rameters (Sec. 4.3) are included. The experimental results
have been extended and now include comparisons of the pro-
posed method for TDNNs, LSTMs and other recurrent mod-
els.

2. Related work

Starting from layer-by-layer pre-training and improved
random initialisation methods (Hinton and Salakhutdinov,
2006; Glorot and Bengio, 2010), optimisation improvements
have played a critical role in the development of deep learn-
ing. Various methods have been applied to improve the sta-
bility and efficiency for training complex NN structures with
SGD. Even though the use of these methods has significantly
improved NN training, the task of finding a more suitable op-
timisation procedure for supervised NN training continues to
be an active area of research. This section first reviews differ-
ent SGD, HF, and NG methods, with a focus on distributed
computation. Then discriminative sequence training is re-
viewed, which is a key focus of this paper.

2.1. Synchronous and Asynchronous SGD

Adapting the learning rates during training is known to
improve the stability and convergence speed of SGD. Rule-
based strategies can be used to decay the learning rate shared
by all DNN parameters (Renals et al., 1992; Bottou, 2010;
Senior et al., 2013). Methods such as RMSProp (Tieleman
and Hinton, 2012), AdaGrad (Duchi et al., 2011), AdaDelta
(Zeiler, 2012), and Adam (Kingma and Ba, 2015) assign a
separate learning rate to each model parameter. These are
updated based on previous gradients. Parameter updates can
also be derived as the output of an RNN based on the gra-
dients (Andrychowicz et al., 2016). The methods developed
in this paper do not require tuning of learning rates and im-
plicitly assign separate learning rates to each parameter.

In standard SGD, greater parallelisation is achieved by
using a larger mini-batch. The (equivalent) mini-batch size
can be increased in a synchronous manner, which requires
every “worker” process to calculate the gradients for their
mini-batch for the same copy of the model parameters.
These are then combined (Zinkevich et al., 2010). The main
issue of synchronous distributed SGD is the high transmis-
sion cost (Seide et al., 2014; Strom, 2015). Asynchronous
SGD (ASGD) can reduce the transmission cost by allow-
ing each worker to keep a distinct copy of the model and
to communicate independently with a centralised parameter
server (Dean et al., 2012; Heigold et al., 2014) or other work-
ers (Zhang et al., 2019b,¢). This also increases the number
of updates. The blockwise model update filtering method
divides workers into blocks and averages the models pro-
duced by each block with a mechanism analogous to the use
of momentum in standard SGD (Chen and Huo, 2016; Lad-
katetal.,2019). The optimisation methods developed in this
paper can be used in a highly parallel and distributed man-

Adnan Haider et al.: Preprint submitted to Elsevier

Page 2 of 15

ner, which relies on the use of very large batches and a small
number of updates to efficiently and accurately exploit par-
allelisation.

2.2. HF and NG based Approaches

The HF optimisation framework was initially proposed
to minimise the squared errors for auto-encoders based on
the linear CG algorithm (Shewchuk, 1994) and the Gauss-
Newton (GN) approximation (Martens, 2010). Later studies
applied the approach to cross-entropy (CE) training for small
scale ASR and hand-written digit classification (Vinyals and
Povey, 2012; Wiesler et al., 2013). Kingsbury et al. (2012)
extended HF to lattice-based discriminative sequence train-
ing for LVCSR with a large batch size, which allows the data
to be processed in parallel based on a master/worker struc-
ture. The workers compute the gradients and the curvature
information based on the same copy of the model parame-
ters in a distributed fashion, while the master process col-
lects the outputs from all workers to perform the CG algo-
rithm to update the model parameters. Momentum and pre-
conditioning can be integrated into this optimisation frame-
work as shown in later studies (Sainath et al., 2013a,b). To
reduce the computation workload of the master, only a small
percentage (e.g. 1%) of the training data is sampled for use
in each CG iteration (Martens, 2010; Kingsbury et al., 2012).

Compared to the original work on NG that is aimed at
training small models with the ML criterion (Amari, 1997),
more recent work focuses on training large NN models with
tens of millions of parameters, in which case it is computa-
tionally impractical to estimate the inverse of the FI matrix.
To overcome this issue, most studies assume that the FI ma-
trix has some form of block diagonal structure (Roux et al.,
2008; Povey et al., 2015; Martens and Grosse, 2015; Grosse
and Salakhudinov, 2015; George et al., 2018). Kronecker-
factored approximate curvature (K-FAC) is such an approach
that assumes the parameters from different layers are inde-
pendent and approximates each block of the FI matrix as
the Kronecker product of two smaller matrices (Martens and
Grosse, 2015). Povey et al. (2015) proposed a similar idea
and applied it to lattice-free maximum mutual information
training (Povey et al., 2016), which was observed to yield
no performance loss when simply averaging the models pro-
duced by the different workers configured to operate asyn-
chronously. Interestingly, the second-order momentum used
in Adam can be viewed as an approximate diagonal FI ma-
trix that assumes every model parameter is independently
estimated (Kingma and Ba, 2015). Schulman et al. (2015)
proposed using CG to estimate the inverse of the FI matrix
without enforcing any assumptions for reinforcement learn-
ing. Haider and Woodland (2017) proposed a similar method
for discriminative sequence training for ASR.

2.3. Discriminative Sequence Training

An ASR system aims to convert the acoustic feature se-
quence O of a speech utterance to its underlying word se-
quence W™, In practice this is often achieved by finding
the hypothesised word sequence W that gives the maximum

posterior probability P(W|0), i.e.

N

W = arg maxy P(W]O). €))]

In the noisy source-channel framework for ASR, P(W|O)
is calculated using an HMM-based acoustic model that pro-
duces p(O|W,) (denoted as py(O|W) in this paper) and a
language model (LM) that estimates P(W). In practice, the
LM is first trained separately and then combined at test-time
to decode the input acoustic feature vectors for an utterance
into the most probable word sequence.

Let M denote the space of all probability distributions
Py(W|O) that can result from different parameter configura-
tions of a chosen NN when employed within an HMM. The
goal of learning is to identify a viable candidate in M that
achieves the greatest reduction in the empirical loss, which
refers to the average loss over all training samples w.r.t. a
given risk function while generalising well to new examples.
To effectively train acoustic models, two forms of discrim-
inative sequence level criterion are commonly used. The
first form corresponds to the maximum mutual information
(MMI) loss. For a single observation feature sequence O,
the MMI loss corresponds to

pG(O | Wref)KP(Wref)
2w Pe(OIW)x P(W)’

The method was initially proposed for spoken digit recogni-
tion (Bahl et al., 1986), where « is the acoustic scaling factor
that re-scales the acoustic model and language model scores
to be in the same range (Woodland and Povey, 2002). The
MMI loss can be viewed as maximising the probability of
Wre! while also minimising that of every competing hypoth-
esis W, and is thus a discriminative sequence training loss.
When applied to LVCSR (Valtchev et al., 1997), the denom-
inator of Eqn. (2) needs to be calculated efficiently and often
relies on using word lattices for each utterance as a compact
representation of all of the important competing hypotheses.

The minimum Bayes risk (MBR) loss is another com-
monly used loss function for discriminative sequence train-
ing (Goel and Byrne, 2000; Kaiser et al., 2000), which di-
rectly minimises ASR errors by using WER related metrics
as the risk function. The MBR loss for a single observation
feature sequence O is defined as

Lyv(0) = —1In 2

Zw Po(O|W)* P(W) AW, W)
2w Po(OIW)* P(W)

where A(W, W) is the risk function measuring the differ-
ence between the reference and a competing hypothesis. For
ASR, approximations to the number of word-level, phone-
level, and HMM state-level errors are widely used as the
risk function (Povey and Woodland, 2002; Gibson and Hain,
2006; Shannon, 2017). When phone-level errors are used,
the MBR loss is called minimum phone error (MPE) (Povey
and Woodland, 2002), which will be the MBR loss used in
the experiments in this paper. As for MMI, for LVCSR word
lattices of each training utterance are required since the cal-
culation of the MBR loss involves all competing hypotheses.

Lypr(0) = , 3

Adnan Haider et al.: Preprint submitted to Elsevier

Page 3 of 15

Lattice-based discriminative sequence training with an
MMI or MBR loss has also been widely used to finetune NN-
HMM hybrid systems (Valtchev, 1995; Kingsbury, 2009;
Vesely et al., 2013; Su et al., 2013; Wiesler et al., 2015;
Zhang and Woodland, 2015), which are often initialised by
frame-level training with the CE loss (Hinton et al., 2012).
Lattice-free MMI uses a general phone-level recognition net-
work to replace utterance-specific lattices, which enables ef-
ficient processing of multiple training utterances in parallel
(Povey et al., 2016).

3. Hessian-free Optimisation

This section provides an overview of the HF optimisa-
tion framework (Martens, 2010; Kingsbury et al., 2012). At
the core of all first and second-order optimisation methods
is Taylor’s theorem. Assuming the loss function £(0) is
sufficiently smooth, the second-order Taylor approximation
employs the following quadratic function to locally approx-
imate the function as

L0+ AO) ~ L(O) + AOTV,L(0) + %AGTHAG, 4)

where V is the gradient operator in the space of 8, A6 rep-
resents an offset within a convex neighbourhood of 6, and H
is the Hessian matrix of £ w.r.t. 0, i.e. H = Vgﬁ(@).

Instead of optimising the loss function directly, at each
iteration of the optimisation process, second-order methods
focus on a generating a candidate update A0 through min-
imising Eqn. (4) where H is approximated by a candidate
matrix B. Differentiating Eqn. (4) and setting it to zero
yields the Newton direction

AO = —B~'V,L(0). (5)

However, computing this direction directly is expensive
since it requires O(D?) complexity to store B and O(D?) to
invert it. These obstacles, however, can be overcome by em-
ploying inexact Newton methods such as the CG algorithm.

Algorithm 1 The linear conjugate gradient (CG) algorithm.
Let M be the number of CG iterations to execute
Set Uy < —VQE(O), ro < vg,m < 0
while m < M do
Compute rl r,,
Seta,, < rir,/viBv,
Update AG,,,; < A0, + a,v,
Updater, < r, —a,Bv,
Compute 1l | 7,41

T T
Set ﬁm+l < rm+1rm+l/rmrm
Update Umtl < Tmi1 + ﬂm 1Um
return A0 as the one that leags to the best performance

on the validation set among A, AO,, ..., A8y,

3.1. The CG Algorithm
CG is an iterative algorithm that implicitly minimises the
quadratic function

1
g(Ab,) = 5Ae,TnBAem + A0 VoL(0) (6)
by solving the linear linear system
BAO = —V4L(0), @)

At each iteration m, the algorithm minimises Eqn. (6) by
taking an appropriate step size a,, along a conjugate search
direction v,, w.r.t. B such that the direction is never revis-
ited at subsequent iterations. When B is symmetric and posi-
tive definite, the solution to the linear system yields a unique
minimiser of Eqn. (6). Since Eqn. (6) only approximates
L(0), the standard practice in training parametric models
such as NN is to run only finite iterations of the algorithm
in which minimising the quadratic function correlates with
reductions in the empirical loss (Martens, 2020).

The detailed CG procedure is presented as Algorithm
1, for which an excellent explanation can be found in
(Shewchuk, 1994). The key features of CG are summarised
below.

® V|, U,,..., U, are B-orthogonal. This means any di-
rection v,, is conjugate to any other direction w.r.t. B.

e CG computes Bv,, instead of the Hessian matrix it-
self. When B is chosen to approximate the Hessian
matrix, the method is known as Hessian free (Martens,
2010; Bottou et al., 2018).

e Since Afy, = —a0V9£(9)+ZmM=_11 a,,U,,, AG, equals
—ayVL(0) and can be seen as the update obtained
by gradient descent with an optimal learning rate that
minimises Eqn. (6).

e CG will converge monotonically to the exact Newton
direction within M iterations, if B has M distinct or
clustered eigenvalues (Nocedal and Wright, 2016).

3.2. Approximating the Hessian with the
Gauss-Newton Matrix

This section reviews using the GN matrix as B in the ap-
proximation of H in the HF method (Martens and Sutskever,
2011). For simplicity, here we consider the case with only
one input sample, a frame at time ¢. It is straightforward to
generalise the method and equations to the case of many in-
put samples. Let a) = {a,, 4,5, ..., a, } be the logit val-
ues (the input values to the softmax output activation func-
tion), K be the output layer size, H;; be the element of the
i th row and j th column of H, H; ; can be written as

_ . [(oL®)
Y00, (26, > ®

~ i 9a, 1 $ or o) 0%ay
£ 750,

= da, 00,00;

& da, 02r(0)
601 ()at’kaat’kr

k'=1

Adnan Haider et al.: Preprint submitted to Elsevier

Page 4 of 15

In Eqn. (8), the first term can be interpreted as the contri-
bution to the Hessian made by the variation in a{", while
the second term is the contribution due to the Varlatlon in 6.
If 0 is around a region of local minimum w.r.t. the average
empirical loss over samples, then d£(60)/0da, ~ 0 and the
second term is negligible. As a result,

s Kl 0a,, o2r(0)
Z Z =G;,
k=1 =1 091 aa,’kdat’k/

which is an element of the GN matrix, G. By rearranging
Eqn. (9), the GN matrix can be written as

G=J'(V2 LO)], (10)

where J is the Jacobian matrix Vg(a"“t) and V2 _ L(0) is

oul

the Hessian matrix w.r.t. a°ut
As shown by Schraudolph (2002), for matching loss
functions where V2 . L£(0) is positive definite w.r.t. the NN

output logits, the GN matrix is guaranteed to be positive
semi-definite. When the GN approximation is applied to
to lattice-based MBR training (Kingsbury et al., 2012), the
component V2 OulEMBR(G) which we denote as H takes the

following form (Haider, 2019):

H= (dlag(yMBR) MBRytT) i (11)
where « is the acoustic scaling factor, y, , and yMBR are cor-
respondingly the ML and MBR occupancy at time 7 w.r.t. the
HMM state k (tied to the DNN output unit k), and diag(-)
converts a vector into a diagonal matrix.

Regarding ML training in the ASR literature, the term
“occupancy” often refers to y,, = Pylq, = k|O, wrefy,
the posterior probability showing how probable frame ¢ is
aligned with state k given a pair of sequences O and W',
Y1k 1s often calculated using the forward-backward proce-
dure (Baum and Eagon, 1967). Regarding MBR sequence

training, the occupancy yMBR is defined based on the gra-
dients of the loss function IL\pr(0)/0a, = —xy PR,

where }/MBR = ¥4(€q = Cavg) Y1 1> ¥4 18 the occupancy passing
through arc g, ¢ avg and ¢, are the weighted average correct-
ness of all hypotheses and the hypotheses including arc g.
Yg» €q» and ¢4y, can be collected by performing a modified
forward-backward procedure to align every arc in the lattice
with O (Povey, 2005).

From Eqn. (11), it can seen that V> Lypr(0) is not pos-

oul
itive definite w.r.t. the NN output loglts and hence the GN
matrix is no longer guaranteed to be positive semi-definite.
Interestingly, even through the GN matrix no longer pos-
sesses the property of being positive semi-definite, its use
as an approximation to the Hessian has been shown empir-
ically to be effective in obtaining stable WER reductions
from lattice-based MBR sequence training (Kingsbury et al.,
2012; Sainath et al., 2013a,b; Dognin and Goel, 2013). The
next section describes a particular property of the GN ma-
trix that has been recently shown by Haider and Woodland

(2018) to be effective when using a disciminative sequence
criterion to train NN models with sharp softmax distribu-
tions.

3.3. Scaling by the Gauss-Newton Matrix

The frame-level CE loss used to train an NN acous-
tic model from random initialisation using frame-to-HMM-
state alignments often results in distribution of the NN
softmax outputs being very sharp, in particular for mod-
els that use ReLLU activation functions. This was reported
in (Haider, 2019) to be a contributing factor in achieving
only very small improvements from discriminative sequence
training. A similar issue has been observed in connectionist
temporal classification (Graves et al., 2006), where the sharp
distributions are caused by the blank unit instead of the 0-1
training labels. According to Eqn. (9), G captures the curva-
ture of the training loss w.r.t. the model output distribution.
Re-scaling the gradients by G™! effectively de-weights the
back-propagated information that can induce large changes
in the loss value in EBP. In the context of discriminative se-
quence training, this regularises the sharp model output dis-
tributions and improves the performance of MBR training
(Haider, 2019).

3.4. Matrix-Vector-Products with the
Gauss-Newton Matrix
Within each iteration of CG, a multiplication of the GN
matrix with a vector v (Bv,, in Alg. 1) in the parameter
space, Gv = JTVZ o) v, corresponds to the follow-

ing sequential multlphcatlon

oul

e Computing the directional derivative J v using a mod-
ified forward propagation procedure.

e Multiplying the resulting vector Jv by V2 L£(6)

OLIt

which corresponds to H in this context.

e Since the error backpropgation (EBP) procedure com-
putes JT(V «£(0)), G v can be obtained using EBP

by replacing V a;mﬁ(e) with (Vzomﬁ(e)) Juv.

To compute Jv efficiently using a modified forward
propagation procedure, Pearlmutter (1994) introduced an
operator R(-) to calculate the directional derivative Vy(:) v,
and there is R(0) = v. For a fully-connected (FC) layer with
Qg = Ej uy;X; j + by, where uy; is the weight value associ-
ated with the j th input unit and k the output unit of the layer,
X; and b ; are the j th elements of the input and bias vectors,
it is easy to show that

Rla) = 3 Rlug)xj+ X uR(x,)+ R(by)
= D, 0k %y 2 g @ R@) + vy (12)

where v); and v; are the elements corresponding to u,; and
b; of v, h(-) is the hidden activation function transforming
a;; o x,; by x,; = h(a,;), a,; is an activation value pro-
duced by a previous layer. According to Eqn. (12), R(a;’“‘)

Adnan Haider et al.: Preprint submitted to Elsevier

Page 5 of 15

can be calculated efficiently by modifying the forward prop-
agation procedure, which results in the required directional
derivative J v since R(a)") = Vy(a)") v = Jv. A detailed
explanations of the modified forward procedure can be found
in (Bishop, 2006).

In addition, it is not necessary to compute and store H
explicitly. For lattice-based MBR training, I:IR(a;’“‘) can
be directly calculated by

HR @) =k, @ R(@) - k*1"™% (y/R(a™) .

where © refers to the Hadamard product.

4. Improving CG for Distributed Training

The CG-based distributed optimisation framework is
presented in this section, which can be used for HF (Martens,
2010; Kingsbury et al., 2012). In practice, HF is found to
have a high computational cost since a large number of CG
iterations are required to perform in sequence to find an ef-
fective update (Sainath et al., 2013a). In this section, a mod-
ification to standard CG is presented that overcomes the nu-
merical instability issue, which can reduce the number of CG
iterations required by a factor of about twenty. Furthermore,
a gradient normalisation method is proposed to improve the
performance of CG for shared parameters, which facilitates
the training of convolutional and recurrent models.

4.1. CG-based Distributed Optimisation

As shown in Fig. 1, the CG-based optimisation frame-
work consists of two stages: the gradient accumulation stage
and the CG stage. The gradient accumulation stage approxi-
mates the true gradient V o£(60) with an average of the gradi-
ents computed over every sample in a large data batch, which
is referred to as a gradient batch. Here, a sample is an ut-
terance for discriminative sequence training. In this stage,
most of the calculations are used to compute the gradient
w.r.t. each sample using the forward propagation and EBP
procedures. These can be conducted in parallel using mul-
tiple workers. The negative gradients are then accumulated
and averaged to form v, for the CG stage.

In the CG stage, a sequence of CG iterations is used to
find the parameter update A0 with another batch of samples
called the CG batch. As explained in Section 3.2, Gv,, is
calculated at each CG iteration m using the modified forward
propagation and EBP. Such calculations can be conducted in
parallel using a separate worker for each sample in the CG
batch, whose output statistics can be accumulated for the rest
of the steps of Alg. 1. The updated search direction v, will
monotonically improve upon v,, in terms of the loss value of
the CG batch. After a certain number of iterations, A8,, with
the best training loss performance on the CG mini-batch is
returned as the direction found by the CG.

In this paper, executing the two stages once is referred
to as an update since it is used to find one A6 to update
the current parameter 6. In practice, we divide the whole
training set randomly into C partitions, with each of them
being used as a gradient batch for an update, and hence each

Gradient Accumulation Stage

Calculate

! ’ Worker 1 ‘ ’ Worker 2 ‘ e ’Worker Nerad |
Gradients 3
)
V
Accumulate
Gradients
Conjugate Gradient Stage lfv"’c(e)
: Calculate
Directional ’ Worker 1 ‘ ’ Worker 2 ‘ .- ’ Worker Ncg
Derivatives
Dl U /
:M times M
Calculate
Aem and Ym

Find the best update A
among M iterations

Figure 1: A flow chart of our CG-based distributed optimisa-
tion framework, where N¢,.4 and N¢¢ are the utterance num-
bers in the gradient batch and CG batch respectively. They
are also the maximum number of workers allowed for gradient
calculation and directional derivative calculation. v,, and A6,
are the conjugate direction and the proposed parameter update
at the mth CG iteration.

training epoch comprises C updates performed in sequence.
The CG batch is often much smaller than the gradient batch
since it often needs to be processed for many iterations in
the CG stage. In our experiments, we found it is better to
sample the CG batch from the entire training set rather than
just from the corresponding gradient batch.

4.2. Improving the Stability of CG

Although the calculation of an individual CG iteration
can be distributed over many workers, CG iterations are still
required to be performed sequentially. As reported in pre-
vious studies (Martens, 2010; Wiesler et al., 2013; Martens
and Grosse, 2015), the HF method often requires about 200
CG iterations to find an effective update for training a DNN,
even in the case of lattice-based discriminative sequence
training (Kingsbury et al., 2012; Sainath et al., 2013a). This
means that, in practice, CG restricts the training speed. Next,
we explain the cause of this issue, and a solution is proposed
to improve the stability of CG, which will be shown in Sec.
8 to yield effective updates only from few iterations of CG.

As discussed in Sec. 3.2, for a matching loss function,
such as the CE loss together with the softmax function, the
GN matrix G is in theory guaranteed to be positive semi-
definite. However, even in our CE training experiments,
it was observed that G could at times be negative (Haider,
2019). This issue was found to be a result of insufficient
arithmetic accuracy when calculating the directional deriva-
tives Jv,, for a CG iteration m. More specifically, let || - ||,
be the L2 norm of a vector, when ||0||, > ||v,,||,, Eqn. (12)

Adnan Haider et al.: Preprint submitted to Elsevier

Page 6 of 15

becomes
Ra) ~ Y ugih' (@, pR(a,),

due to the limited precision of the floating-point arithmetic,
which can lead to an incorrect value of G that may no longer
be a positive semi-definite matrix.

For large scale distributed training (Sainath et al.,
2013a), the issue of negative G is resolved by using
Tikhonov damping (Tikhonov et al., 1998), which uses G +
n I instead of G in CG. This corresponds to taking compar-
atively more conservative steps along the individual con-
jugate directions, and considerably slows down training as
more CG updates are required to get a good overall solu-
tion. In the scenario when # is large, Tikhonov damping is
effectively analogous to an SGD step. Instead of Tikhonov
damping, we propose to modify each CG iteration by using

v, = (l6l/ v, vy,

to compute J v/ . Afterwards, Jv,, is obtained by

Jv, = v,/ 1181) vy,

In our experiments, it was found that this improved CG al-
gorithm can often produce an effective A@ with about 8 it-
erations.

4.3. Improving CG for Shared Parameters

In this section, it is demonstrated how CG can be adapted
to perform efficiently for models with shared parameters,
such as the TDNN (Waibel et al., 1989; Peddinti et al., 2015;
Kreyssig et al., 2018) and LSTM (Hochreiter and Schmidhu-
ber, 1997; Graves et al., 2013; Sak et al., 2014), both widely
used for acoustic modelling. In contrast to a DNN, a TDNN
uses a sequence of fully FC layers to perform 1-dimensional
(-dim) convolutions across time, whose input vectors the
concatenation of x, and x, , the output from their direct pre-
ceding layers of two different time steps ¢ and ¢,. That is,

¥, =hU Concat(x,1 , x,z) + b),

where Concat(-) is the concatenation operation; A(-), U and b
are the activation function, weight matrix and bias vector of
the FC layer. Hence, the directional derivatives of a TDNN
are also calculated using Eqn. (12). Alternatively, a TDNN
can be viewed as a feedforward model with a binary tree
structure by duplicating each FC layer for the relevant time
steps, and the parameters U and b are shared across time.
Regarding an (Elman network) RNN (Rumelhart et al.,
1986; Elman, 1990), h,, the output vector at time ¢, is gener-
ated by transforming a concatenation of h,_; and the current
input x, with an FC layer whose parameters are U and b,
i.e. 'y, = f(UConcat(x;, h,_;) + b). An LSTM is an im-
proved RNN with enhanced long-term memory capability
based on the gating mechanism, which uses i,, f;, and o,,
the sigmoidal output vectors from three extra FC layers, to
simulate the logic gates of a memory circuit to maintain a
memory cell ¢,. Given the parameters of the three extra FC

layers, U; and b;, Uf and bf, and U, and b,, an LSTM layer
can be specifically presented as
i, = (U, Concat(x,, h,_;) + b;),
fi = o(U; Concat(x,, h,_;) + by),
¢, = f; ©c,_; + i, ©tanh(U Concat(x,, h,_;) + b),
o, = o(U, Concat(x,, h,_;) + b,),
h, = o, © tanh(c,),

where o(-) and tanh(-) are the sigmoid and hyperbolic tan-
gent activation functions. An LSTM layer can be imple-
mented with four FC layers and the Hadamard product.
Therefore, the directional derivative for an LSTM can be cal-
culated using Eqn. (12) and the following rule of the R(:)
operator for gating:

R(g0z)=R(g) Oz +8&OR(z), (13)

where g, and z, are two example vectors. Further by unfold-
ing through time for u steps (Robinson and Fallside, 1987;
Werbos, 1988), a folded LSTM layer becomes u unfolded
layers with feedforward connections sharing all of their pa-
rameters. The input of the v th feedforward layer is a con-
catenation of the output from the (v — 1) th layer and x,_,, ..

Next we present a modification to the CG algorithm to
make the algorithm more effective for models with shared
parameters. From Alg. 1, both the step size ,,, and the con-
jugate search direction v,, are determined by the dot prod-
uct of the residual r;rm and the directional derivative G v,,.
For models such as the TDNN and RNN, shared parame-
ters receive more updates and hence will contribute more
to the norm of the vectors r and G v,, than the parameters
which are not shared. Careful preliminary experiments us-
ing TDNNs and LSTMs found that in situations where the
shared parameters dominate the norm of these vectors, the
CG algorithm was slow to find an update direction that could
reduce the loss value. Our solution is apply a diagonal scal-
ing tor,, and G v,, by a matrix whose diagonal entries corre-
spond to the square root of the number of times that a param-
eter is shared. This ensures that the L2 norm of the vectors
are not dominated by the contributions of the shared parame-
ters and enables a more effective update for the other param-
eters. Such an approach corresponds to preconditioning the
CG algorithm (Shewchuk, 1994) by applying the diagonal
scaling only to ry among all the residuals r,,,.

By using the algorithm given in (Zhang and Woodland,
2015), the diagonal scaling can be efficiently achieved by
adding an operation to normalise the resulting gradients or
directional derivatives at the end of the EBP procedure by the
number times a parameter is shared. Experiments showed
that this solution enabled CG to find progressively better up-
date directions in each CG iteration for TDNNs and LSTMs
(Haider, 2019). More details of the theoretical analysis and
experimental evidence can be found in (Haider, 2019).

5. Natural Gradient Optimisation

In this section first NG is reviewed. Then the proposed
CG-based optimisation framework for NG for discriminative

Adnan Haider et al.: Preprint submitted to Elsevier

Page 7 of 15

sequence training is presented.

5.1. Natural Gradient Descent

This section presents an overview of NG descent (Amari,
1997; Pascanu et al., 2013). Let M denote the space of all
temperature-modulated probability distributions Py(W|0)*.
In the context of optimisation, NG tries to find an update
A0 that minimises the loss function locally while keeping a
similar probability distribution to the one resulting from the
current 6. That is,

A = arg min £(0 + A6), (14)
s.t. Eyo) [KL (Po(W[0)[| Py ng(WI0))] < &

where KL(:||-) refers to the KL-divergence and ¢ is a con-
stant controlling the speed of exploration along the manifold.
In Eqn. (14), we assume pg(W, O) = Py(W|0)p(O).

Eqn. (14) can be formulated as an equivalent constrained
optimisation problem in the parameter space by using La-
grange multipliers, which restrict the exploration of the pa-
rameter space to be within a local neighbourhood of the
current estimate 6. Approximating £(0 + A0) by its first-
order Taylor approximation £(0)+A9TV9£(9), and the KL-
divergence constraint by its second-order Taylor approxima-
tion (Amari, 2016) yields

A0 = argmin {E(O) +A6TV,L(0) + %AOTFAO} , (15)

where A is the Lagrange multiplier that controls the com-
promise between minimising the loss and satisfying the KL-
divergence constraint. F is referred to as the FI matrix.

F=E, wo) [VoIn Poa(W|0)VqIn Py(W|O)'], (16)

Similar to second-order methods, NG attempts to min-
imise a quadratic function at each iteration. Differentiating
Eqn. (15) and equating it to zero yields the solution

AQ = —% F1v,L(0). (17)

This suggests that the update direction obtained by NG trans-
forms the steepest decent direction by taking into account the
curvature information of the log-likelihood given by F~1. It
can be shown that such a direction is indeed the optimal de-
scent in the loss surface generated on the manifold M.

Computing the exact FI matrix defined in Eqn. (16) re-
quires taking the expectation over the distribution py(W, O)
which is infeasible for LVCSR. A standard approach is to ap-
proximate this expectation by using the average of samples
from pg(W, O). In this paper, we take samples from the data
distribution p(W, O), instead of pg(W, O). This form of the
FI matrix yields the empirical Fisher matrix where the con-
tribution of each utterance corresponds to

F = Vg In Py(W™|0)V, In Py(W™|0O)T. (18)

4P9(W|0) is determined by a chosen value of k (see Eqn. (2)).

As reviewed in Section 2.2, to reduce the difficulty in cal-
culating F~!, F is often assumed to have a (block) diag-
onal structure (Povey et al., 2015; Kingma and Ba, 2015;
Martens and Grosse, 2015) with the diagonal blocks cor-
responding to Kronecker products of two smaller matrices.
Meanwhile, CG was proposed to compute the NG direc-
tion without calculating F~! explicitly for both reinforce-
ment learning (Schulman et al., 2015) and discriminative se-
quence training (Haider and Woodland, 2017). This will be
presented in detail later in Sec. 5.2.

There exist theoretical advantages in using NG. For ML
training, assuming the distribution of the gradient of the ex-
pected loss to be an isotopic Gaussian, the NG direction is
relevant to a direction in the parameter space that maximises
the probability of reducing the generalisation error (Roux
et al., 2008). Recently, it has been shown that for convex
problems, solving Eqn. (15) at each iteration results in an
exponentially faster convergence speed compared to gradi-
ent descent (Bernacchia et al., 2018).

5.2. Natural Gradient with CG for Discriminative
Sequence Training
From Eqn. (18), the empirical FI matrix F is guaran-
teed to be positive semi-definite and therefore the optimi-
sation framework proposed in Sec. 4 can be used for NG.
CG is used to solve AFAO = —V,4L(0) (Eqn. (17)). From
Eqn. (2), In Pe(Wref|O) = —Lyp(@) when x = 1, and
hence Eqn. (18) can be re-written as
F ~ VoLyni(O)VoLynn(0)"
= 3 T i L OV o Ly 0)'S. (19)
This uses the fact that Vo Ly () = [JTV a?“‘EMMI(e)]Z;l’
where J is the Jacobian matrix of a?“t wrt. 0, and T is
the number of frames in the utterance. Thereafter, we de-
note F as V o Lanvir(OV o Ly (0)T for simplicity. Since
Eqn. (19) has the same form as the GN matrix given in
Eqn. (10), the procedure given in Sec. 3.4 can be used to
calculate F v (within a CG iteration), which first calculates
J v using the modified forward propagation, then multiplies
the resulting vector by F, and at last calculates JT(FJ v) us-
ing the EBP procedure.
Next, it is shown how F can be calculated. Similar to

ML and MBR training discussed in Sec. 3.4, it is easy to
show 0Ly (0)/0a,; = —KytN/[(Ml (Zhang, 2017), where a,

is the logit value at time 7 of output unit k, and y™" is the

MMI occupancy with yMMI = ynum _ yden - num gpg den

are the occupancy derived separately from the numerator and
denominator parts of Eqn. (2).

In practice, F = sztMMI(y}V[MI)T does not need to be
calculated and stored explicitly. Recall the R(-) operator

discussed in Sec. 3.2, and that R(af“t) = Juv, which has
the same dimension as thMI. To calculate FJv directly,
(MMDOTR (@) can be obtained first, which is followed by

scaling thMI. Specifically,

FJ v= K.ZyINIMI ((thMI)TR(a;)m)) .

Adnan Haider et al.: Preprint submitted to Elsevier

Page 8 of 15

The term (thMI)TR(a?“t) is a scalar quantity and can be in-
terpreted as a learning rate for yMM!,

By comparing Eqns. (4) and (15), the difference between
the NG and HF approach when applied to minimise any ar-
bitrary smooth loss function lies in the matrix used in the
second-order term, G and F. For HF, the GN matrix G re-
quires calculating the Hessian of the MBR loss w.r.t. the
logit values. For NG, the empirical FI matrix is calculated
as the outer product of the gradients of the MMI loss w.r.t.
the logit values, regardless of the loss used for training. In
the case of MBR training, NG provides an efficient proce-
dure to combine MBR loss with MMI loss, which is similar
to the widely used “MMI prior” method for GMM-HMM
MBR training that interpolates MBR with MMI in the loss
function (Young et al., 2015; Zhang and Woodland, 2017).

6. Regulating NG Updates

In Sec. 5 it is shown how NG descent corresponds to
scaling and rotating the gradient V,£(0) through multipli-
cation with the inverse F matrix. In a scenario where the
training criterion is only an approximation of the evaluation
metric, it is shown in (Haider and Woodland, 2018; Haider,
2019) that both the approximate NG descent and SGD can at
times follow a path in the parameter space where generalisa-
tion improvements w.r.t. the training criterion on the valida-
tion set fail to correlate with reductions in WER (the evalu-
ation criterion of interest). Thus in such training paradigms,
over-fitting can occur not only due to the lack of training
data but also due to the underlying criterion mismatch. De-
pending on the task, it will be attractive to have a mechanism
that regulates the amount of scaling and rotation of the loss
gradient to achieve good generalisation. The following sub-
section presents a common framework to regulate the NG
direction or the gradient descent direction by using an ap-
propriate choice of B. The procedure presented here relies
on a re-derivation of Taylor’s theorem using the concepts of
manifolds, tangent vectors and directional derivatives from
the perspective of differential geometry. The derivation is
provided in detail in the technical report (Haider, 2018). An
overview of the necessary underlying concepts can be found
in (Amari, 2016; de Felice and Clarke, 1992).

6.1. A Common Framework to Regulate Natural
Gradient and Gradient Descent
Assuming that the loss function £(0) is sufficiently
smooth, using Taylor’s theorem, second order methods pro-
ceed to minimise the loss by minimising the following func-
tion at each iteration m:

A6’ = argmin {E(Om) +AOTV,L(6,) + %AOTBAG}
AO

where 0, corresponds to the current parameter estimate. Us-
ing the fundamental theorem of calculus, in (Haider, 2018),
it is shown that solving the above problem can be cast as an
equivalent minimisation problem in the tangent space of the

current parameter estimate 7 (6,,,):

arg min {E(Gm) +(A0T,V,L(8,)) + 1A0TBA9} .

AOET (0,,) 2
To aid understanding, the notion of the tangent space as-
sociated with a point 8,, in the parameter space corresponds
to the set of all possible directions that can be traversed
from O that yields different directional derivatives w.r.t. the
loss function £, a map from the parameter space to the real
line. Thus, the AO that are often probed in the optimisa-
tion are in fact members of 7(6,,). In the above equation,
(AOT,VyL(0,,)) corresponds to an inner product between
vectors in 7 (0,,) where the inner product can be generalised
to any Riemannian metric (de Felice and Clarke, 1992). Re-
placing the standard inner product with the positive definite
F~! leads’ to the following optimisation problem in 7°(6,,,):

arg min {ﬁ(em) + AOTFV,L(6,) + 1A9TBA9}
ABET (6, 2
(20)

where each entry of the matrix F~! is a smooth function of
the current estimate 8,,. Differentiating Eqn. (20) and equat-
ing to zero leads to following solution:

BAO = —F~'V,L(0). (21)

The right hand side of this above equation corresponds to the
NG direction. Hence Eqn. (20) presents a procedure to reg-
ulate the scaling and rotation applied by F~! with a matrix
B chosen in an appropriately understood sense.

6.2. NGHF: Combining NG and HF based on CG

The choice of appropriate B varies from task to task. In
(Haider and Woodland, 2018), the prevalence of over-fitting
due to criterion mismatch was observed to be highly corre-
lated with the increased sharpness of the NN frame posteri-
ors. In Sec. 3.3, it is discussed how scaling with the inverse
of the GN matrix regulates sharp changes in the entropy of
DNN frame posteriors. Using this insight, in this work G is
employed to regulate the NG descent direction. Computing
the individual inverse matrix scalings in Eqn. (20) directly
is expensive in terms of both computation and storage. Us-
ing the HF approach, each individual matrix scaling is ap-
proximated by solving equivalent linear systems using CG.
In Sec. 3 it is shown how the update direction proposed at
each CG iteration corresponds to:

A6k+l «— A@k + a vy

where v, represents the current conjugate direction. At the
first iteration of CG, this is the direction that the algorithm
has been initialised with. In contrast to NG and HF, the ini-
tial direction now corresponds to approximation of the NG
direction instead of the gradient. Thus when Eqn. (20) is
solved with CG, the resultant update corresponds to:

AOQ = wlAGNG + szGHF (22)

5The derivation holds for any positive scalar multiple of the Fisher.

Adnan Haider et al.: Preprint submitted to Elsevier

Page 9 of 15

which is a weighted combination of the NG direction and
conjugate directions computed using local curvature infor-
mation. Hence, in this sense we denote this approach NGHF.

7. Experimental Setup

The proposed optimisation framework was evaluated on
data from the multi-genre broadcast (MGB) challenge (Bell
et al., 2015) which uses data from a wide range of BBC tele-
vision programmes, and the effectiveness of the techniques
for discriminative sequence training with the MPE loss was
found. All systems were trained using a 200 hour training
set. The official development set dev.full was split into two
subsets. One split corresponds to the official MGB subset,
dev.sub, with 5.5 hours data, which is used as the valida-
tion set to choose the hyper-parameters and select the best
parameter update A@ in Alg. 1. To evaluate the generali-
sation ability to unseen data, an evaluation test set dev.sub2
was also created, which consists of 23 hours data from the
remaining 35 episodes in the dev.full set. Further detail re-
lated to the data preparation can be found in (Woodland et al.,
2015). The input to all models were 40-dim log-Mel filter
bank features extended with their delta coefficients, which
were normalised at the utterance-level for mean and at the
show-level for variance (Woodland et al., 2015). All exper-
iments were conducted using HTK version 3.5 and the Py-
HTK pipelines(Young et al., 2015; Zhang et al., 2019a).

The RNN models used in the experiments consist of two
1000-dim recurrent layers followed by a 1000-dim feedfor-
ward layer. Each recurrent layer is unfolded for 20 steps
(from +5 to —14). Apart from replacing the standard RNN
layer with the LSTM layers of the same size, the LSTMs
have the same structure as the RNNs. The TDNNs used the
same structure as in (Peddinti et al., 2015) with five 1000-
dim hidden layers, whose context shifts used to splice the
features are {—2,-1,0, 1,2}, {—1,2}, {-3,3}, {—7,2} and
{0} from the input to the output layers respectively. For
all models, the output layer consists of about six thousand
output units, with each output corresponding to a context-
dependent triphone state obtained by conventional decision
tree tying approach.

The large-batch-based methods, HF, NG, and NGHF,
are compared with the mini-batch-based methods, SGD
and Adam. For this the LSTM-HMMs, RNN-HMMs, and
TDNN-HMMs are trained at the sequence-level with these
different optimisers based on the MPE loss. Prior to se-
quence training, they are trained with SGD on a frame-level
CE loss. To monitor the occurrence of over-fitting and avoid
the mismatch between the WER and MPE loss, decoding
was performed on both of the validation and evaluation sets,
using a 158k word vocabulary trigram language model.

Since standard SGD and Adam suffer from high data
transmission costs in synchronous distributed processing,
such optimisers used single GPU training and standard con-
figurations (Su et al., 2013; Vesely et al., 2013; Zhang and
Woodland, 2015). The hyper-parameters associated with
SGD and Adam were chosen using grid search such that the

improvements obtained from MPE training are closely cor-
related with WER reductions on the validation set.

Following (Kingsbury et al., 2012), all experiments on
HF, NG, and NGHF that used the proposed CG-based opti-
misation framework were performed in a synchronous dis-
tributed setting where the gradients were computed across
multiple workers in parallel and then accumulated. To
achieve a good balance between the reduced training time
cost through parallelisation and keeping the data transmis-
sion cost low, the gradient batch used in this work contains
25 hours of data. When using four workers instead of one
worker to collect the gradients over a 25 hour gradient batch,
the time cost is reduced from 150 minutes to 37 minutes,
which is an almost a linear reduction in the time cost by a
factor of the number of workers. The method itself allows
full parallelisation of the gradient calculation stage such that
one worker is used per utterance. Parallelisation is not only
constrained by the number of workers available, but also
the additional overhead time-cost due to further parallelisa-
tion and data transmission®. To reduce the time cost associ-
ated with the individual CG iterations, a 0.5 hour CG batch
was used throughout the experiments, whose data were uni-
formly sampled from the entire training set. It should be
noted that one worker was used for CG, although in theory
the maximum number of workers allowed for CG could be
the same as the number of utterances in the CG batch. It
was found that running CG for 5-8 iterations was sufficient
to find an parameter update that could yield a reasonable re-
duction in the loss value. In terms of computational cost, the
CG worker was found to take about 30 minutes to execute 8
CGe iterations for LSTM-HMMs. All timing information was
obtained on a machine with four Tesla P100 GPUs and a 14
core Intel Xeon CPU E5-2680 v4 at 2.40GHz.

From Table 1, it is clear that validating the performance
at each CG iteration takes the largest proportion of the over-
all time cost. Recalling that the goal of CG is to minimise
a quadratic approximation of the loss function, through the
validation of the update obtained by each CG iteration on the
CG batch, the validation stage checks whether CG follows a
path in the parameter space where the quadratic approxima-
tion still holds. Although a validation stage was performed
after every CG iteration in all the experiments in this paper,
we empirically found that the check can be performed less
frequently to reduce the time cost.

8. Experimental Results

This section first compares the various optimisers us-
ing LSTM models (Sec. 8.1). The evolution of the MPE
loss function during discriminative sequence training is dis-
cussed, as well as the final WER on the evaluation set. The
performance when using both sigmoid and ReL.U activation
functions with RNN and TDNN models is then investigated
for the different optimisation approaches (Sec. 8.2).

The optimal degree of parallelisation will vary depending on the com-
puting infrastructure used.

Adnan Haider et al.: Preprint submitted to Elsevier

Page 10 of 15

Table 1

The proportion of time cost for running the CG algorithm for
NGHF for 8 iterations using a single NVidia P100 GPU and a
single core of Intel Xeon CPU E5-2680 v4 at 2.40GHz. The
time cost for loading the lattices into the memory is excluded
from the calculation since it can vary considerably depending
on the lattice implementation and the speed of the storage
system.

Procedure %Time cost
Modified forward propagation 15.1
EBP 7.8
Collecting statistics over lattices 4.1
Evaluating the performance of each A6 73.0
Performance on 200hr MGB1 training set
09 : ‘ :
P SRS, —— =
g —9]
gosgr R |
: pu
Sossr
v
s 0.87 -
0.86 ! ! !
0 1 2 3 4

Performance on MGB1 dev.sub
T

f**f",,,—”nfﬁL

A —

0.78 T

5 0.775

e

g ————

> A

g 0.77 .

50,765 —4—SGD

w ——NG

= 0.76 HF q

4 —*—NGHF

0.755 2‘ ?" Adam Y

= 28

- L

g 27.75 b

2 275 B

X

® 27.25 1

s 27 = ,

S —o—

o 26.75 o T 1

w - —

2 25 I | | T

0 1 2 3 4
Epochs

Figure 2: The evolution of the performance of the LSTM-
HMMs with different optimisers. The first two plots show the
phone accuracy on a subset of the training set and the valida-
tion set dev.sub. The third plot shows the absolute reductions
in %WERs on the validation set.

8.1. LSTM-HMMs Results

Figure 2 shows how MPE phone accuracy (negative of
the MPE loss) evolves during training for the LSTM-HMMs
with different optimisers, and the corresponding changes in
WER. Table 2 summarises the results on the validation set
for the best epoch. From Fig. 2, NGHF is the most effective
method in terms of both improving the MPE accuracy and
reducing the WER. By combining the KL-divergence with
the local curvature information obtained from the Hessian
matrix, the NGHF method achieves a greater WER reduc-
tion with just 8 parameter updates (i.e. one epoch) than the

Table 2

LSTM-HMM performance on the validation set with different
optimisers. “Best epoch” gives the epoch model with the best
performance. “#Update” shows the number of updates used
in the MPE training, and "k” stands for one thousand. “MPE
Acc." gives the MPE accuracy (negative of MPE loss value).
Although NG, HF, and NGHF used much fewer updates, the
numbers of utterances processed in each epoch are similar to
those of SGD and Adam.

Optimiser Best epoch #Update MPE Acc %WER
CE — — 0.765 27.9
SGD 3 420k 0.771 26.8
Adam 4 560k 0.770 26.9
NG 3 24 0.775 26.8
HF 2 16 0.772 26.7
NGHF 2 16 0.775 26.6
Table 3

%WERs for MPE trained LSTM-HMMs on the evaluation set
with different optimisers. “CE" refers to the SGD trained CE
system, while the others refer to the MPE systems trained with
the corresponding optimisers.

CE SGD Adam NG HF NGHF
293 286 286 286 284 283

converged model obtained trained using SGD or Adam us-
ing hundreds of thousands of updates. Table 2, shows that
MPE training using NGHF results in a relative 4.7% WER
reduction (WERR) over the CE trained model. It can also be
seen that all of the three CG-based second-order optimisers
require far fewer updates and fewer training epochs to con-
verge to a good solution than SGD and Adam.

To ensure the performance difference of LSTM-HMMs
trained with different optimisers can be generalised to un-
seen data, all models were tested on the evaluation set, which
was not use for setting hyper-parameters. Table 3 sum-
marises the results of the LSTM-HMM:s on the evaluation
set. From the results in Table 3, MPE with NGHF achieves
the lowest WERs among all five optimisers, and obtains a
3.4% relative WERR compared to the CE trained model.
Compared to both SGD and Adam, NGHF achieves a 1%
larger WERR while requiring far fewer parameter updates
and also fewer training epochs. This improvement was found
to be statistically significant at the 0.1% level for dev.sub2’.

8.2. TDNN-HMMs and RNN-HMMs with sigmoid
and ReLU Activation Functions

This section presents a comparison between RNNs and

TDNNs with both ReLU and sigmoid activation functions

when using the various optimisers for MPE training. It is

well-known that ReLLU and sigmoid models require very dif-

ferent configurations in SGD-based training: ReLLU models

7Statistical significance tests in this paper use a sign test on WER dif-
ferences at the episode level for the 35 programme episodes included in
dev.sub2.

Adnan Haider et al.: Preprint submitted to Elsevier

Page 11 of 15

Table 4

Number of MPE updates required by different optimisers (“k”
stands for 1000) for ReLU and sigmoid (¢) RNN and TDNN
models. Although NG, HF, and NGHF used far fewer updates,
the numbers of utterances processed in each epoch are similar
to those of SGD and Adam.

Model SGD Adam NG HF NGHF

ReLU RNN 100k 100k 0 24 16
o RNN 440k 440k 40 40 40
ReLU TDNN 330k 100k 0 32 32
o TDNN 440k 440k 48 48 40

often need a learning rate and the range for random initial-
isation a factor of 4 to 8 times smaller than those used for
sigmoid models, and that discriminative sequence training
with ReLU activation functions often results in over-fitting
to MBR loss functions®. We claim that such a difference still
exists with the second-order optimisers since the second-
order derivatives of ReLU and sigmoid are very different”,
which causes a large difference in the calculation of direc-
tional derivatives (Bishop, 2006).

Table 4 gives the number of updates required by each
type of optimiser to find a good solution and Table 5 com-
pares the efficacy of the trained models with different opti-
misers on the evaluation set. For the sigmoid models, us-
ing NGHF obtains the largest reductions in WER from MPE
training, yielding a 5% WERR for RNN and 6% WERR for
TDNN, over the relevant CE trained models. Compared to
SGD and Adam, NGHF achieves a WERR of 3.5% for sig-
moid RNN and 1% for sigmoid TDNN while using far fewer
updates. These WER reductions were found to be statisti-
cally significant (p < 0.001) on dev.sub2.

Regarding the ReLU models, it was found to be very dif-
ficult to get reasonable WER reductions using SGD, Adam
and NG. With NG in particular, sequence training was found
to suffer from over-fitting due to the mismatch between the
MPE loss and the WERSs from the very beginning of the MPE
training. On the validation set, NG was observed to achieve
excellent generalisation performance in terms of MPE loss
but such improvements failed to correlate well with the WER
reductions. For the TDNN ReLU model, MPE training with
NGHEF gives the the biggest WER reduction, which achieves
a WERR of 4.2% compared to the CE trained model. In
contrast to SGD and Adam, NGHF achieves WERRs of 2%.
For the ReLU RNN model, although HF produced the low-
est WER, its WERR over the NGHF method was not found
to be statistically significant (at the 5% level).

9. Discussion

The optimisation framework presented in this work pro-
vides a general method to flexibly train NN models with

8By over-fitting we here mean a low correlation between reduction in
MBR loss and reduction in WER.

9For ReLU h'(a,;) = 0 and for sigmoid ¢"'(a,;) = o(a, ;)1 —
o(a,)1 —20(ay ;)

Table 5

%WER for ReLU and sigmoid (6) RNN and TDNN models on
the evaluation set with different optimisers. “CE" refers to the
SGD trained CE system, while other columns refer to the MPE
systems trained with the corresponding optimisers.

Model CE SGD Adam NG HF NGHF
ReLU RNN 303 303 302 303 29.6 297
o RNN 322 316 316 306 30.7 305
ReLU TDNN 306 298 298 306 296 29.3
o TDNN 299 285 283 282 285 28.1

any arbitrary smooth loss using a large batch NG descent or
second-order method in a data-parallel manner. Although
the work has applied the framework in a centralised dis-
tributed training environment, the framework presented can
also be applied in a decentralised distributed training envi-
ronment as well (Zhang et al., 2019b,c).

Compared to the traditional HF approach, the novel mod-
ifications proposed in this paper overcome the computational
drawbacks of requiring hundreds of CG iterations that have
been cited as a key issue with HF (Martens and Grosse,
2015). The experimental results presented with the LSTM,
TDNN and RNN models show how effective updates from
only a small number of CG iterations can be obtained, and
this approach to model training leads to significant WER
reductions. The efficacy of the novel preconditioning ap-
proach mentioned in Sec. 4.3 can be clearly seen when
training the LSTM model. Table 3 shows that NG, HF
and NGHF all yield greater WER reductions in comparison
to the stochastic-gradient-based approaches while using far
fewer updates. Furthermore, this paper presents a novel pro-
cedure to regulate NG learning whose efficacy can be seen in
Table 4 and 5. For the ReLU-based TDNN and RNN mod-
els, the regularised NG approach (i.e. NGHF) is more adept
in following a path in the parameter space where minimising
w.r.t. the training criterion correlates with WER reductions.
This can be very important when applying NG to other struc-
tures and non-ASR tasks, since ReLU is widely used by the
models of computer vision (Simonyan and Zisserman, 2015)
and natural language processing (Vaswani et al., 2017).

In addition to the differences in WER and the number
of updates reported in Sec. 8, each of the optimisers require
different amounts of computation and GPU memory. For
SGD, the input and output values of each layer are calculated
in forward-propagation. In the backward-propagation pass,
the derivatives w.r.t. the input/output values, as well as the
gradients of the parameters are calculated. The parameters
0, gradients V4L£(0), and update values A6 each require the
same amount of space when they are stored in GPU memory.
The input/output values and their derivatives are also stored
in GPU memory, and the required storage depends on the
number of frames in the mini-batch. For Adam, extra calcu-
lation and GPU memory are required to compute and store
(V9£(l9))2 and the relevant second raw moment estimate for
every frame in the training set (Kingma and Ba, 2015).

NG, HF, and NGHF all have the same computation and

Adnan Haider et al.: Preprint submitted to Elsevier

Page 12 of 15

storage complexity as SGD for the gradient accumulation
stage. In addition to the standard forward-propagation and
backward-propagation procedures, each CG iteration uses an
extra modified forward-propagation procedure to calculate
the directional derivatives w.r.t. input/output values, as de-
scribed in Sec. 3.4. This results in more memory usage than
Adam. The extra computation cost in the CG stage applies
to the CG batch, which is only a small portion of the training
set. Note that the number of CG iterations used in NG, HF,
and NGHF differs in our experiments (see Sec. 7). An extra
validation stage is performed after every CG iteration, which
increases the computation cost of the proposed methods al-
though it can be performed less frequently with a smaller
amount of data. Despite the increased cost, the computation
within each gradient batch or CG batch can be easily paral-
lelised (as shown in Fig. 1) which makes it much easier to use
many workers with no further approximations than for SGD
or Adam. When applied to a much larger training set, it may
be unnecessary to scale up the size of the CG batch, which
would reduce the relative increase in computation cost.

10. Conclusions

A CG-based synchronous distributed optimisation
framework for discriminative sequence training has been
proposed in this paper, which has the flexibility to combine
NG with a second-order optimisation method, such as HF.
This framework has the same advantages as HF in pro-
viding stable loss value reductions and inherently suitable
for parallel computing, yet also has improved numerical
issues in CG and improved performance for models with
shared parameters. The framework was evaluated using
ASR experiments with the training and test data from
the MGB challenge. It was shown that the improved CG
method can find effective parameter updates resulting in a
better improvement in MPE loss often with far fewer CG
iterations. Furthermore, when applied in a setting where
NG is combined with HF, the resulting NGHF method
generates models with better generalisation ability with
far fewer parameter updates when compared with SGD
and Adam. The method also can be efficiently parallelised
across multiple GPUs without making any approximations.

Acknowledgement

The authors are grateful to the anonymous reviewers for
their valuable suggestions that helped improve an earlier ver-
sion of this paper.

References

Amari, S., 1997. Neural learning in structured parameter spaces - natural
Riemannian gradient, in: Advances in Neural Information Processing
Systems 9 (NIPS), pp. 127-133.

Amari, S., 2016. Information Geometry and its Applications. Springer.

Andrychowicz, M., Denil, M., Colmenarejo, S., Hoffman, M., Pfau, D.,
Schaul, T., Shillingford, B., de Freitas, N., 2016. Learning to learn by
gradient descent by gradient descent, in: Advances in Neural Informa-
tion Processing Systems 29 (NIPS), pp. 3988-3996.

Bahl, L., Brown, P., de Souza, P., Mercer, R., 1986. Maximum mutual
information estimation of hidden Markov model parameters for speech
recognition, in: Proceedings of the 11th IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 231-234.

Baum, L., Eagon, J., 1967. An inequality with applications to statistical es-
timation for probabilistic functions of Markov processes and to a model
for ecology. Bulletin of the American Mathematical Society 73(3), 360—
363.

Becker, S., LeCun, Y., 1988. Improving the Convergence of Back-
Propagation learning with Second Order methods. Technical Report
CRG-TR-88-5. Computer Science Department, University of Toronto.

Bell, P., Gales, M., Hain, T., Kilgour, J., Lanchantin, P., Liu, X., McPar-
land, A., Renals, S., Saz, O., Wester, M., Woodland, P., 2015. The MGB
challenge: Evaluating multi-genre broadcast media recognition, in: Pro-
ceedings of the 10th IEEE Workshop on Automatic Speech Recognition
and Understanding (ASRU), pp. 687-693.

Bernacchia, A., Lengyel, M., Hennequin, G., 2018. Exact natural gradient
in deep linear networks and its application to the nonlinear case, in: Ad-
vances in Neural Information Processing Systems 31 (NIPS), pp. 5945—
5954.

Bishop, C., 2006. Pattern Recognition and Machine Learning. Springer.

Bottou, L., 2010. Large-scale machine learning with stochastic “ gradient
descent, in: Proceedings of the 19th International Conference on Com-
putational Statistics (COMPSTAT), pp. 177-187.

Bottou, L., Curtis, F.E., Nocedal, J., 2018. Optimization methods for large-
scale machine learning. Society for Industrial and Applied Mathematics
(SIAM) Review 60(2), 223-311.

Chen, K., Huo, Q., 2016. Scalable training of deep learning machines
by incremental block training with intra-block parallel optimization and
blockwise model-update filtering, in: Proceedings of the 41st IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5880-5884.

Chiu, C.C., Sainath, T.N., Wu, Y., Prabhavalkar, R., Nguyen, P., Chen,
Z., Kannan, A., Weiss, RJ., Rao, K., Gonina, E., Jaitly, N., Li, B.,
Chorowski, J., Bacchiani, M., 2018. State-of-the-art speech recognition
with sequence-to-sequence models, in: Proceedings of the 43rd IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4774-4778.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q., Mao, M.,
Ranzato, M., Senior, A., Tucker, P., Yang, K., Ng, A., 2012. Large scale
distributed deep networks, in: Advances in Neural Information Process-
ing Systems 25 (NIPS), pp. 1223-1231.

Desjardins, G., Simonyan, K., Pascanu, R., Kavukcuoglu, K., 2015. Nat-
ural neural networks, in: Advances in Neural Information Processing
Systems 28 (NIPS), pp. 2071-2079.

Dognin, P., Goel, V., 2013. Combining stochastic average gradient and
Hessian-free optimization for sequence training of deep neural networks,
in: Proc. IEEE Workshop on Automatic Speech Recognition and Under-
standing (ASRU), pp. 303-308.

Duchi, J., Hazan, E., Singer, Y., 2011. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learn-
ing Research , 2121-2159.

Elman, J., 1990. Finding structure in time. Cognitive Science 14(2), 179—
211.

de Felice, F., Clarke, C., 1992. Relativity on Curved Manifolds. Cambridge
University Press.

George, T., Laurent, C., Bouthillier, X., Ballas, N., Vincent, P., 2018. Fast
approximate natural gradient descent in a Kronecker factored eigenbasis,
in: Advances in Neural Information Processing Systems 31 (NIPS), pp.
9550-9560.

Gibson, M., Hain, T., 2006. Hypothesis spaces for minimum Bayes risk
training in large vocabulary speech recognition, in: Proceedings of the
7th Conference of the International Speech Communication Association
(Interspeech).

Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep
feedforward neural networks, in: Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics (AISTATS), pp. 249—
256.

Adnan Haider et al.: Preprint submitted to Elsevier

Page 13 of 15

Goel, V., Byrne, W., 2000. Minimum Bayes risk automatic speech recog-
nition. Computer Speech and Language 14(2), 115-135.

Graves, A., Fernandez, S., Gomez, F., Schmidhuber, J., 2006. Connectionist
temporal classification: Labelling unsegmented sequence data with re-
current neural networks, in: Proceedings of the 23rd International Con-
ference on Machine Learning (ICML), pp. 369-376.

Graves, A., Jaitly, N., 2014. Towards end-to-end speech recognition with
recurrent neural networks, in: Proceedings of the 31st International Con-
ference on Machine Learning (ICML), pp. 1764-1772.

Graves, A., Mohamed, A.r., Hinton, G., 2013. Speech recognition with
deep recurrent neural networks, in: Proceedings of the 38th IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6645-6649.

Grosse, R., Salakhudinov, R., 2015. Scaling up natural gradient by sparsely
factorizing the inverse Fisher matrix, in: Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML), pp. 2304-2313.

Haider, A., 2018. A common framework for natural gradient and
Taylor based optimisation using manifold theory. arXiv preprint
arXiv:1803.09791.

Haider, A., 2019. Optimisation Methods for Training Deep Neural Net-
works in Speech Recognition. Ph.D. thesis. University of Cambridge.

Haider, A., Woodland, P., 2017. Sequence training of DNN acoustic models
with natural gradient, in: Proceedings of the 11th IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU), pp. 178-
184.

Haider, A., Woodland, P., 2018. Combining natural gradient with Hessian
free methods for sequence training, in: Proceedings of the 19th Confer-
ence of the International Speech Communication Association, pp. 2918—
2922.

Heigold, G., McDermott, E., Vanhoucke, V., Senior, A., Bacchiani, M.,
2014. Asynchronous stochastic optimization for sequence training of
deep neural networks, in: Proceedings of the 39th IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
5624-5628.

Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.r., Jaitly, N., Senior,
A., Vanhoucke, V., Nguyen, P., Sainath, T., Brian, K., 2012. Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups. IEEE Signal Processing Magazine 29(6), 82-97.

Hinton, G., Osindero, S., Teh, Y., 2006. A fast learning algorithm for deep
belief nets. Neural Computation 18, 1527-1554.

Hinton, G., Salakhutdinov, R., 2006. Reducing the dimensionality of data
with neural networks. Science 313(5786), 504-507.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural
computation 9(8), 1735-1780.

Kaiser, J., Horvat, B., Kacic, Z., 2000. A novel loss function for the overall
risk criterion based discriminative training of HMM models, in: Pro-
ceedings of the 1st Conference of the International Speech Communica-
tion Association (Interspeech), pp. 887-890.

Kingma, D.P,, Ba, J.L., 2015. Adam: A method for stochastic optimiza-
tion, in: Proceedings of the 3rd International Conference on Learning
Representations (ICLR), pp. 1-13.

Kingsbury, B., 2009. Lattice-based optimization of sequence classification
criteria for neural-network acoustic modeling, in: Proceedings of the
34th IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3761-3764.

Kingsbury, B., Sainath, T., Soltau, H., 2012. Scalable minimum Bayes
risk training of deep neural networks acoustic models using distributed
Hessian-free optimization, in: Proceedings of the 13th Conference of
the International Speech Communication Association (Interspeech), pp.
10-13.

Kreyssig, F., Zhang, C., Woodland, P., 2018. Improved TDNNs using
Deep Kernels and Frequency Dependent Grid-RNNs, in: 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4864—4868.

Ladkat, P., Rybakov, O., Arava, R., Hari, S., Parthasarathi, K., Chen, LF.,
Strom, N., 2019. Two tiered distributed training algorithm for acoustic
modeling, in: Proceedings of the 20th Conference of the International
Speech Communication Association (Interspeech), pp. 1626-1630.

Lischer, C., Beck, E., Irie, K., Kitza, M., Michel, W., Zeyer, A., Schliiter,
R., Ney, H., 2019. RWTH ASR systems for LibriSpeech: Hybrid vs
attention, in: Proceedings of the 20th Conference of the International
Speech Communication Association (Interspeech), pp. 231-235.

Martens, J., 2010. Deep learning via Hessian-free optimization, in: Pro-
ceedings of the 27th International Conference on Machine Learning
(ICML), pp. 735-742.

Martens, J., 2020. New insights and perspectives on the natural gradient
method. Journal of Machine Learning Research , 1-76.

Martens, J., Grosse, R., 2015. Optimizing neural networks with Kronecker-
factored approximate curvature, in: Proceedings of the 32nd Interna-
tional Conference on Machine Learning (ICML), pp. 2408-2417.

Martens, J., Sutskever, 1., 2011. Learning recurrent neural networks with
Hessian-free optimization, in: Proceedings of the 28th International
Conference on Machine Learning (ICML), pp. 1033-1040.

Nocedal, J., Wright, S., 2016. Numerical Optimization. Springer.

Pascanu, R., Bengio, Y., 2013. Revisiting natural gradient for deep net-
works. arXiv preprint arXiv:1301.3584.

Pascanu, R., Mikolov, T., Bengio, Y., 2013. On the difficulty of training re-
current neural networks, in: Proceedings of the 30th International Con-
ference on Machine Learning ICML), pp. 1310-1318.

Pearlmutter, B., 1994. Fast Exact Multiplication by the Hessian. Neural
computation 6(1), 147-160.

Peddinti, V., Povey, D., Khudanpur, S., 2015. A time delay neural net-
work architecture for efficient modeling of long temporal contexts, in:
Proceedings of the 16th Conference of the International Speech Com-
munication Association (Interspeech), pp. 3214-3218.

Povey, D., 2005. Discriminative training for Large Vocabulary Speech
Recognition. Ph.D. thesis. University of Cambridge.

Povey, D., Peddinti, V., Galvez, D., Ghahremani, P., Manohar, V., Na, X.,
Wang, Y., Khudanpur, S., 2016. Purely sequence-trained neural net-
works for ASR based on lattice-free MMI, in: Proceedings of the 17th
Conference of the International Speech Communication Association (In-
terspeech).

Povey, D., Woodland, P., 2002. Minimum phone error and I-smoothing
for improved discriminative training, in: Proceedings of the 27th IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 105-108.

Povey, D., Zhang, X., Khudanpur, S., 2015. Parallel training of deep neural
networks with natural gradient and parameter averaging. Proceedings of
the 3rd International Conference on Learning Representations (ICLR) ,
1-13.

Renals, S., Morgan, N., Cohen, M., Franco, H., 1992. Connectionist
probability estimation in the DECIPHER speech recognition system, in:
Proceedings of the 17th IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 601-604.

Robinson, A., Fallside, F., 1987. The utility driven dynamic error propa-
gation network. Technical Report CUED/F-INFENG/TR.1. Cambridge
University Engineering Department.

Roux, N., Manzagol, P.A., Bengio, Y., 2008. Topmoumoute online natu-
ral gradient algorithm, in: Advances in Neural Information Processing
Systems 20 (NIPS), pp. 849-856.

Rumelhart, D., Hinton, G., Williams, R., 1986. Learning representations
by back-propagating errors. Nature 323(6088), 533-536.

Sainath, T., Horesh, L., Kingsbury, B., Aravkin, A., Ramabhadran, B.,
2013a. Accelerating Hessian-free optimization for deep neural networks
by implicit preconditioning and sampling, in: Proceedings of the 9th
IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU), pp. 303-308.

Sainath, T., Kingsbury, B., Soltau, H., Ramabhadran, B., 2013b. Optimiza-
tion techniques to improve training speed of deep neural networks for
large speech tasks. IEEE Transactions on Audio, Speech, and Language
Processing 21(11), 2267-2276.

Sak, H., Senior, A., Beaufays, F., 2014. Long short-term memory recur-
rent neural network architectures for large scale acoustic modeling, in:
Proceedings of the 15th Conference of the International Speech Com-
munication Association (Interspeech), pp. 338-342.

Saon, G., Sercu, T., Rennie, S., Kuo, H.K., 2016. The IBM 2016 English

Adnan Haider et al.: Preprint submitted to Elsevier

Page 14 of 15

http://arxiv.org/abs/1803.09791
http://arxiv.org/abs/1301.3584

conversational telephone speech recognition system, in: Proceedings of
the 17th Conference of the International Speech Communication Asso-
ciation (Interspeech), pp. 7-11.

Schraudolph, N., 2002. Fast curvature matrix-vector products for second-
order gradient descent. Neural Computation 14(7), 1723-1738.

Schulman, J., Levine, S., Moritz, P., Jordan, M., Abbeel, P., 2015. Trust re-
gion policy optimization, in: Proceedings of the 31st International Con-
ference on Machine Learning (ICML), pp. 889-1897.

Seide, F., Fu, H., Droppo, J., Li, G., Yu, D., 2014. 1-bit stochastic gra-
dient descent and its application to data-parallel distributed training of
speech DNNGs, in: Proceedings of the 15th Conference of the Interna-
tional Speech Communication Association, pp. 1058-1062.

Senior, A., Heigold, G., Ranzato, M., Yang, K., 2013. An empirical study
of learning rates in deep neural networks for speech recognition, in:
Proceedings of the 38th IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 6724-6728.

Shannon, M., 2017. Optimizing expected word error rate via sampling for
speech recognition. Proceedings of the 18th Conference of the Interna-
tional Speech Communication Association (Interspeech) .

Shewchuk, J., 1994. An Introduction to the Conjugate Gradient Method
without the Agonizing Pain. Technical Report CMU-CS-94-125. De-
partment of Computer Science,Carnegie-Mellon University.

Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for
large-scale image recognition, in: Proceedings of the 3rd International
Conference on Learning Representations (ICLR), pp. 1-14.

Strom, N., 2015. Scalable distributed DNN training using commodity GPU
cloud computing, in: Proceedings of the 16th Conference of the Inter-
national Speech Communication Association (Interspeech), pp. 1488—
1492.

Su, H., Li, G., Yu, D., Seide, F., 2013. Error back propagation for sequence
training of context-dependent deep neural networks for conversational
speech transcription, in: Proceedings of the 38th IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
6664—6668.

Tieleman, T., Hinton, G., 2012. Lecture 6.5-RMSprop: Divide the gradi-
ent by a running average of its recent magnitude. COURSERA: Neural
Networks for Machine Learning.

Tikhonov, A., Leonov, A., Yagola, A., 1998. Nonlinear I1l-Posed Problems.
Springer.

Valtchev, V., 1995. Discriminative Methods in HMM-based Speech Recog-
nition. Ph.D. thesis. University of Cambridge.

Valtchev, V., Odell, J., Woodland, P., Young, S., 1997. MMIE training of
large vocabulary recognition systems. Speech Communication 22(4),
303-314.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.,
Kaiser, L., I., P.,, 2017. Attention is all you need, in: Advances in Neural
Information Processing Systems 30 (NIPS), pp. 6000-6010.

Vesely, K., Ghoshal, A., Burget, L., Povey, D., 2013. Sequence-
discriminative training of deep neural networks, in: Proceedings of the
14th Conference of the International Speech Communication Associa-
tion (Interspeech).

Vinyals, O., Povey, D., 2012. Krylov subspace descent for deep learning,
in: Proceedings of the 15th International Conference on Artificial Intel-
ligence and Statistics (AISTATS), pp. 1261-1268.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, J., 1989.
Phoneme recognition using time-delay neural networks. IEEE Trans-
actions on Acoustic, Speech, and Signal Processing 37(3), 328-339.

Werbos, P., 1988. Generalization of backpropagation with application to a
recurrent gas market model. Neural computation 1(4), 339-356.

Wiesler, S., Golik, P., Schliiter, R., Ney, H., 2015. Investigations on se-
quence training of neural networks, in: Proceedings of the 40th IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4565-45609.

Wiesler, S., Li, J., Xue, J., 2013. Investigations on Hessian-free optimiza-
tion for cross-entropy training of deep neural networks, in: Proceedings
of the 14th Conference of the International Speech Communication As-
sociation (Interspeech), pp. 3317-3321.

Woodland, P., Liu, X., Qian, Y., Zhang, C., Gales, M., Karanasou, P., Lan-

chantin, P., Wang, L., 2015. Cambridge University transcription systems
for the Multi-Genre Broadcast challenge, in: Proceedings of the 10th
IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU), pp. 639-646.

Woodland, P., Povey, D., 2002. Large scale discriminative training of hid-
den Markov models for speech recognition. Computer Speech and Lan-
guage 16(1), 25-47.

Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., Yu, D.,
Zweig, G., 2016. The microsoft 2016 conversational speech recognition
system, in: Proceedings of the 41st IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5255-5259.

Xu, P., Roosta, F., Mahoney, M., 2020. Second-order optimization for non-
convex machine learning: An empirical study, in: Proceedings of the
2020 SIAM International Conference on Data Mining (SDM), pp. 199—
207.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore,
G., Odell, J., Ollason, D., Povey, D., Ragni, A., Valtchev, V., Woodland,
P., Zhang, C., 2015. The HTK Book (for HTK version 3.5). Cambridge
University Engineering Department.

Zeiler, M., 2012. ADADELTA: An adaptive learning rate method. arXiv
preprint arXiv:1212.5701.

Zhang, C., 2017. Joint Training Methods for Tandem and Hybrid Speech
Recognition Systems using Deep Neural Networks. Ph.D. thesis. Uni-
versity of Cambridge.

Zhang, C., Kreyssig, F., Li, Q., Woodland, P., 2019a. PyHTK: Python
library and ASR pipelines for HTK, in: Proc. ICASSP, pp. 6470-6474.

Zhang, C., Woodland, P., 2015. A general artificial neural network exten-
sion for HTK, in: Proceedings of the 16th Conference of the Interna-
tional Speech Communication Association, pp. 3581-3585.

Zhang, C., Woodland, P., 2017. Joint optimisation of tandem systems us-
ing Gaussian mixture density neural network discriminative sequence
training, in: Proceedings of the 42nd IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5015-5019.

Zhang, W., Cui, X., Finkler, U., Kingsbury, B., Saon, G., Kung, D., Picheny,
M., 2019b. Distributed deep learning strategies for automatic speech
recognition, in: Proceedings of the 44th IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 5706-5710.

Zhang, W., Cui, X., Finkler, U., Saon, G., Kayi, A., Buyuktosunoglu, A.,
Kingsbury, B., Kung, D., Picheny, M., 2019¢c. A highly efficient dis-
tributed deep learning system for automatic speech recognition, in: Pro-
ceedings of the 20th Conference of the International Speech Communi-
cation Association (Interspeech), pp. 2628-2632.

Zinkevich, M., Weimer, M., Li, L., Smola, A., 2010. Parallelized stochastic
gradient descent, in: Advances in Neural Information Processing Sys-
tems 23 (NIPS), pp. 2595-2603.

Adnan Haider et al.: Preprint submitted to Elsevier

Page 15 of 15

http://arxiv.org/abs/1212.5701

