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Abstract. Background: Longitudinal neuroimaging provides spatiotemporal brain data (STBD) measurement that 28 

can be utilised to understand dynamic changes in brain structure and/or function underpinning cognitive activities. 29 
Making sense of such highly interactive information is challenging, given that the features manifest intricate 30 
temporal, causal relations between the spatially distributed neural sources in the brain. Methods: The current paper 31 
argues for the advancement of deep learning algorithms in brain-inspired spiking neural networks (SNN), capable 32 
of modelling structural data across time (longitudinal measurement) and space (anatomical components). The paper 33 
proposes a methodology and a computational architecture based on SNN for building personalised predictive 34 
models from longitudinal brain data to accurately detect, understand, and predict the dynamics of an individual’s 35 
functional brain state. The methodology includes finding clusters of similar data to each individual, data 36 
interpolation, deep learning in a 3-dimensional brain-template structured SNN model, classification and prediction 37 
of individual outcome, visualisation of structural brain changes related to the predicted outcomes, interpretation of 38 
results, and individual and group predictive marker discovery. Results: To demonstrate the functionality of the 39 
proposed methodology, the paper presents experimental results on a longitudinal magnetic resonance imaging 40 
(MRI) dataset derived from 175 older adults of the internationally recognised community-based cohort Sydney 41 
Memory and Ageing Study (MAS) spanning 6 years of follow-up. Significance: The models were able to accurately 42 
classify and predict 2 years ahead of cognitive decline, such as mild cognitive impairment (MCI) and dementia with 43 
95% and 91% accuracy, respectively. The proposed methodology also offers a 3-dimensional visualisation of the 44 
MRI models reflecting the dynamic patterns of regional changes in white matter hyperintensity (WMH) and brain 45 
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volume over 6 years. Conclusion: The method is efficient for personalised predictive modelling on a wide range of 46 
neuroimaging longitudinal data, including also demographic, genetic, and clinical data. As a case study, it resulted 47 
in finding predictive markers for MCI and dementia as dynamic brain patterns using MRI data.   48 

Keywords: Personalised modelling; spiking neural networks; longitudinal MRI data; dementia; classification; 49 
prediction.  50 

1. Introduction 51 

The paper presents a new method for the creation of predictive, personalised spiking neural network models (PSNN) 52 
using longitudinal neuroimaging data that is a generic methodology and can be applied to other clinical and personal 53 
datasets. The method is applied on predicting dementia as one of the biggest world health problems of the 21st 54 
century.   55 

The burden of dementia is rapidly rising worldwide [1, 2] with the overall cost increasing from US$ 279.6 billion 56 
in 2000 to US$ 948 billion in 2016, corresponding to an annual growth rate of 16% [3, 4]. More subtle clinical and 57 
cognitive changes take place during a period of mild cognitive impairment (MCI), which is highly prevalent in 58 
elderly people (>65 years). However, disparities in the case ascertainment [5] and diagnostic criteria lead to 59 
substantial variation in prevalence and incidence estimations of MCI across populations with rates ranging between 60 
10–42% reported [3, 4]. People with MCI are 6—12 times more likely to progress to dementia compared to age-61 
matched cognitively healthy individuals, at a rate of 15—26% during the 1—2-year follow-up and reaching 50—62 
83% during the 3-year follow-up [6, 7]. Approximately 50% of people with MCI spontaneously revert to normal 63 
cognitive functioning, but those who revert to no-MCI conditions, still have a greater risk of ultimate transition to 64 
dementia [8]. Understanding dynamic brain changes associated with shifts in cognitive function underpinning 65 
progression to dementia is critical to addressing the increasing burden of the illness [2], [9]. Considerable judgment 66 
is required in making the distinction between healthy ageing people and those with different forms of MCI that 67 
would or would not lead to dementia. Although there is neuroimaging evidence for interactions of brain asymmetry 68 
in ageing and dementia [10-13], accurate clinical and neuroimaging prediction of cognitively healthy ageing, MCI 69 
and dementia is currently limited. 70 

The current paper introduces a novel, personalised predictive method and a computational system for individualised 71 
classification and prediction of brain states in a longitudinal neuroimaging ageing cohort. The study contributes to 72 
the ‘precision medicine’ concept [14]. The proposed system is built upon a brain-inspired spiking neural network 73 
(SNN) architecture and applied for early prediction of cognitively healthy ageing, MCI, and dementia. The relative 74 
risk of development from MCI to dementia might be determined based on structural brain data [15-17], including 75 
regional brain volume and white matter hyperintensity (WMH), which progressively decline from healthy ageing 76 
to MCI and dementia [9], [18-21]. Nevertheless, whilst several biomarkers are associated with reduced cognitive 77 
ability and risk of dementia [22-25], substantial discernment is still necessary for distinguishing various potential 78 
trajectories of MCI [26] and accurate prediction of clinical outcome remains limited.  79 

Improvement in the accuracy of classification and prediction of cognitive outcomes during human ageing using 80 
brain data is warranted and may be possible using advanced machine learning (ML) methods capable of making 81 
sense of integrated spatial and temporal components of brain data. Artificial Neural Network (ANNs) are popular 82 
ML models that are based on the information processing mechanism of brain neurons. ANNs are a set of 83 
interconnected computational units representing neurons. The networks are computational models that can 84 
be trained with input data to generate useful outputs (predictions). Recently, deep learning ANN methods have been 85 
effectively applied to a wide range of Magnetic Resonance Imaging (MRI) studies [27], including spatiotemporal 86 
denoising of contrast-enhanced MRI [28], [29] artifact detection [30], resolution enhancement [31], and image 87 
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segmentation [32]. Deep learning Convolutional Neural Networks (CNN) [33] are commonly used for MRI 88 
segmentation, such as ischemic lesion segmentation [34] and brain tumour segmentation [35], [36]. Deep learning 89 
approaches were also used for MRI feature extraction and to identify different stages of Alzheimer's disease [37], 90 
classification of MCI [38], and early diagnosis of Alzheimer’s disease (AD) [39]. 91 

Although deep learning techniques are inspired by some properties observed in brain research [40, 41], the 92 
mathematical modelling of a perceptron-type ANN computes the outputs with respect to the current time of input 93 
vectors. However, activation of a brain neuron is influenced by the dynamics of the membrane potential over time. 94 
When the membrane potential surpasses a certain capacity, it generates an action potential (signal, spike) that 95 
propagates to other neurons. Therefore, the latest generation of ANNs, called Spiking Neural Networks (SNN) [42] 96 
can facilitate the development of brain-inspired computational models, in which a neuron’s representation 97 
resembles the principles of an action potential to incorporate previous accumulated inputs. Moreover, the neurons 98 
can evolve their connectivity through learning from data, again based on brain-inspired learning principles [43], 99 
[44], [45].  100 

SNNs are computational models that consist of spiking neurons as processing elements, connections between them, 101 
and biologically plausible learning algorithms [46], [47], [48]. Spike Timing Dependent Plasticity (STDP) [49],[50] 102 
is a well-known paradigm for learning in SNNs and is the main mechanism for information storage in auto-103 
associative networks [51], [52], [53]. It acts in capturing spatiotemporal patterns of network activity that could 104 
efficiently contribute to temporal processing. STDP learning adjusts the neural synaptic weights with respect to the 105 
timing of spikes in pre- and postsynaptic neurons. Hitherto, STDP has received substantial attention in experimental 106 
and computational neuroscience [54],[55],[56],[57]. With STDP, changes in synaptic strength can be modelled to 107 
resemble the information processing in nervous systems. Such changes in synaptic strengths are similar to Long-108 
Term Potentiation (LTP) and Long-Term Depression (LTD) [58].  109 

The introduced SNN architecture in [59] supported an efficient learning, modelling, and classifying of 110 
spatiotemporal brain data (STBD). In [60] MRI-structured SNN was developed for a single individual to predict 111 
electroencephalographic (EEG) signals. While brain-inspired SNN have been used for a wide range of STBD 112 
modelling [61], there has not been a method so far for predictive personalised modelling of longitudinal MRI data 113 
features of a whole cohort of subjects.  114 

The current paper presents a generic methodology based on brain-template structured SNN architecture and 115 
proposes a new personalised predictive system for accurate detection and prediction of cognitive states (e.g., 116 
healthy, MCI, and dementia) from longitudinal MRI data features. The proposed personalised modelling offers an 117 
individualised computational model tailored for a specific person and trained using MRI data from similar patients 118 
for pattern recognition and knowledge discovery at an individual level. Such models have the potential to produce 119 
a more precise prediction of outcome compared to global modelling systems which are trained on all patients’ data.  120 

The MRI data were collected in the context of a prospective community-based cohort study, the Sydney Memory 121 
and Ageing Study (MAS study), from dementia-free participants at baseline, aged between 70 and 90 years (some 122 
of them moved to dementia and MCI states after 6 years). The MRI data were collected at baseline (T1), 2-year 123 
follow-up (T2), and 6-year follow-up (T3). The approaches of the MAS cohort study have been previously described 124 
elsewhere [62]. Briefly, all participants were assessed in order to diagnose different subtypes of MCI and dementia, 125 
normal cognitive functioning or reversion from MCI to normative cognitive condition according to international 126 
consensus criteria [8, 62, 63]. Those who met the criteria for dementia at the baseline assessment, were not included 127 
in the study. 128 
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2. Methods and Materials 129 

This section describes the MRI data and features that we used in this study as well as the proposed methods for 130 
building personalised modelling for prediction of an individual cognitive outcome.   131 

2.1 Longitudinal MRI Data Description  132 

The MRI data were collected over 6 years in the MAS study in Sydney (Australia) [8, 62]. Participants (n=554) 133 
without dementia at the baseline, had been recruited and their structural MRI data were collected at three 134 
measurements spanning a 6-year period (T1 as a baseline measurement, T2 at the 2-year follow-up, T3 at the 6-year 135 
follow-up). This generated a longitudinal MRI measurement. All participants were assessed at the baseline (T1) and 136 
two follow-ups (T2 and T3) to diagnose their cognitive states (MCI, dementia, and normal cognitive functioning) 137 
according to international consensus criteria [62, 63]. Participants meeting the international criteria for dementia at 138 
the baseline were not included in the study. A subsample of n=175 (mean age = 83, sd= 4.1, 77 males (44%)) were 139 
selected because they had data recorded across all assessment points with scores for 31 common MRI features, 140 
including WMH and structural volumes (FSL FIRST)1. 141 

Table 1 represents the number of individuals with different cognitive outcomes during the measurement period of 142 
the MRI features. It also reports the transition pattern of 14 individuals with dementia (diagnosed at T3) from non-143 
dementia states during the 6-year period of the MAS study. Amongst those 14 participants diagnosed with dementia 144 
at T3, only two of them directly developed from healthy condition while others transited to MCI first and then to 145 
dementia (Table 1-b). The list of MRI features is provided in Supplementary Table 1. 146 

Further information about the MRI data measurement, the extracted MRI features and pre-processing techniques is 147 
presented as Supplementary Section I.   148 

Table 1.  (a) The number of individuals with different cognitive outcomes diagnoses (healthy, MCI, and dementia) from T1 to 149 
T3. We used 175 MRI samples (each sample relates to a participant) recorded at 3-time points abbreviated by T1 (baseline), 150 
T2 (year 2), T3 (year 6). (b) The diagnosis labels across T1, T2, and T3 of 14 individuals who were diagnosed with dementia 151 
at T3. Healthy, MCI and dementia labels are respectively denoted by digit codes 0, 1, and 2. 152 

 

 

 

 

(a) 

Diagnosis label Mean age (Standard 

deviation (SD) at T1 in 

years 

T 1 Interval T 2 Interval T 3 

Healthy 77.0 (4.1) 113  

2 years 

 

108  

4 years 

94 

MCI 78.3 (4.8) 62 64 67 

Dementia 80.3 (4.8) 0 3 14 

Total individuals   175  175  175 
  

 

 

(b) 

Six-year diagnosis labels of 14 dementia individuals across T1, T2, and T3 

Follow ups 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

T1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 

T2 2 1 1 2 1 1 1 0 1 1 1 1 1 2 

T3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

 153 

 
1 FSL FIRST: FSL is a comprehensive library of analysis tools for MRI brain imaging data, and FIRST is a model-based 

segmentation/registration tool. 
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2.2 The Proposed Methodology for Personalised Modelling on Longitudinal Data using SNN, 154 

Applied to MRI Features for Prediction of Different Cognitive Outcomes  155 

This section proposes a methodology and a computational framework (shown in Fig. 1), called personalised 156 
modelling spiking neural network (PSNN), for predictive modelling on longitudinal data that consists of the 157 
following procedures: 158 

1. Selecting nearest neighbouring samples to an individual’s MRI features/variables. 159 

2. MRI feature/variable interpolation.  160 

3. Encoding the temporal sequences of the measured MRI variables into spike trains by:  161 

o Interpolating the data between points of measurements, so that more data points are generated, 162 

forming time series. 163 

o Encoding the obtained time series into spike trains using spike encoding methods. 164 

4. For each individual 𝑥, a PSNN model learns from the input spikes of the neighbouring samples to individual 165 

𝑖. The learning algorithm is the unsupervised STDP rule [64]. 166 

5. Training an output classifier to learn the relation between the PSNN connectivity patterns and the MRI data 167 

class labels (healthy, MCI, dementia), and model visualisation. 168 

6. Testing the PSNN classifier on the individual 𝑥 data. 169 

7. PSNN model parameter optimisation. 170 

The details of the proposed personalised modelling methodology are explained as follows: 171 

2.3.1 Selecting Personalised Nearest Neighbouring Samples 172 

 For building a personalised model of an individual 𝑥, a group of similar subjects’ MRI feature samples to 𝑥 at T1 173 
is selected. Then, the longitudinal MRI data (reordered at time points T1 to T3) of these similar subjects are selected 174 
as the training dataset. The class label information of these samples is defined with respect to the diagnostic labels 175 
at the last measured time point (T3). 176 

The selection of nearest neighbouring samples is performed using WWKNN algorithm [65], where the first W 177 
denotes a normalised Euclidean distance between an individual MRI data and other individuals’ data at baseline 178 
(T1). The second W represents a ranking (weighting) of the MRI features with respect to their discriminative power 179 
across samples belonging to different classes. Here, the ranking W is measured by using the Signal-to-Noise Ratio 180 
(SNR) method that computes a variable (feature) importance to discriminate samples that belong to different classes. 181 
In a C-class problem, where 𝐶 = {1,2, … , 𝑛}, the SNR value of each feature 𝑓 is denoted by 𝑅𝑓 and computed as 182 

follows: 183 

𝑅𝑓 =
∑

𝑎𝑏𝑠(µ𝑖𝑓−µ{𝐶\𝑖}𝑓)

𝜎𝑖𝑓+𝜎{𝐶\𝑖}𝑓

𝑛
𝑖=1

𝑛
,               𝑓 = 1, … , 𝐹                                           (1) 184 

Here,  𝑖 indicates one class of samples that is assumed as signal and {𝐶\𝑖} refers to the other classes (assumed as 185 

noise). The µ𝑖𝑣 and 𝜎𝑖𝑣 refer to the mean-value and standard deviation of a feature 𝑓 within the samples in class 𝑖. 186 

The computed 𝑅𝑓 is further utilised to modify the distance 𝐷𝑥,𝑦 between every two individuals’ MRI samples 𝑥  and 187 

𝑦 as follows: 188 
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𝐷𝑥,𝑦 =
√∑  𝑅𝑓(𝑥𝑓−𝑦𝑓)2𝐹

𝑓=1

∑ 𝑅𝑓
                                                                       (2) 189 

Here, 𝐹 indicates the number of features in data (31), and 𝑥𝑓 and 𝑦𝑓 refer to the values of fth feature in sample 𝑥 and 190 

𝑦 correspondingly. With respect to this computed distance, when an MRI sample 𝑥 enters to the personalised 191 

modelling system, all the other MRI samples are descending sorted with respect to their distances to 𝑥. Then, the 192 

top k similar samples to 𝑥 were selected as KNN samples. In our experiments, since the dataset has a small number 193 
of samples in the dementia class (only 14 individuals), we suggested to set a limit to select a maximum number of 194 
14 samples from each group. This ensures that the generated datasets are balanced across the groups. We assigned 195 
different values to K, ranging from 5 to 14 and selected different MRI samples for training the SNN models. For 196 
all the 175 individuals, k=14 resulted in the best accuracy of outcome classification and prediction.    197 

2.3.2 Imputation and Interpolation of Longitudinal Data 198 

We used an imputation technique to deal with missing MRI feature values. A subset of the most similar subjects to 199 
the one which has missing values was selected by KNN algorithm with respect to the Euclidean distance measure. 200 
Then the mean value of the distances was imputed to the missing one. Further information about the imputation 201 
technique is provided in Section II and Fig 1 of the Supplementary.  202 

To capture the temporal dynamic patterns in the MRI data over the 6-year period, still preserving the trend of   203 
changes in the MRI measured data, we simulated one data point per month, plus the data points in T1, T2 and T3, 204 
resulting in 75-time points in the 6-year period of data collection in the MAS study. The interpolated temporal 205 
patterns were then encoded into sequences of binary events, called spikes, to capture significant upward and 206 
downward changes in the MRI time series. Afterwards, we spatially mapped the MRI features into a 3-dimensional 207 
reservoir of artificial spiking neurons, structured according to a brain template. The SNN model learns the spike 208 
encoded spatiotemporal MRI data using a biologically plausible learning algorithm which resembles the information 209 
proceeding mechanism in the brain. Using this, the model captures the spatiotemporal interactions between the MRI 210 
features over time, resulting in the identification of markers of dementia that are used to predict the cognitive 211 
outcomes a few years ahead.  212 

2.3.3 Time Series MRI Feature Encoding to Spikes 213 

 Encoding procedure was suggested in several studies for transforming temporal data to certain events in time and 214 
provide significant information of dynamic changes in data for computational modelling [66],[67],[68],[69]. In this 215 
study, the MRI time series are encoded into spike trains which represent upward or downward changes in the 216 
intensity of the MRI features over time. A spike dependant time encoding rule is simulated from neural encoding 217 
procedure that relates to the transition of neural signals to electrical pulses, called action potentials. For the encoding 218 
method in this research, we employed a threshold-dependant approach to generate spikes which preserve the MRI 219 
dynamic changes over time. For a given MRI time series 𝑀(𝑡), where 𝑡 = 1,2, … , 𝑛, the variation of feature value 220 

over time is denoted by 𝐵(𝑡), with a baseline 𝐵(1)  =  𝑀(1). At the next time point 𝑡, if the feature value is higher 221 

than 𝐵(𝑡 − 1) plus a threshold ß,  then a positive spike is generated at 𝑡 and 𝐵(𝑡) will be replaced by 𝐵(𝑡 − 1).  222 
The encoding procedure is defined as follow: 223 

𝑠𝑝𝑖𝑘𝑒(𝑡) = {
1 𝑎𝑛𝑑 𝐵(𝑡)  ←  𝐵(𝑡 − 1) +  ß           𝑖𝑓 𝑀(𝑡) ≥ 𝐵(𝑡 − 1) + ß

−1 𝑎𝑛𝑑 𝐵(𝑡) ←  𝐵(𝑡 − 1) −  ß      𝑖𝑓 𝑀(𝑡) < 𝐵(𝑡 − 1) − ß
0                                                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                           (3) 224 
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To calculate threshold ß, the whole MRI sample length is considered. Here, the threshold ß is a self-adaptive 225 

bidirectional thresholding method, applied to all features. For an input time series 𝑀(𝑡), we calculate the 226 

mean m and the standard deviation s of the gradient 𝑑𝑀/𝑑𝑡 , then the threshold is set to 𝑚 + 𝛼𝑠 , where α is a 227 
parameter controlling the spiking rate (the intensity of the generated spikes) after encoding. In our experiment, we 228 
set α = 0.5 which resulted in an optimal spike rate for reconstruction of MRI time series from spike trains. The 229 
encoding algorithm is provided in Supplementary Table 3, while Supplementary Fig. 2 demonstrates an example of 230 
encoding MRI time series to spike trains from Left Thalamus feature across the groups (healthy, MCI and dementia). 231 
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 232 

 233 

Figure 1. A diagram of the generic personalised modelling approach for longitudinal data using SNN illustrated here on the MRI data of 6 years for the classification 234 
and prediction of individuals cognitive outcomes. (a) the cohort 6-year study includes three groups of individuals (healthy, MCI diagnosis). (b) The MRI data were 235 
collected at baseline (T1), 2-year follow-up (T2), and 6-year follow-up (T3). (c) the MRI measurements were interpolated to time-series to capture the patterns of 236 
changes over 6 years for each individual. (d) for a new individual 𝑥 entering to the personalised modelling system, a group of nearest neighbouring individuals to 237 
this person is selected using our proposed clustering technique applied to MRI data at T1. (e) the MRI time-series of the nearest neighbouring individuals to 𝑖 are 238 
selected as the training dataset, then encoded to spikes and utilised for training a brain-inspired PSNN model. (g) the PSNN model is then tested using the MRI 239 
time-series (T1 to T3 data) of person 𝑥 for classifying this individual to one of the diagnosis labels. The trained PSNN models is also tested using smaller length 240 
of MRI time-series (2 years or 4 years) for prediction of outcomes in T3. This procedure is performed for all individuals and the average accuracy is reported.241 



 Submitted to Neural Network Journal  
9 

 

2.3.4 Spiking Neural Networks Architecture for Personalised Modelling of MRI Features  242 

The proposed personalised modelling is built upon SNN architecture. SNNs were introduced for the first time in 243 
computational neuroscience for modelling the behaviour of biological neurons. Biological neurons use action 244 
potential (sudden pulses in time) to compute and transmit information. In SNNs the principle of an action potential 245 
is computationally replicated by binary events (-1 or 1, called spikes) with precise timing as means of 246 
communication. They are biologically plausible neural models comprised of spiking neurons, connections between 247 
them (synapses), and learning algorithms [46], [47],[48]. Computational model of a spiking neuron allows the 248 
neurons potential to change as a function of time and input temporal spikes. A spiking neuron emits output spike 249 
at the time t in which its internal state exceeds a threshold. The generated spikes are propagated over time through 250 
the SNN and lead to the adjustment of the connections, allowing the model to learn and memorise. A synaptic 251 
connection can be an excitation that rises the neuron’s potential once receiving input, or an inhibitory that reduces 252 
the neuron’s potential [70]. This resembles the biological excitatory and inhibitory neurotransmitters that 253 
respectively increase or suppress the postsynaptic neuron potential towards firing. Depending on the timing of 254 
spikes between a pair of pre- and postsynaptic neurons, the connection weights between them can be strengthen or 255 
weaken. Therefore, the model learns the causal relationship between the connected neurons by adapting the 256 
connections. These SNNs manifest biologically plausible properties (e.g., action potential, excitatory postsynaptic 257 
potential, inhibitory postsynaptic potential [71]).   258 

The introduction of brain-inspired SNN architectures [60, 61, 72] makes it possible for the encoded spike sequences 259 
of the selected MRI feature data to be transferred into a 3-dimensional model, which topologically preserves the 260 
spatial information of the MRI features. In order to initialise the connections in the PSNN model, the small-world 261 
(SW) connectivity rule is applied [73],[74]. In this rule, every neuron is randomly connected to its nearby neurons 262 
within a reduce (fixed to 2 neurons away). The connections are weighted with small random values, so that on 263 
average 80% of the them are positive values [0-1] while 20% of them are negative [-1-0] which are normally 264 
distributed all over the network [75].  In this study, mapping and initialisation of connections are set the same for 265 
all experiments. The mapped PSNN model is then trained by the temporal information of the input spike sequences. 266 
When the training procedure with the selected KNN samples of MRI data is completed, the time series of a person 267 
𝑥 data (excluded from the training) is used to test the model. The trained PSNN model is a personalised model of 268 

person 𝑥 and can be used as an individualised profile to investigate the relationships between a person’s MRI 269 
features over 6 years in relation to a predicted outcome.    270 

The neurons in a PSNN model can be developed according to various computation models including Integrated and 271 
Fire model [76], Leaky Integrated and Fire model (LIF) [77, 78], or Izhikevich model [71]. In the current study, we 272 
used LIF for modelling the neurons in PSNN architecture. In the LIF model after a neuron has spiked, its membrane 273 
potential will not start increasing with next incoming spikes before a refractory period is over.  Between the input 274 
spikes, the neuron’s potential reduces by a leak-parameter (illustrated in Fig. 2).  275 
 276 

 277 

Figure 2. The Leaky Integrated and Fire (LIF) model of neuron shows that when an input spike (shown in a) arrives in a neuron 278 
at time 𝑡, the neuron’s potential voltage 𝑣(𝑡) (shown in b) increases towards the firing threshold, while decreases (leaks) 279 
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between sequential spikes. If the potential reaches a certain threshold (shown by a green horizontal line), then the neuron 280 
produces an output spike in time 𝑡 (shown in c) and its potential reset to initial value [79].  281 

2.3.5 Unsupervised Learning in SNN Models with the Encoded Longitudinal MRI Feature Data into Spike 282 

Sequences 283 

The learning process in this methodology has two phases (unsupervised and supervised learning). Unsupervised 284 
learning is for adjusting the initial connection weights (inhibitory and excitatory connections) in the PSNN model 285 
while the model is learning from the streaming input MRI feature data encoded into spikes. For this learning process, 286 
we used the STDP rule [64] which is a biologically plausible unsupervised learning method. The STDP adjusts a 287 
synaptic strength regarding the time relation between the presynaptic and postsynaptic action potential occurrences 288 
(pre and post spikes) as depicted in Fig. 3.  289 

STDP rule suggests that if two neurons have causal relationship, then their connection weight should be increased, 290 
and this occurs when the presynaptic neuron fires just before the postsynaptic neuron. The STDP learning rule is 291 
defined using the following relation: 292 

∆𝑤 = {
  𝐴+ exp (

∆𝑡

𝜏+
)                  𝑖𝑓 ∆𝑡 ≥ 0 

−𝐴− exp (−
∆𝑡

𝜏−
)             𝑖𝑓 ∆𝑡 < 0

                                                     (4) 293 

where ∆𝑤 defines the amount of change in the connection weight between pre and post neuron with respect to their 294 

spiking time interval ∆𝑡 = 𝑡𝑝𝑟𝑒 − 𝑡𝑝𝑜𝑠𝑡. The parameters A+ and A- define the highest value to modify the connection 295 

(when ∆𝑡 ≈ 0). The parameters 𝜏+ and 𝜏− denote the ranges of pre-to-post-synaptic inter spike intervals over which 296 

the synaptic strengthening and weakening occurs. Fig. 3 plots the changes in synaptic weight by ∆𝑤 as a function 297 
of postsynaptic spikes in time. STDP allows the SNN models to learn from data with respect to exact timing of 298 
spikes, therefore, acting as an efficient learning rule that generates optimal information follow in the networks 299 
[49],[80]. 300 

2.3.6 Supervised Learning in the SNN Models with Labelled Longitudinal MRI Feature Data 301 

 When the unsupervised learning is accomplished, we performed supervised learning using dynamic evolving SNN 302 
(deSNN) [81] method to learn the association between the training MRI samples and the class label information 303 
(healthy, MCI, dementia). For every training MRI sample, one neuron was created on the output layer and linked 304 
to all the neurons in the already trained SNN model via excitatory connection. The training samples that were used 305 
for unsupervised STDP learning are being passed again to the SNN for supervised training that modifies the output 306 
layer connections. In this process, when entering the training samples to the model one by one, the temporal spiking 307 
activities in the SNN model, generated by each sample, will be used as input spikes to train the corresponding output 308 
neuron’s connections for recognising this sample. The output connections are first created with weights of zeros 309 
and then initialised with respect to the Rank-Order (RO) rule [82]. This rule assigns the highest value to the first 310 
arriving spike from a presynaptic 𝑖 in the SNN reservoir a postsynaptic neuron 𝑗 in the output layer when modifying 311 

the connection weights 𝑊𝑖,𝑗  between neurons 𝑖 and 𝑗. This is defined as follows:  312 

𝑊𝑖,𝑗= 𝑚𝑜𝑑𝑜𝑟𝑑𝑒𝑟(𝑖,𝑗)                                                                               (5) 313 

Where mod is a modulation factor within [0, 1] and 𝑜𝑟𝑑𝑒𝑟 (𝑖, 𝑗) is the time order (rank) of the arrival of the first 314 

spike from the presynaptic neurons 𝑖  to the postsynaptic j and the rank is calculated across all presynaptic neurons 315 

connected to j. The range for 𝑖 is from 1 to number of neurons in SNN and the range for 𝑗 is from 1 to the number 316 

of training samples as neurons on the deSNN layer. 317 
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After the initialisation of the output connections with respect to the first arriving spikes using RO rule, then they 318 
will be further modified using a small drift parameter to take into account the occurrence of the following new 319 
spikes at postsynaptic neuron j at time t. When there is no spike to j at time t, then the corresponding connection 320 
weight decreases by the drift parameter, otherwise, it increases. After applying the deSNN supervised learning 321 
phase, the output connection weights are fixed. Next, in the validation phase, a new MRI sample, which is unknown 322 
to the model, is used for testing. For this sample, an output testing neuron is generated and connected to the neurons 323 
from the SNN reservoir. Then, these output connections will be adjusted while propagating the spike trains of this 324 
MRI sample to the model. When the output connections are established, this neuron will be classified by KNN 325 
algorithm that computes the distance between this newly formed testing neuron connections and the rest of the 326 
output neurons connections. The algorithm then votes on a class label of which the new output neuron is similar to 327 
the majority of the output neurons in the KNN set labelled with the same class. This process is performed for all 328 
the testing samples by building different personalised SNN models for testing the outputs for the samples and for 329 
classifying them.  330 

 331 

Figure 3. STDP rule adjusts the synaptic weight by ∆𝑤 value depending on the time relation between the presynaptic and 332 
postsynaptic spikes occurrence. (a) If presynaptic neuron (Pre) fires at time 𝑡1 just before the postsynaptic neuron (Post) fires 333 
at 𝑡2, then ∆𝑡 = 𝑡2 − 𝑡1 > 0 indicates a causal relationship that leads to increase the synaptic weight by a positive ∆𝑤 value if 334 
the Post spike is within 𝜏+ time interval. On the other hand, ∆𝑡 < 0 leads to decrease the synaptic weight by −∆𝑤 value. (b) 335 
the changes of synaptic weight ∆𝑤 as a function postsynaptic spikes in time. The spike of presynaptic or postsynaptic neurons 336 
are denoted by the shorthand notations Pre and Post.   337 

2.3.7 SNN Models Parameter Optimisation 338 

The SNN models’ parameters are optimised using a grid-search technique to reduce the classification and prediction 339 
outcome error. The optimised parameters are: SNN learning rate and the classifier parameters (mod and drift). In 340 
grid-search technique, each selected parameter was searched within a range specified by the minimum and 341 
maximum value (SNN learning rate (interval [0.001-0.03]), modulation factor mod (interval [0.4-0.95]) and drift 342 
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(interval [0.001-0.3]), through several iterations related to the number of steps for moving from minimum to 343 
maximum. We assigned 10 steps between the minimum and maximum values of each parameter range. Therefore, 344 
for every individual 𝑥, 1000 iterations of training (using all MRI samples except the holdout sample i) and testing 345 
(using the single holdout sample i) were performed with a different combination of these three parameters. For 346 
every PSNN model, the parameter values that resulted in the best accuracy in most of these 1000 iterations, were 347 
selected as the optimal parameters.  348 

The proposed methodology here is based on SNNs as powerful models for modelling complex spatiotemporal data 349 
due to their speed, efficiency, real-time action, and biological fidelity [83],[42],[84]. In this study, we used 350 
computational SNN models with biologically plausible STDP learning algorithm for mapping, learning, visualising, 351 
classification, and prediction of cognitive outcomes (healthy, MCI, dementia) using longitudinal MRI data. The 352 
learning process included both unsupervised (STDP rule) and supervised learning (deSNN algorithm). The 353 
hyperparameters of the models were optimised using a grid-search approach. The SNN models with STDP learning 354 
transpired as a potential means to understand time, space, and frequency of complex spatiotemporal brain data. The 355 
main advantages of using brain-inspired SNN models is to reveal patterns of spatiotemporal interactions of input 356 
variables to suggest possible markers of dementia-related diseases. (3) There are powerful neuromorphic hardware 357 
systems of thousands and millions of neurons working in parallel, that can speed up the computation in a real-time 358 
for real-world applications. An example is SpiNNaker which is used in the neuromorphic platform for the Human 359 
Brain Project [85],[86]. (4) Predictive modelling of spatiotemporal brain data using SNNs and their biologically 360 
plausible spike-dependant learning algorithms has shown greater prediction accuracy than traditional ML methods.  361 

3. Results 362 

Fig. 4 illustrates the main phases of the proposed methodology applied to the longitudinal MRI brain data. It can be 363 
seen that the MRI data of MAS cohort were mapped into a 3D brain-template SNN model that topologically 364 
preserves the spatial information of the brain regions while learning from the MRI dynamic changes over time. The 365 
spatial mapping in SNN model is based on the Talairach brain atlas [87], which is one of the most frequently 366 
employed systems for exhibiting coordinates in neuroimaging studies and was implemented in both BrainMap [88] 367 

and Talairach Daemon [89]. The current study used the 3D anatomical Talairach atlas coordinates (𝑥, 𝑦, 𝑧) with 368 

1471 neurons defined according to the stereotactic system and MRI-Electroencephalogram sensors [90] with every 369 
computational neuron mapping approximately 1-mm3 area of the brain. The applied Talairach template includes 370 
anatomical regions classified by lobe, hemisphere, tissue (i.e. grey/white matter) and Brodmann areas [91]. Using 371 
this spatial information, the MRI features were mapped into input neurons of a Talairach structured 3D SNN with 372 
respect to their corresponding anatomical positions (regions of interest in the brain) associated with Talairach 373 
regions. Then, the SNN model was trained using MRI time series (input data) to capture spatiotemporal interactions 374 
between MRI features over time related to individualised outcomes. Therefore, the spiking activities of a certain 375 
cluster of neurons can be associated with the activities of a corresponding anatomical region in the human brain.    376 

The trained brain-inspired SNN models capture the spatiotemporal relationships in the data for the detection and 377 
prediction of cognitive states (healthy, MCI, dementia). The pipeline procedure includes the following steps: 378 

1. MRI data interpolation to time series. This is to capture the trend of changes in MRI across different 379 

individuals in the 6-year period.  380 

2. Personalised modelling for classification of individual cognitive outcome using MRI data across 6-381 

years, for potential marker discovery of MRI changes and a better understanding of the brain dynamics 382 

related to the progression of MCI and dementia. 383 
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3. Personalised modelling for early prediction (2 and 4 years earlier) of individual cognitive outcome by 384 

building a model on full data and testing it on the first 4-year and first 2-year personal MRI data 385 

respectively. 386 

4. Visualisation of the personalised models built on MRI data for visual exploration and explanation 387 

purposes. 388 

5. Personalised profiling of an individual model for the purpose of finding potential markers for this 389 

individual or groups of individuals. 390 

 391 
Figure 4. The methodology for modelling of longitudinal neuroimaging data in a 3D brain-template structured SNN 392 
architecture, with biologically plausible neurons and learning algorithms. (a) the input module interpolates  neuroimaging 393 
data, recorded as several MRI features 𝑓, to time series which are then encoded to spike trains and used as input steams to the 394 
3D SNN model. (b) spatial mapping of the SNN model using anatomical locations of the brain areas defined in Talairach space 395 
[90] and assigning the input MRI features to input neurons with respect to their Talairach template 3D coordinates. Here, the 396 
computational model of a neuron is the Leaky Integrated and Fire (LIF) model, where the neuron’s potential increases or 397 
decreases (integration and leakage) with respect to the incoming events (spikes) in time (see Methods section for details). (c) 398 
the mapped SNN model learns from the input spikes to adapt neural connectivity with respect to temporal relationship between 399 
pre- and postsynaptic action potentials (spikes between the connected neurons). This is performed by a biologically plausible 400 
learning rule (unsupervised spike timing dependant plasticity rule, explained in the Methods section). (d) the output module is 401 
based on supervised learning to learn the association between the class labels and the training MRI samples (output neurons). 402 
Then the trained model is tested using a new unseen MRI sample for classification of the generated spatiotemporal patterns in 403 
SNN into different classes, in this case healthy (H), mild cognitive impairment (MCI) and dementia (D).   404 

3.1 Longitudinal MRI Feature Interpolation into Time Series   405 

The original MRI datasets were recorded at baseline, 2-years, and 6-years of follow-up, in the form of static 406 
neuroimaging data. To capture the changes in longitudinal MRI data as a function of time in an SNN model, the 407 
data from each individual were linearly interpolated to time series by adding simulated data points that illustrate 408 
trend of changes between the measurements (from baseline to T1 and from T1 to T3). Here, a total number of 75 409 
data points were generated between T1 to T3, representing 72 months in this 6-year period plus the three 410 
measurement times. The obtained time points for the longitudinal MRI data of an individual represent time series 411 
information which is used in this paper to create brain-inspired SNN models for predictive data modelling of 412 
cognitive outcomes. This interpolation is to transform the static MRI data (measured at 3 points) into time series. 413 
The applied linear interpolation is based on a simple assumption to generate more data points between the original 414 
MRI measurements while preserving the trend of data. There is no loss of trend-information in this method as the 415 
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interpolated data points follow the trend of changes in the original MRI data. These changes are then encoded into 416 
events in time that capture the dynamics of data changes over time, and then the temporal events are used as inputs 417 
for training computational models. The longitudinal MRI data points represent changes in the values from several 418 
brain regions of interests (ROIs) over time. We identified 31 MRI variables which were measured as mutual 419 
variables at all the follow-up assessments (T1 to T3).  Please see the list of 31 MRI variables in Supplementary 420 
Table 1. 421 

Fig. 5 shows an exemplary MRI feature (right pallidum) interpolated to time series. The three temporal patterns of 422 
pallidum MRI feature represent the mean value of the feature across all the individuals in healthy (blue line), MCI 423 
(red line) and dementia (yellow line) groups based on the diagnosis/outcome provided at time T3. The interpolation 424 
of all the MRI features to time series is shown in Fig. 1 of the Supplementary.  425 

 426 

Figure 5. (a) Demonstration of the right Pallidum region in the brain from different angles. (b) The interpolated data is 427 
representing the trends of changes in the brain volume of one MRI feature (right Pallidum- please see Fig. 1 in the 428 
Supplementary) for 6 years, averaged across individuals in healthy H (blue), MCI (orange) and dementia (yellow) outcome 429 
groups.     430 

To analyse the MRI changes from T1 to T3 across the groups (healthy, MCI and dementia), Analysis of Variance 431 
(ANOVA) [92] was applied to measure the significant distinctions between the groups. A repeated-measures 432 
ANOVA was applied with respect to three within-subjects’ factors: Hemisphere (left and right), Site (15 brain sites) 433 
and Time (T1, T2 and T3) across all the Groups. The results (shown in Supplementary Tables 2) suggest a significant 434 
main effect of Time [F (14, 258.5) = 309.8, p < 0.001, ƞ2 = 0.64], two significant Site*Time interactions [F (28, 435 
567.8) = 117.70, p < 0.01, ƞ2 = 0.41], and a Site*Group interaction [F (28, 258.52) = 2.74, p = 0.04, ƞ2 = 0.03]. It 436 
can be seen from Supplementary Table 2 that at T1, the Site*Group interaction did not significantly differ at all 437 
brain sites except frontal, anterior horn, periventricular, occipital, posterior horn, and hippocampus. However, the 438 
ANOVA analysis showed significant group differences at T2 [F (28, 258.5) =1.89, p = 0.03, ƞ2 = 0.21]. Note that 439 
WMH volume reflects lesioning in the white matter. The subcortical volumes are structural volumes, with higher 440 
volumes suggesting less atrophy. Compared to healthy and MCI groups, the dementia group showed significant 441 
neural changes of WMH volumes in frontal, anterior horn regions, and volumes of the periventricular, occipital, 442 
posterior horn, hippocampus, putamen, pallidum, and amygdala. At T3, the Site*Group interactions differ 443 
significantly at all the brain sites [F (28, 258.64) =4.09, p<0.001, ƞ2 = 0.45]. Fig. 6 illustrates the change in mean 444 
values of MRI features as a function of Groups. Sites 3 (frontal) and 8 (parietal) diverge considerably between MCI 445 
and dementia groups and may, therefore, be potential markers for predicting dementia. A significant change from 446 
time T1 to T3 is seen in dementia more than MCI. The proposed in this paper personalised computational models 447 
achieved deeper analysis of the patterns of MRI features beyond the mean values, within and between groups, to 448 
improve the model accuracy and understand these changes. The following section explains the creation of a 449 
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computational model based on deep brain-inspired SNN for personalised modelling of data and to perform pattern 450 
recognition, classification, and prediction of cognitive outcomes. 451 

 452 

Figure 6. Illustration of the mean values (in mm3) of the MRI features at 15 brain sites for each of the three subject groups 453 
(healthy H, MCI, and dementia D) across the left and the right hemispheres at times T1, T2 and T3 of the MAS study. The 454 
brain sites are: (1) cerebellum, (2) temporal, (3) frontal, (4) anterior horn, (5) periventricular, (6) occipital, (7) posterior horn, 455 
(8) parietal, (9) Hippocampus, (10) Thalamus, (11) Caudate, (12) Putamen, (13) Pallidum, (14) Amygdala, (15) Accumbens. 456 
Features (1)— (8) are WMH volumes and (9) — (15) are Brain volumes FSL (please see Supplementary Table 1 - List of MRI 457 
features used in this study). Significant changes from time T1 to T3 are seen in dementia more than MCI and H. Analysis of 458 
variance is reported in Supplementary Table 2.  459 
 460 
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3.2 Personalised Classification of Individual’s Cognitive Outcome (Healthy, MCI, or Dementia) 461 

using 6-year Interpolated MRI Data 462 

After interpolating the MRI feature data as time series (Supplementary Fig. 1), personalised classification of 463 
healthy, MCI and dementia outcomes (called classes) was performed using computational models for every 464 
individual as reported in Table 2 (top). Here, the class label of each individual’s MRI data is given with respect to 465 
the individual’s cognitive outcome diagnosed in year 6 (T3) of the MAS study. For every person 𝑖, a personalised 466 
SNN model (PSNN) was created and trained by 6-year MRI data (time series from T1 to T3) that belong to a group 467 
of similar individuals to person 𝑖 (similar MRI samples) and this person’s data is used only to test the accuracy of 468 
the output produced by the model. Since dementia class (minority class) has a very small number of samples (14), 469 
we limited the number of nearest neighbouring samples to 14 which represents selecting a maximum number of top 470 

14 similar samples to 𝑖 from each of the three classes. This led to select 42 KNN (K-nearest neighbour) samples 471 
when creating a model for each individual from H and MCI groups (14 samples per class). In the dementia group 472 
of 14 individuals, there were 41 KNN samples for each individual’s model (14 from H, 14 from MCI, and 13 from 473 
dementia).  474 

The selected KNN samples are used as the training dataset, while the one MRI feature sample (spatiotemporal 475 
sequence) of person 𝑖 was used as the testing sample, which was excluded from the training phase. The PSNN 476 

model of person 𝑖 was trained using all the KNN samples (sequences) in two phases: unsupervised and supervised 477 
learning. The unsupervised learning was based on a spike timing dependant learning rule (STDP) specified for SNN 478 
architecture (see Methods section). This learning phase adjusts the spatiotemporal connections in the PSNN model 479 
while learning from the input spikes of the training samples. The supervised learning was performed to learn the 480 
association between the class labels and the 3D SNN models created for the same training samples. Then the trained 481 
model was tested using the 6-year MRI data of the person 𝑖 who was excluded from the training phases, to classify 482 

this person’s data into H, MCI or D. This procedure was performed for every individual in the dataset, providing 483 
an individual (personalised) classification model. Table 2 reports a high classification accuracy of 96% with respect 484 
to individuals’ diagnostic outcomes at year 6. This suggests that the personalised models were successfully trained 485 
with 6-year MRI time series and captured discriminative patterns of MRI changes for each individual across the 486 
groups, and also models to be potentially used for predictive modelling as explained in Section 2.3. The SNN 487 
models’ parameters are optimised using a grid-search technique to reduce the classification and prediction outcome 488 
error. More information about the optimisation procedure is provided in the Methods and Supplementary sections.  489 

Table 2. Classification (top), two-year prediction (middle) and four-year prediction (bottom) of an individual’s interpolated 490 
MRI data to class 1: healthy (H), class 2: MCI and class 3: dementia (D) subjects using the proposed PSNN method on the 491 
MAS study data. The best accuracy for each individual’s model was obtained using a grid-search optimisation to tune a 492 
combination of PSNN parameters (see the Methods section). The reported parameters are the average optimal values across all 493 
the 175 individuals’ models (e.g., see Supplementary Figs. 3,4,5). The table’s diagonal represents the number of correctly 494 
predicted MRI samples. In every personalised model of H and MCI individuals the size of KNN is 42, while KNN is 41 for 495 
individuals from dementia group. 496 

Experiment  H M

CI 

D Accurac

y 

Sensi

tivity  

Specificity Total 

accuracy 

F-score Parameters 

 

Classification 

H 91 0 0 97% 100% 96%  

95% 

 

94% 

Learning 

rate: 0.02 

Mod: 0.5 

Drift:0.22 

MCI 3 65 1 97% 97% 97% 

D 0 2 13 93% 98% 92% 

 Two-year 

ahead 

prediction 

H 88 2 0 94% 93% 97%  

 

91% 

 

 

 

89% 

Learning 

rate: 0.02 

Mod:0.5 

Drift:0.22 

MCI 4 63 2 94% 94% 94% 

D 2 2 12 86% 86% 97% 

H 73 11 1 78% 82% 78%   

Predict 

Real 
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Four-year 

ahead 

prediction 

MCI 15 46 3 69% 82% 68% 73% 

 

67% Learning 

rate: 0.01 

Mod:0.4 

Drift:0.25 

D 6 10 10 71% 88% 76% 

Sum 94 67 14    

3.3 Personalised Prediction of Individual Cognitive Outcome 497 

To investigate how early the discriminative patterns of changes in MRI data between healthy, MCI and dementia 498 
groups can be captured for prediction of individual outcomes, we performed two personalised predictive modelling 499 
experiments. The first experiment is related to the prediction of cognitive outcomes two years ahead of an actual 500 
diagnosis/outcome. Here, for each individual 𝑥, a PSNN model was trained using MRI data from T1 to T3 (6-year 501 

data) of the nearest neighbouring individuals to 𝑖 (selected at T1). Then the model was tested with MRI data from 502 

T1 to the generated T3 from the interpolated data MRI values (4-year data) that belong to individual 𝑥 as reported 503 

in Table 2 (middle part). The second experiment is related to 4-year ahead prediction. Here, for each individual 𝑥, 504 

a PSNN model was trained using the same training data in Experiment 1 but was tested using the MRI data of the 505 
individual 𝑥 from T1 to T2 (2-year data), which results in a 4-year ahead prediction of an outcome for 𝑥, as shown 506 
in Table 2 (bottom part). As previously mentioned, for these two experiments the testing MRI data were not included 507 
in the training phase when creating a personalised modelling of individual 𝑥. Supplementary Fig. 4 reports the 508 
optimal STDP, mod and drift parameters in 175 individuals’ models. In Table 2 (last column), we reported the 509 
average of the optimal parameters across all the 175 generated PSNN models. The rest of the parameters are fixed 510 
according to previous studies (spike rate parameter= 0.5, small-world connectivity radius= 2.5, and neuron firing 511 
threshold= 0.5). The best accuracy for each individual’s model was obtained with respect to a grid-search optimisation 512 
approach to tune a combination of some PSNN parameters including SNN learning rate (interval [0.001-0.03]), modulation 513 
factor mod (interval [0.4-0.95]), and drift (interval [0.001-0.3]). The reported parameters are the average optimal values across 514 
all the 175 individuals’ models (Supplementary Figs.  3—5). 515 

For comparative analysis, we used LSTM (long short-term memory) which is an artificial recurrent neural network 516 
architecture and is a state-of-the-art method for classification and prediction of time series [103]. LSTM is used 517 
here as the model can handle different lengths of samples for testing data and provide prediction. Table 3 shows the 518 
results of classifying, 2-year and 4-year prediction of MRI data to class 1: H, class 2: MCI, and class 3: dementia. 519 
The PSNN resulted in a higher accuracy of classification and prediction when compared with LSTM. This is 520 
occurred due to the capability of SNN model to learn both time and space components of longitudinal brain data in 521 
one unifying model. This allows for capturing the relationship between the MRI features and their temporal changes 522 
in the form of spatiotemporal connectivity in relation to the output class labels.  523 
 524 

Table 3 Classification and prediction of interpolated MRI data to H, MCI and dementia groups using LSTM (long short-term 525 
memory) [93]. The model exactness was measured using F-Score, specificity, and sensitivity. The method is Leave-one-out 526 
cross validation. 527 

LSTM Accuracy Specificity Sensitivity F-Score Parameters 

Classification  43% 69% 58% 56% BiLSTM. 

100 hidden 

units. 

layers: 3. 

 Softmax.           

 

2-year ahead 

prediction  

40% 60% 45% 40% 

4-year ahead 

prediction 

41% 66% 56% 46% 

 528 

The optimised parameters were validated using a new dataset of 90 samples, generated using Synthetic Minority 529 
Over-Sampling Technique (SMOTE) [94] as an up-sampling technique to generate new samples (artificial data) 530 
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based on the similarities between the feature spaces in the existing dataset. The classification, 2-year, and 4-year 531 
ahead prediction results are reported in Supplementary Table. 4. 532 

3.4 Visualisation of the SNN Models  533 

As explained above, the interpolated MRI time series are first transferred into spikes that represent the changes in 534 
the values of brain data features over time. The spike sequences of the MRI features were then mapped into the 3-535 
dimensional SNN reservoir, constructed with 1471 artificial neurons using the brain Talairach coordinates [87], 536 
enabling the topological preservation of the spatial MRI information. For every MRI feature there is one neuron 537 
(input neuron) allocated in the SNN model to transfer the MRI spike sequences for incremental learning. The SNN 538 
connections are initialised with respect to the small-world (SW) connectivity rule [73],[74], [95]. The SW rule is a 539 
biologically inspired technique which defines the possibility of connecting one neuron to other ones with respect to 540 
the pairwise distance between them, a greater distance leads to a smaller probability of connectivity. To ignore the 541 
effect of random initialisation across the groups, we used the same initialised SNN model in all experiments. These 542 
initial connections are later modified while the SNN model is learning from the streaming MRI spikes entered 543 
through the input neurons. The developed SNN model generates a connectivity structure, where many-to-many 544 
neurons are linked to demonstrate the dynamics of longitudinal MRI data. To demonstrate how the spiking activity 545 
is propagated into the SNN model while streaming input time series, Fig. 7 shows a stepwise visualisation of spiking 546 
activities during the learning process with input MRI data from the MCI group.  547 

Fig. 8 illustrates the modified connections in three SNN models trained separately by all MRI samples (all 548 
individuals) from healthy, MCI and dementia groups (diagnoses were taken from T3). This shows that a greater 549 
amount and stronger connections were generated in the SNN models of dementia with an average connection weight 550 
of 1.1 as compared with the SNN models of MCI (connection weight = 0.93) and H (connection weight = 0.87). 551 
These connections were established differently between the groups because of the variation in spike intensities in 552 
their longitudinal MRI datasets.  553 

To show how each MRI feature has developed different connectivity inside the SNN models of healthy, MCI and 554 
dementia groups, we extracted the models’ quantitative information and illustrated the average connection weights 555 
around each MRI feature in the SNN models (Fig. 9).  It can be seen from Fig. 8(c) and Fig. 9 that the SNN model 556 
of dementia shows greater spatiotemporal connectivity compared to the other groups. This suggests that compared 557 
to H and MCI, the dementia group showed greater change across several brain areas, leading to the generation of 558 
more spikes. When these spike trains are entered to the SNN model for the learning phase, they result in developing 559 
stronger spatiotemporal connections between the model’s neurons. 560 

For the learning algorithm in the SNN models, we used STDP [64] which can capture the dynamic patterns of MRI 561 
data. During the STDP learning process, input spikes are propagated to the model and lead to the adaptation of the 562 
spatiotemporal connectivity. From Figs. 6 and 9, it can be derived that over the 6-year follow-up in the MAS cohort, 563 
several brain regions underwent change in the subjects with dementia diagnoses compared to MCI and H groups. 564 
More specifically, these changes were in the temporal, frontal, cerebellum, occipital, parietal, and brain stem sub-565 
areas. This finding can be further studied as neuroimaging predictive markers.  566 

As mentioned earlier, the mapped SNN models in Figs. 8 and 9 were generated when all the subjects’ data were 567 
used as the training set to capture between-group differences. The next section represents that the proposed 568 
personalised modelling allows the creation of an individualised model for each subject’s MRI data that is trained 569 
with the most relevant individuals’ MRI data (nearest neighbouring samples), thus, detecting within-group 570 
differences through creating personalised profile for everyone.  571 
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 573 

        574 

 575 

 576 

 577 

 578 

 579 

 580 

Figure 7. (a) The mean values of the interpolated MRI time series from 31 features measured over 6 years. MRI features are WMH volumes and brain volumes 581 
FSL (Supplementary Table 1). (b) Six sequential states of spiking activities in an SNN model during STDP learning with 6-year MRI data. The spiking activities 582 
generated during the learning process are visualised after learning from every 12-month MRI data, reflecting the dynamics of MRI features and the corresponding 583 
activated brain areas. Red dots are active neurons that just generated output spikes, blue dots are inactive neurons that have not yet emitted output spikes, pink, 584 
blue, and yellow squares represent respectively the positive, negative, and no spikes entered from the input neurons (MRI features).  585 

(b) Dynamics of the SNN activities while learning from encoded spikes from 6-year longitudinal MRI feature data 

SNN of T1+12 points            SNN of T1+T2+24 points          SNN of T1+T2+36 points          SNN of T1+T2+48 points            SNN of T1+T2+60 points         SNN of T1+T2+T3 +72 points     

(a) Interpolated longitudinal MRI data over 6-year measurement represented as 31 
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3.4.Personalised Profiling of an Individual 586 

The proposed PSNN model can be also used here to derive a personal profile of an individual’s cognitive 587 
progression over time that can be further investigated in terms of important individual characteristics and risk 588 
factors. This personalised modelling approach contributes as a decision support system that allows, for the first 589 
time, to create a personalised profile of a person and demonstrates the interactions between the MRI features. 590 
Therefore, it supports the model interpretability, which means that we can understand how the MRI feature 591 
interactions led to predict a specific individual cognitive outcome (in this case: healthy, MCI or dementia) over 6 592 
years. This is in contrast with many conventional classifiers, which perform like black-box information processing 593 
systems[96] with no supporting information to interpret the outcome results. Fig.10 illustrates PSNN models for 594 
three randomly selected individuals from H, MCI, and dementia groups. These PSNN models are generated after 595 
the unsupervised learning with input spike sequences from different KNN samples of MRI data. 596 

To further analyse the spatiotemporal interactions between the MRI features in the PSNN models of Fig. 11, a 597 
Feature Interaction Network (FIN) is created to represent the level of interactions and to measure how the changes 598 
in one brain area can be influenced by the changes in other areas. To compute the level of interaction between the 599 
input neurons (MRI features) in the SNN models, an affinity 𝑁 × 𝑁 matrix 𝐴 is defined on the SNN model that 600 

displays the sum of the spikes that are exchanged between neurons i and j (𝑖 = 1, … , 𝑁  and 𝑗 = 1, … , 𝑁) via 601 

connection 𝑤𝑖𝑗. Every input neuron forms a cluster of neurons around itself that received the greatest number of 602 

spikes from this input neuron compared to the other input neurons. The FIN depicts how these groups of neurons, 603 
each connected to an input neuron (MRI feature) are interacting over time. The amount of spike interaction between 604 
any two adjacent groups of neurons (each connected to one input neuron) was computed with respect to the number 605 
of spikes exchanged between them. The wider the arc between nodes, the more spikes were transmitted between 606 
the corresponding groups of neurons, that represent different areas of the brain data model. 607 

In Fig. 11, the FINs show the causal relationship between the 31 MRI features during the learning process in the 608 
PSNN models with 6-year MRI data of different individuals’ data. The nodes represent the MRI features, while the 609 
arcs capture the number of spike communications between the neural clusters around the features during the 610 
learning. The thickness of the arcs corresponds to the strength of the interactions between the MRI features. This is 611 
observed in Fig. 11 that various interactions between the MRI features were captured for each of the groups. This 612 
means that the changes in one MRI feature caused some changes in other ones. The FINs demonstrate that compared 613 
to the H group, causal interactions are stronger in MCI and much stronger in the dementia group. For example, in 614 
the FIN of MCI, a few noticeable interactions are related to the causality between regions of occipital, accumbens, 615 
and periventricular. Also, there is evidence of an association between MRI features in the basal ganglia (right 616 
caudate and right accumbens). A strong interaction can also be seen between the amygdala and per ventricle 617 
changes, and between right anterior horn and right caudate. The FIN of dementia represents greater brain changes 618 
were captured between wider areas of the brain during the 6 years of follow-up compared to healthy and MCI 619 
groups. The strong interactions are among left and right anterior horn, left anterior horn and left caudate, right 620 
posterior horn and right amygdala, right parietal and right frontal, right occipital and right caudate. The connections 621 
have shown causal changes to the cerebellum (posterior), accumbens (subcortical) and frontal cortex (anterior).  622 

 623 
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 624 

 625 

 626 

Figure 8. 3D (left) and 2D (right) visualisations of the spatiotemporal connectivity in the SNN models trained on MRI data 627 
(interpolated from T1 to T3) of individuals whose diagnostic outcomes at T3 are healthy (94 subjects, shown in a), MCI (67 628 
subjects, shown in b) and dementia (14 subjects, shown in c). The SNN model of the dementia group (in c) illustrates greater 629 
connections (average weights= 1.1) when comparing with the models of H (average weights= 0.93) and MCI (average weights= 630 
0.81). This is because the values of some of the MRI features have been significantly changed over the 6-year follow-up in 631 
MAS study, resulting in enhanced connections between the neurons during the SNN model’s learning phase. The blue lines 632 
are positive (excitatory) connections, while the red lines are negative (inhibitory) connections. The thickness of the lines 633 
identifies the weight of the connections. 634 
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 635 

Figure 9. Average connection weights around each MRI variable in the SNN models trained with 6-year MRI time series 636 
from healthy H (in blue), MCI in (orange), and dementia D (in grey). Connection weights in the SNN model capture spatio-637 
temporal changes in the MRI input features. 638 

 639 

 640 

Figure 10. Personalised profiling of three randomly selected individuals from H (shown in a) MCI (shown in b) and dementia 641 
(shown in c) groups. These three PSNN models are trained with the use of spike trains of different KNN samples of MRI data 642 
for each individual. The spatiotemporal connectivity in a PSNN model of an individual from the dementia group (in c) illustrates 643 
more connections when compared with the models of the H individual (in a). The enhanced SNN connectivity in the individual 644 
diagnosed with dementia is due to an increased amount of changes in the values of certain MRI features in this patient over the 645 
period of follow-up. These MRI changes were encoded into more spikes, causing enhanced connections during the PSNN 646 
model’s learning process. The blue lines are positive (excitatory) connections, while the red lines are negative (inhibitory) 647 
connections. The thickness of the lines identifies the weight of the connections. 648 

This section demonstrated that the computational SNN models for personalised modelling of longitudinal MRI data 649 
were created to perform pattern recognition, classification, and prediction of cognitive outcomes (healthy, MCI and 650 
dementia). The models demonstrated the spatiotemporal interactions (in the form of connections) between the MRI 651 
features in a computational SNN model, rather than an exact structure of the brain’s physical neural connectivity. 652 
The SNN models learned from the changes in MRI time series which were encoded into spikes. The learning was 653 
performed using STDP, which changes the synaptic strength based on the difference in firing time of pre- and 654 
postsynaptic neurons. Using an encoding method, drastic changes in MRI data were encoded to more positive or 655 
negative spikes. The greater intensity of these input spikes and their propagation to the SNN model caused more 656 
repeated spike transformation between the neurons during the STDP. Therefore, the absolute values of the 657 

(a) Healthy  
(b) MCI  

(c) Dementia  

Average weights: 0.74   Average weights: 0.83   Average weights: 1.4  
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connection weights (both positive and negative) increased over time. This means that greater spatiotemporal 658 
connections in the SNN models represent more changes in the MRI time series. Our findings presented that the 659 
SNN model of dementia group has stronger changes across several brain regions, demonstrated in the form of 660 
spatiotemporal connections in the SNN model. The SNN models were also used for classification and prediction of 661 
cognitive outcomes when tested with a new MRI sample. The models were able to accurately classify and predict 662 
2-year ahead of cognitive decline (MCI and dementia) with 96% and 90% accuracy respectively, which were better 663 
than the accuracy from traditional classifiers. 664 

 665 

 666 

    667 

  668 

Figure 11. The FIN graphs show causal, temporal relationships between longitudinal changes in MRI features over 6-year 669 
period for the PSNN models of three individuals, randomly selected from the participants who developed MCI or dementia, or 670 
remained healthy after 6 years (labels are from the last follow-up assessment). The thicker the line, the more temporal 671 
interactions between the features (brain areas) over the period of 6 years have been captured in the PSNN models.  A FIN graph 672 
allows us to discover and investigate the functionality of interacting brain areas for each of the 3 outcome groups. 673 

Healthy                                                                                         MCI  

Dementia  

Brain stem 
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4. Discussion 674 

The MRI modelling in this research suggested certain regional changes in WMH and structural volume associated 675 
with MCI and dementia development over 6 years. The results in Figs. 6 and 9 demonstrated left-right asymmetry 676 
in SNN connectivity in certain brain areas, particularly presented in the cerebellum, temporal, occipital and parietal 677 
as well as in periventricular areas while this asymmetry was less presented in the MCI and H groups. A relevant 678 
finding was previously reported for hippocampal volumes asymmetry during the progression of Alzheimer’s disease 679 
[20]. 680 

Our findings in Fig. 6 demonstrated that the MRI changes over 6 years in frontal and parietal lobes diverged 681 
considerably between healthy, MCI, and dementia groups and would, therefore, be potential markers for predicting 682 
cognitive outcomes. Significant changes from time T1 to T3 are seen in dementia more than in MCI. This finding 683 
supports the results of another study which reported MCI is correlated to structural vulnerability and differential 684 
volume change across brain regions [97]. The results from the current study are also aligned with previous research 685 
that reported alterations in different brain regions, as Zidan et al [98] who found that volumes in the hippocampus 686 
are lower in people with Alzheimer’s disease compared to individuals with MCI. Also, Gootjes et al [99] showed 687 
that the WMH index (WMH volume separated by lobar volume) was greater in people with dementia while it was 688 
at a low level in healthy controls and, within each group, the WMH index was elevated more in parietal and frontal 689 
lobes than in temporal and occipital lobes. 690 

Based on the encoding algorithm, drastic changes in MRI features over time (both increases and decreases) lead to 691 
the generation of a greater number of spikes (both positive and negative), which are then entered into the SNN 692 
model for the learning process. According to the LIF model of a spiking neuron, if a neuron receives more frequent 693 
input spikes over time, its potential increases faster and generates more frequent output spikes. The STDP rule 694 
changes the synaptic strength based on the difference in firing time of pre- and postsynaptic neurons. The greater 695 
intensity of these input spikes and their propagation to the SNN model caused more repeated spike exchange 696 
between the neurons during the STDP. Therefore, the absolute values of the connection weights (both positive and 697 
negative) increased over time. This means that greater spatiotemporal connections in the SNN models represent 698 
more changes in the MRI time series. The created computational SNN models in Fig. 8 were trained by 6 years of 699 
MRI time series from healthy, MCI and dementia groups. The findings suggested that the model of dementia has 700 
shown stronger connections (average connection weights= 1.1) across several areas when compared with the models 701 
of H (average connection weights= 0.93) and MCI (average connection weights= 0.81). The quantitative 702 
information of the SNN models (shown in Fig. 9) demonstrated that dementia group had much stronger connection 703 
weights in some brain regions, such as the right cerebellum, left temporal, right frontal, right occipital, right 704 
posterior horn, right parietal, and right amygdala. These connections were developed during the STDP learning 705 
with spike trains of interpolated MRI data.  706 

FINs in Fig. 11 depicted networks of interactions between MRI features over 6 years and demonstrated the changes 707 
in one MRI feature caused some changes in other ones. Compared to the healthy control group, interactions are 708 
stronger in the FINs of MCI and much stronger in the dementia group. This represents greater brain changes were 709 
captured during the 6 years of follow-up for individuals with dementia. For example, in Fig .11, the FIN of MCI 710 
demonstrated stronger interactions between the volume changes in left and right hippocampus and the WMH of the 711 
temporal region. These cognitive changes were shown to be enhanced across several brain regions in the FIN of the 712 
dementia group which demonstrated strong associations between the changes in the volumes of the amygdala, 713 
hippocampus and WMH of temporal and posterior horn regions. Our finding is consistent with previous research 714 
on hippocampus and amygdala atrophy in relation to cognitive decline [100]. Furthermore, other studies report an 715 
association of WMH with the risk of progressing from healthy ageing to MCI [18] and the regional specificity of 716 
the association of WMH with cognitive functions, memory performance and Alzheimer’s disease [19, 101]. 717 
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Brickman et al also indicated that WMH volume in the parietal lobe predicts incidents of dementia while in people 718 
with Parkinson disease, the hippocampal volume is a main component in predicting MCI and dementia [20]. 719 

The proposed method for personalised modelling using SNN allows for capturing the relationship between the MRI 720 
features in the form of spatiotemporal connectivity in relation to the outputs. Therefore, the model does not act as a 721 
black-box information processing system, but as an interpretable model that demonstrates what interactions between 722 
the features have triggered the output. In contrast to our proposed approach, LSTM has no brain-like structured 723 
architecture to learn both time and space components of longitudinal brain data in one unifying model. Knowledge 724 
discovery in deep-learning patterns generated during the learning time, in an unsupervised mode in SNN models, 725 
from spatiotemporal data streams is of crucial importance for the interpretability. In the current study this has 726 
allowed for a better interpretation of the spatiotemporal interactions between variables when compared with state-727 
of-the-art classifiers such as LSTM. 728 

Although there are neuroimaging studies that investigated and reported association of longitudinal brain changes 729 
with the risk of progression from normal cognitive conditions to MCI and dementia [18, 98, 102], personalised 730 
neuroimaging data modelling for accurate classification and prediction of individual cognitive outcomes in older 731 
people is still lacking. Our proposed methodology aims to solve a challenging problem of how to integrate diverse 732 
brain changes that occur spatially and over time (as measured with MRI), into the comprehensive predictive 733 
algorithm.  Future directions include: 734 

- Applying the proposed methodology on larger data cohorts. 735 

- Applying the personalised modelling system to the larger number of features in the same cohort, such as 736 

clinical and psychometric assessments that may provide complementary information and lead to improve 737 

the accuracy of classification and prediction of brain changes associated with various cognitive outcomes. 738 

This will help to better understand the processes underlying the development of neurodegenerative and 739 

cerebrovascular diseases. 740 

- Developing new deep learning algorithms to complement the existing ones. 741 

- Developing new algorithms for symbolic spatiotemporal rule extraction from trained PSNN to better 742 

understand individual brain dynamics related to outcomes. 743 

- Implementation of diagnostic tools for clinical practice.   744 

5. Conclusion  745 

The current study introduces a new method for personalised predictive modelling of longitudinal data using a brain-746 
inspired SNN architecture for early prediction and classification of neurological state (e.g., healthy, MCI and 747 
dementia). The proposed method is a generic one, applicable to wide range of neuroimaging and clinical 748 
longitudinal data. It is applied here to longitudinal (across 6 years) MRI data from the Sydney MAS study 749 
(Australia), which represents a reliable cohort of older adults.  750 

The proposed methodology consists of several procedures, including: data imputation to deal with missing values, 751 
data interpolation to transfer longitudinal MRI data to time series, encoding the MRI time series into sequences of 752 
spikes that represent significant data changes over time, mapping the MRI data into 3-dimensional brain-inspired 753 
SNN model structured according to a brain template, unsupervised and supervised training from the MRI data, 754 
classifying/predicting an individual cognitive conditions with superior accuracy to traditional machine learning 755 
classifiers, visualisation and interpretation of results for individual marker discovery. The methodology used in this 756 
paper is based on a brain-inspired SNN architecture and has several advantages compared to traditional machine 757 
learning methods, including: 758 
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- High accuracy and sensitivity of an individual cognitive outcome classification and prediction. The SNN 759 

models were able to predict 2 years ahead of cognitive declines (MCI and dementia) with 90% accuracy. 760 

- Enabling the creation of individual models for a better understanding of changes in an individual’s 761 

longitudinal MRI data over time, representing an individual cognitive degeneration. 762 

- Improved model interpretability through capturing the spatiotemporal relationship between the data 763 

variables during the learning process as symbolic rules [61].  764 
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