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Abstract
We propose two nonlinear regression methods, named Adver-
sarial Orthogonal Regression (AdOR) for additive noise mod-
els and Adversarial Orthogonal Structural Equation Model
(AdOSE) for the general case of structural equation mod-
els. Both methods try to make the residual of regression
independent from regressors, while putting no assumption
on noise distribution. In both methods, two adversarial net-
works are trained simultaneously where a regression network
outputs predictions and a loss network that estimates mu-
tual information (in AdOR) and KL-divergence (in AdOSE).
These methods can be formulated as a minimax two-player
game; at equilibrium, AdOR finds a deterministic map be-
tween inputs and output and estimates mutual information
between residual and inputs, while AdOSE estimates a con-
ditional probability distribution of output given inputs. The
proposed methods can be used as subroutines to address sev-
eral learning problems in causality, such as causal direction
determination (or more generally, causal structure learning)
and causal model estimation. Synthetic and real-world exper-
iments demonstrate that the proposed methods have remark-
able performance with respect to previous solutions.

1 Introduction
Identifying cause-effect relationships between variables in
complex high dimensional networks has been studied in
many fields such as neuroscience (Jazayeri and Afraz 2017;
Shadlen et al. 1996), computational genomics (Marbach et
al. 2012; Haury et al. 2012), economics (Zellner 1988), and
social networks (Ver Steeg and Galstyan 2012; 2013). For
instance, in genomics, it is known that each cell of living
creatures consists of a huge number of genes that produce
proteins in a procedure called “gene expression,” in which
they can inhibit or promote each others’ activities. These
cause-effect relationships can be represented by a causal
graph in which each variable is depicted by a node, and a
directed edge that shows the direct causal effect from the
“parent” node to the “child” node. It is commonly assumed
that there is no directed cycle in the causal graph, i.e., it is
a Directed Acyclic Graph (DAG). The goal is to recover the
causal graph from the data sampled from variables. In the lit-
erature, learning causal graphs has been studied extensively
in two main settings: random variables and time series.

In the setting of random variables, Shimizu et al.(2006)
proposed LiNGAM algorithm which can identify the causal
graph in linear model under the assumption of non-
Gaussianity of exogenous noises in the system. Hoyer et
al.(2009) proposed a method to reveal the direction of
causality in additive noise model where the effect is a func-
tion of direct causes plus some exogenous noise. The basic
idea of their method is the following: for a given candidate
DAG, one solves a regression problem for each node, model-
ing it as a (possibly nonlinear) function of its parents. Then,
a statistical independence test is performed to assess whether
all residuals are jointly independent. If that is the case, the
candidate DAG is accepted, otherwise it is rejected. Peters,
Janzing, and Schölkopf(2013) extended this idea for time
series in additive noise models. All these methods require
nonparametric nonlinear regression such that it ensures the
residual is independent of regressors.

In the setting of time series, much efforts exerted to define
statistical definition of causality such as Granger causality
(Granger 1969; 1963). Marko(1973) defined an information
theoretic measure called Directed Information (DI), which is
a statistical criterion to detect the existence of direct causal
effect between any pair of time series. Based on DI and in-
spired by G-causality, Quinn, Kiyavash, and Coleman(2015)
proved that minimal generative model, i.e., a graph with
minimum number of edges that does not miss the full dy-
namics, can be discovered by causally conditioned DI. Ex-
periments showed that the proposed criterion can be used to
reconstruct efficiently the causal graphs with linear relation-
ships.

Causally conditioned DI and the other information the-
oretic measures for causality in time series typically uti-
lize “differential entropy,” (Peters, Janzing, and Schölkopf
2017) which is an extension of Shannon entropy for con-
tinuous random variables. Since differential entropy is de-
fined based on the probability distribution, numerous works
have been done for entropy estimation of general distribu-
tions using only observational data. In this regard, Hausser
and Strimmer(2009) used a naive binning method to esti-
mate the value of joint distribution in each bin and then ad-
justed these values by a shrinkage factor based on James-
Stein estimator (James and Stein 1992). In (Liu, Aviyente,
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and Al-khassaweneh 2009; Darbellay and Tichavsky 2000;
Miller 2003), the joint distribution is estimated by partition-
ing the domain in such a way that more accurate values
are achieved in the regions where the density of sampled
data is high. However, the proposed methods are sophisti-
cated and need huge computational cost in high dimension.
Recently, Quinn, Kiyavash, and Coleman(2015) used a re-
gression based method for estimating DI. In order to check
whether a variable Y is the parent of variable X , two re-
gressions are performed: one by considering the Y in the
regressors, and another without it. Then, DI can be obtained
by differing the entropy of residuals in two regressions. The
Y is considered as a parent ofX if DI is non-zero. The above
procedure works correctly only if the obtained residuals are
independent of regressors in both regressions.

According to what mentioned above, several causal learn-
ing algorithms in the setting of random variables (such as the
one in (Hoyer et al. 2009)) or time series (such as TiMINo
algorithm in (Peters, Janzing, and Schölkopf 2013) or DI es-
timator in (Quinn, Kiyavash, and Coleman 2015)), require a
subroutine that can perform non-linear regression such that
the residual becomes independent of the regressors as much
as possible. However, common regression methods are con-
fined to minimize Mean Squared Error (MSE) loss (Wang
and Bovik 2009; Kay 1993). Thus, in these common meth-
ods, the residuals and regressors become only uncorrelated.
While these methods are fully efficient in linear Gaussian
case, they might not be statistically efficient in nonlinear
or non-Gaussian scenarios. To resolve this issue, Mooij et
al.(2009) proposed a novel regression method which mini-
mizes the dependence between residuals and regressors that
is meausured by Hilbert-Schmidt Independence Criterion
(HSIC). In the proposed method, it is needed to carefully
tune the kernel parameter in HSIC.

Contributions: In this paper, we propose two nonlin-
ear regression methods, named Adversarial Orthogonal Re-
gression (AdOR) and Adversarial Orthogonal Structural
Equation Model (AdOSE). AdOR assumes that the noise
is modeled as an additive term while AdOSE relaxes this
assumption. The models are “Adversarial”, in the sense
that in both methods, two neural networks compete with
each other, the regression network and the loss network. In
AdOR, the loss network estimates the mutual information
between regressors and residuals, and in AdOSE, it acts as
a Kullback-Leibler (KL)-divergence estimator between cor-
rect responses and predicts (which are the output of regres-
sion network). As discussed above, independence of residu-
als and regressors is vital in inferring the correct causal re-
lationships. Thus, AdOR tries to make the residual indepen-
dent of regressors, and AdOSE achieves this target by inde-
pendently generating noise. The proposed methods can be
used as subroutines to address several learning problems in
causality, such as determining causal direction, causal struc-
ture learning, or causal model estimation. Experiment show
that the proposed methods have remarkable performance in
estimating the true non-linear function with respect to pre-
vious solutions. While our main contribution is in causal in-
ference, the proposed methods might also be useful in the
other regression tasks.

The rest of the paper is organized as follows: In Section 2,
we review a neural network (Belghazi et al. 2018) that has
been proposed previously to estimate mutual information.
We describe AdOR and AdOSE methods in Section 3 and
Section 4, respectively. We provide experimental results in
Section 5 and conculde the paper in Section 6.

2 Mutual Information Neural Estimation
In this section, we describe the neural network proposed
in (Belghazi et al. 2018) for estimating mutual information
based on an alternative representations of KL-divergence.
This representation will be exerted as the loss network in
Section 3 and 4.

Let P and Q be two distributions on some compact do-
main Ω ⊂ Rd. The KL-divergence between them is defined
as:

DKL (P ||Q) := EP
[

log
dP

dQ

]
. (1)

One of the representation of KL-divergence, which we fo-
cused on, is Donsker-Varadhan representation (Donsker and
Varadhan 1983):

DKL (P ||Q) = sup
T :Ω→R

EP [T ]− log
(
EQ

[
eT

])
, (2)

where the supremum is taken over all functions T such that
the two expectations are finite.

Let X and Y denote two continuous random variables
with distributions PX and PY , respectively. Mutual infor-
mation between X and Y is denoted by I (X;Y ), which
is a measure for the dependence of them. mutual informa-
tion has some multiple forms, and one form is defined as the
KL-divergence between the joint distribution PXY , and the
product of marginal distributions PXPY :

I (X;Y ) = DKL (PXY ||PXPY ) . (3)

Let F = {Tθ}θ∈Θ be the set of functions parametrized
by a neural network (i.e. weights, biases, batch normaliza-
tion parameters, etc.). Mutual Information Neural Estimator
(MINE, see definition 3.1 of (Belghazi et al. 2018)) is de-
fined as:

Î (X;Y ) = sup
θ∈Θ

EPXY [Tθ]− log
(
EPXPY

[
eTθ

])
. (4)

As the class of all functions in (2) is restricted to neural net-
work class F in (4), we have the following lower bound:

I (X;Y ) ≥ Î (X;Y ) . (5)

Theoretical properties of Î (X;Y ) are provided in (Belghazi
et al. 2018). In MINE, samples from joint distribution PXY
are fed as the inputs of a neural network and an optimizer
like stochastic gradient descent, updates the parameters θ so
as to maximize the right hand side of (4). Ultimately, as the
parameters converge, the loss value of network is the esti-
mated mutual information. For more details on the imple-
mentation of MINE, please refer to Algorithm 1 of (Belghazi
et al. 2018).



3 Adversarial Orthogonal Regression
Let Z and U represent the scalar response and regressor vec-
tor, respectively. The regression problem is to find f̂ :

Z = f̂ (U) + ε, (6)

such that the residual ε is independent of U .
In AdOR method, the regression network (R) is pitted

against the loss network where a mutual information es-
timator (MI) learns to find any high order dependencies
(see the top block diagram of Figure 1). In regression part,
Ẑ = f̂ (U ; θR) is a differentiable function represented by a
multilayer perceptron, and parametrized with θR, in which
Ẑ is the regression output. The residual ε = Z − Ẑ and
the regressor vector U are fed as inputs to MI , and the
output T (ε, U ; θMI) is also a differentiable function rep-
resented by a multilayer perceptron with parameters θMI .
L (R,MI) = EPεU [T ]−log

(
EPεPU

[
eT

])
denotes the mu-

tual information between U and ε. R is trained to minimize
the dependency between residual and regressors. MI is si-
multaneously trained to tighten the gap between I (U ; ε) and
Î (U ; ε) in order to achieve more accurate estimate of mutual
information. In other words, R and MI play the following
two-player minimax game:

min
R

max
MI

L (R,MI) = EPεU [T ]− log
(
EPεPU

[
eT

])
(7)

At equilibrium point, the value of loss L (R,MI) is mu-
tual information between U and ε. We provide experimental
results in Section 5 that show convergence to the equilib-
rium point. In practice, the game in (7) is implemented by
an iterative approach, in which the gradient of loss ∇LB
for mini-batch B is used via back-propagation procedure.
As mentioned in (Belghazi et al. 2018), the second term in
the mini-batch’s gradient∇LB leads to a biased estimate of
the full-batch gradient ∇L. To overcome this issue, Adam
optimizer (Kingma and Ba 2014) can be utilized where the
history of gradients is also considered in the next update.

Algorithm 1 shows AdOR training. In forward path, 2b
examples are fed to R, and residuals ε(i) are computed in
line 3. The first b pairs ε(i) and u(i) are jointly sampled;
while, the second b pairs ε(i+b) and u(i) are marginal sam-
ples. Output of MI is computed twice: once by joint sam-
ples, and once by marginal samples in line 4. Finally, mini-
batch loss LB is computed in line 5 based on mean of sam-
ples computed in line 4. In backward path, parameters of
each network are updated while the ones of other network is
fixed. Note that in each iteration, R and MI are updated kR
and kMI times, respectively.

4 Adversarial Orthogonal Structural
Equation Model

In (6), the noise ε is modeled as an additive term. However,
in general, the exogenous noise can affect the variable Z
in a non-linear form, such as in structural equation models
(SEM, see (Peters, Janzing, and Schölkopf 2017)). Thus, we
assume here that the true model is: Z = f(U, ε). In AdOSE,
we propose a new method to estimate both the nonlinear

Algorithm 1: AdOR
for number of iterations do

Forward path:
1. Draw 2b minibatch samples{(

u(1), z(1)
)
, . . . ,

(
u(2b), z(2b)

)}
2. Evaluate regression output
ẑ(i) = f̂

(
u(i); θR

)
; i = 1, . . . , 2b

3. Compute residual
ε(i) = z(i) − ẑ(i); i = 1, . . . , 2b

4. Evaluate output of MI twice
T (i) = T

(
ε(i), u(i); θMI

)
; i = 1, . . . , b

T
(i)
sh = T

(
ε(i+b), u(i); θMI

)
; i = 1, . . . , b

5. Compute loss
LB (θR, θMI) =

1
b

∑b
i=1 T

(i) − log
(

1
b

∑b
i=1 e

T
(i)
sh

)
Backward path:
for kR steps do

Update R by descending its stochastic gradient
∇θRLB

end
for kMI steps do

Update MI by ascending its stochastic gradient
∇θMILB

end
end

function f and also the joint distribution PUZ . Hence, our
goal is to obtain a function f̂ :

Ẑ = f̂ (U, ε) , (8)

such that Ẑ is similar as possible as to the response Z, with
the same U ; i.e. DKL

(
PUZ

∣∣∣∣PUẐ) = 0.
In AdOSE, similar to AdOR, the regression network (R)

is pitted against the loss network: a KL-divergence estima-
tor (KL) that learns to match the joint distribution PUẐ to
distribution PUZ (see the bottom diagram of Figure 1). In-
spired by GAN (Goodfellow et al.(2014)), in AdOSE, the
noise nG is generated by a random Gaussian generator and
transformed to the noise ε through a one-hidden layer per-
ceptron RanTrans; i.e. ε = RT (nG). Then, regressors U
and generated noise ε are passed to the regression network
R, similar to AdOR; Ẑ = f̂ (U, ε; θR). Afterwards, pairs
(U,Z) and (U, Ẑ) are passed throughKL by a differentiable
transformation T , and the outputs are T (U,Z; θMI) and
T (U, Ẑ; θMI), respectively. Based on (2), the KL-distance
is estimated by L (R,KL) = EPUZ [T ]− log

(
EPUẐ

[
eT

])
,

and two networks play the following minimax game:

min
R

max
KL

L (R,KL) = EPUZ [T ]− log
(
EPUẐ

[
eT

])
. (9)

At equilibrium, the value of loss L (R,KL) is zero. Af-
ter training, instead of having a nonlinear mapping between
regressors and response, we have a nonlinear transformation
for each samples of U = u, that assigns a distribution for
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Figure 1: Block diagram of AdOR and AdOSE. a. AdOR structure: (U1, . . . , Um) are the input regressors, Ẑ is the predict,
and ε is the residual. The output loss L (R,MI) is the estimated mutual information between them. b. AdOSE structure: nG is
generated by Gaussian generator, ε is the exogenous noise, (U1, . . . , Um) and ε are fed as inputs to R. KL computes the output
twice: once using (U1, . . . , Um, Z), and once by (U1, . . . , Um, Ẑ). The output L (R,KL) is the KL-Divergence.

Z; i.e. Ẑ ∼ P (Z|U = u). Indeed, as the true value of nG
is unknown, we can not obtain single predict for each input
sample u; while, we can draw output samples by feeding
different values of nG. Since training AdOSE is more trick-
ier than AdOR, we provide some implementation details in
Section 5 to avoid divergence of the algorithm.

Algorithm 2 shows the training procedure of AdOSE.
In forward path, b Gaussian samples are drawn and fed to
RanTrans. The regression output is computed in line 3. As
MI in AdOR, KL evaluates T twice: once by using u(i)

and true responses z(i), and once by u(i) and predicted re-
sponses ẑ(i) (line 4). Mini-batch loss LB is then computed
using mean of true and estimated T . Similar to AdOR, in
backward path, kR and kKL control the training of two net-
works. Furthermore, they play the main rule in convergence
of the algorithm; if the loss is large, R has bad predicts and
kR should be increased, and if it is small, KL can not dis-
tinguish between true and predicted values and kKL should

be increased.

Applications in Causal Inference
AdOR and AdOSE can be used in causal models that as-
sume there is a structural model between child and par-
ents. For instance, consider the additive noise model (ANM)
between the cause variable C and the effect variable E:
E = f(C)+ε. In (Hoyer et al. 2009), it has been shown that
there exist no function g and noise ε̃ almost surely such that
C = g(E) + ε̃ and E and ε̃ are independent. Hence, we can
utilize AdOR to infer causal direction between two variables
X and Y . To do so, we regress each variable on the other
one and pick the direction with minimum loss L(R,MI).
Moreover, one can use AdOR as the class of functions for
TiMINO (Peters, Janzing, and Schölkopf(2013)) for infer-
ring causal direction in time series. At last, the causally con-
ditioned DI (Quinn, Kiyavash, and Coleman 2015) of each
child on each candidate parent can also be estimated by



regress the child twice, one on all variables, and the other
on all variables except the candidate parent. The difference
of two residuals’ entropy is DI from parent to child.

Algorithm 2: AdOSE
for number of iterations do

Forward path:

1. Generate b Gaussian samples {n(1)
G , . . . , n

(b)
G }

Feed them to RanTrans: ε(i) = RT (n
(i)
G )

2. Draw b minibatch examples{(
u(1), z(1)

)
, . . . ,

(
u(b), z(b)

)}
3. Evaluate regression output
ẑ(i) = f̂

(
ε(i), u(i); θR

)
; i = 1, . . . , b

4. Evaluate output of KL twice
T (i) = T

(
z(i), u(i); θKL

)
; i = 1, . . . , b

T
(i)
es = T

(
ẑ(i), u(i); θKL

)
; i = 1, . . . , b

5. Compute loss
LB (θR, θKL) =

1
b

∑b
i=1 T

(i) − log
(

1
b

∑b
i=1 e

T
(i)
es

)
Backward path:
for kR steps do

Update R and RanTrans by descending its
stochastic gradient∇θRLB

end
for kKL steps do

Update KL by ascending its stochastic gradient
∇θKLLB

end
end

5 Experiments
In this section, we first evaluate the performance of proposed
regression methods on synthetic data and compare with the
method in (Mooij et al. 2009) and some other nonlinear re-
gression methods. Then, we apply the proposed method to
find the causal direction in some real-world bilinear data
(Mooij et al. 2016).

Implementation Details
The main point in training both AdOR and AdOSE is that
the two networks R and MI (KL in AdOSE) should be
trained simultaneously. As discussed before, Adam opti-
mizer (Kingma and Ba 2014) is used, and all weights and
biases initialized using Xavier initializer (Glorot and Ben-
gio 2010). The number of layers, learning rate, and batch
size are chosen similar in both networks.

In AdOR, we use three hidden layers with tanh, sigmoid
and leaky−ReLU activation functions for R and three hid-
den layers with leaky−ReLU activation for MI . Note that
adding a bias term to f̂(U) in (6) does not change mutual
information, so bias term is removed from output layer of
R. Similarly, adding a constant term to T (ε, U ; θMI) does
not change the computed loss L(R,MI) in (7), and we omit

the bias term from output layer of MI . Instead, the max-
imum mini-batch value maxi=1,...,b{T (i), T

(i)
sh } is reduced

from whole T (i) and T (i)
sh in order to obtain a stable compu-

tation of loss.

The structure of AdOSE layers are designed similar
to AdOR. The noise nG is generated by normal Gaus-
sian distribution, and RanTrans has a hidden layer with
leaky−ReLU activation. The bias term is added to the out-
put layer of R, and biases in KL are similar to MI . Finding
the stable solution of AdOSE is more trickier than AdOR.
The optimizer might diverge in the first few iterations, be-
cause one of networksR orKL outstrips the other. To avoid
this, we adjust steps kR and kKL by looking at the value
of loss LB in each iteration in order to stabilize the training
procedure. A simple choice of steps has a linear feedback
form kR = ba + bLBc and kKL = ba − bLBc. We used
a = 30 and b = 10 in our simulations.

Toy Examples

In this part, AdOR and AdOSE are compared with four re-
gression methods: Support Vector Regression (Smola and
Schölkopf 2004), neural network with same structure as
AdOR with MSE loss minimization, HSIC regression pro-
posed by Mooij et al.(2009), and Gaussian Process regres-
sion (Williams and Rasmussen 1996) with RBF kernel. The
model has a simple form of Y = f(X) + ε. In each test,
300 samples are drawn from uniform distribution X ∼
U(−1, 1). The function f(.) is nonlinear and ε is gener-
ated from different non-Gaussian distributions. Note that for
AdOSE, the averaged Eε [Y |X = x] is plotted by feeding
5000 samples of nG at each X = x. Figure 2 shows the
output of different methods for the case of f(X) = X2 and
ε ∼ Exponential(1).

Comparison between methods is shown in Table 1 for dif-
ferent performance measures of Mean Squared Error (MSE),
Mean Absolute Error (MAE) between predictions and re-
sponses, and Integral Squared Error (ISE) between esti-
mated function and f(x). As can be seen, in each case,
AdOR has the worst MSE and MAE among the others; in
contrast, its performance is much better in terms of ISE mea-
sure. In fact, we expect that AdOR/AdOSE do not have bet-
ter performance in terms of MSE/MAE, compared to regres-
sion methods minimizing squared losses (or similar losses)
since the goal of such methods is actually to minimize MSE
while AdOR tries to minimize the mutual information be-
tween the residual and regressors. Moreover, it is not guar-
anteed that regression methods with square loss error esti-
mate the underlying function statistically efficiently in cases
other than Gaussian additive noise. In such cases, although
the squared loss is minimized, the result might be dependent
on the regressors. For instance, in Figure 2, in which the
additive noise has a exponential distribution, it can be seen
that AdOR finds the best approximation of the true func-
tion while the estimates given by NN-MSE and SVR are not
close enough to it.
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Figure 2: Example of different methods’ outputs. Y = X2 + ε and ε ∼ Exp(1).

Table 1: Comparison of Different methods.

Model f(X) X2 sin(πX) e2X sigmoid(5X)
Noise ε ∼ Exp(1) ε ∼ ChiSqr(3) ε ∼ Rayl(4) ε ∼ BioNom(20, 0.3)

SVR 8.320e-01 5.651e+00 6.320e+00 3.849e+00
HSIC-reg 8.419e-01 5.688e+00 6.386e+00 3.878e+00
NN-MSE 8.373e-01 5.548e+00 6.226e+00 3.707e+00

MSE GP 8.262e-01 5.586e+00 6.228e+00 3.846e+00
AdOSE 8.301e-01 7.658e+00 9.708e+00 5.112e+00
AdOR 9.299e-01 9.740e+00 1.209e+01 4.073e+00

SVR 6.945e-01 1.926e+00 2.031e+00 1.555e+00
HSIC-reg 7.049e-01 1.933e+00 2.051e+00 1.561e+00
NN-MSE 7.061e-01 1.909e+00 2.037e+00 1.531e+00

MAE GP 6.975e-01 1.918e+00 2.035e+00 1.559e+00
AdOSE 7.008e-01 2.071e+00 2.406e+00 1.527e+00
AdOR 7.426e-01 2.492e+00 2.768e+00 1.626e+00

SVR 1.160e-02 1.363e-01 2.197e-01 1.669e-02
HSIC-reg 2.666e-02 1.985e-01 2.551e-01 1.209e-01
NN-MSE 8.430e-03 2.634e-01 1.078e-01 2.866e-01

ISE GP 5.247e-03 1.422e-01 3.491e-02 2.059e-02
AdOSE 5.109e-03 6.633e-02 8.289e-02 1.554e-02
AdOR 1.734e-03 4.974e-02 1.908e-02 2.232e-03

Distribution Estimation with AdOSE

Now suppose a non-additive model Z = εU with U ∼
logNormal(1, 0.6) + 1 and ε ∼ Uniform(−1,+1). 1000
number of samples are drawn from this model, and AdOSE
is trained by these samples. Afterwards, 105 samples are
drawn from the learned model by feeding different noise
nG for each value of U = u. The conditional distribu-
tion P (Ẑ|U = u) is then estimated by naive binning for
each u in the valid range. We also trained the model pro-
posed by Sugiyama et al.(2010). True conditional distribu-

tion P (Z|U = u) is depicted versus two estimated distribu-
tions P (Ẑ|U = u) in Figure 3. As can be seen, the AdOSE
has a great capacity to model distributions even in the re-
gions with few samples.

Causal Direction Discovery in Real-World Datasets
Cause-effect (version 1.0) pairs (Mooij et al. 2016) is
a collection of 108 real-world datasets, each with different
sample size from 94 to 16382, where we considered 94 num-
ber of these datasets. Each dataset consists of samples of two



Figure 3: Left: True conditional distribution P (Z|U). Center: Estimated conditional distribution P (Ẑ|U) by AdOSE. Right:
Estimated conditional distribution P (Ẑ|U) by (Sugiyama et al. 2010).

Figure 4: Results of proposed methods on real datasets. Top row: AdOR Bottom row: AdOSE

statistically dependent random variables X and Y , where
one variable is known to causally influence the other. The
task is to infer which variable is the cause and which one is
the effect.

AdOR is trained with each dataset twice: once when
Y is response and X is regressor and once in the re-
verse direction. The direction with lower mutual informa-
tion is considered as the true direction. Experimental re-
sults show that we can infer the true direction for 66/94
(70.2%) fraction of datasets. We defined the score Si =
MI(εY→X , Y )−MI(εX→Y , X) for each dataset i. AdOR
has AUPR (Area Under Precision-Recall Curve) of 78.68
based on the scores Si and its performance is similar to the
best AUPR achieved by the previous methods considered in
(Goudet et al. 2017). In the same manner, AdOSE is trained
twice in forward and reverse directions. The estimated func-
tion f̂(x) = Eε [Y |X = x] is computed by feeding 5000
samples of nG at each X = x. AdOSE can infer the true di-
rection for 63/94 (67.0%) fraction of datasets with AUPR of
74.32 based on the scores Si. Figure 4 shows the estimated
functions of AdOR and AdOSE on two pairs pair0081

and pair0100. The results for other datasets are given in
the supplementary material.

6 Conclusions
We introduced two novel regression methods: AdOR which
minimizes mutual information between the residual and the
regressors, and AdOSE which produce response that mimics
the true output by reducing distance between joint distribu-
tions. Conducted with details, we implemented our methods
through adversarial neural networks and showed their great
potential for inferring causal influences in models with un-
known noise distributions. As a future work, one can extend
these methods to the cases with categorical variables or uti-
lize them in other causal learning problems such as learning
causal structures.
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