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Abstract

CNNs with strong learning abilities are widely chosen to resolve super-resolution problem. How-
ever, CNNs depend on deeper network architectures to improve performance of image super-
resolution, which may increase computational cost in general. In this paper, we present an en-
hanced super-resolution group CNN (ESRGCNN) with a shallow architecture by fully fusing deep
and wide channel features to extract more accurate low-frequency information in terms of corre-
lations of different channels in single image super-resolution (SISR). Also, a signal enhancement
operation in the ESRGCNN is useful to inherit more long-distance contextual information for
resolving long-term dependency. An adaptive up-sampling operation is gathered into a CNN to
obtain an image super-resolution model with low-resolution images of different sizes. Extensive
experiments report that our ESRGCNN surpasses the state-of-the-arts in terms of SISR perfor-
mance, complexity, execution speed, image quality evaluation and visual effect in SISR. Code is
found at https://github.com/hellloxiaotian/ESRGCNN.

Keywords: Group convolution, CNN, Signal processing, Image super-resolution

1. Introduction

Image super-resolution (SR) technique devotes to recover a clearer image from an unclear
observation through a classical equation y = x↓s, where x is a high-definition (also treated high-
resolution, HR) image, y denotes a unclear (also regraded as low-resolution, LR) image and s
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denotes a given scale factor. Specifically, the same LR image can be obtained from numerous HR
images by a down-sampling operation, according to the mentioned equation. That is, SISR prob-
lem does not have unique solution, which can be known as an ill-posed inverse problem [25, 59].
To address this problem, scholars present a lot of single image SR (SISR) methods [9]. For in-
stance, Hong et al. divided LR-HR pairs of patches into different clusters, then made a fuzzy
rule in image super-resolution, according to these clusters[48]. Liu et al. improved a weighted
random forest model with rotation in image super-resolution [43]. There are some effective in
image super-resolution methods, i.e., interpolation-based techniques [26], sparse based dictionary
learning techniques [70], neighbor embedding techniques [4] and Bayesian technique [69]. Al-
though these methods have obtained excellent performance of image super-resolution, some of
these methods may drop detailed information, which limited effect in SISR performance [63, 67].
Also, due to manual tuning, most of these methods are not flexible. Additionally, they usually
rely to complex optimization algorithms for boosting SISR performance, which would decrease
efficiency of SISR.

Recently, due to plug-in network architectures and flexible training mechanisms, deep net-
works have strong self-learning ability to gain better restoration performance [24, 39, 76]. For
instance, Cui et al. used multiple stacked auto-encoders with non-local self-similarity in image
super-resolution [7]. Dong et al. presented a 3-layer CNN model known as SRCNN via pixel
mapping strategy to recover a high-quality image [10]. Although the SRCNN obtained more ef-
fective super-resolution (SR) results in comparison with traditional SR methods, it had slow con-
vergence speed and large training cost. To overcome this problem, deeper network architectures
are designed to pursue excellent SR effect. For instance, Kim et al. designed a deeper network
architecture named VDSR through stacking a series of convolutional layers, residual learning (RL)
techniques and gradient clipping operation to accelerate training of SR model [29]. Since then,
enhancing the effect of local information from different layers by multiple use of RL techniques
becomes popular to further ease training difficulty and promote the SR performance. A deep
recursive residual network (DRRN) fused RL and recursive learning strategies to improve the
generalization ability of a SR method [55]. Specifically, this RL technique can mitigate training
difficulty of SR model and the recursive learning technique can make a trade-off between network
depth and parameters. Alternatively, a residual encoder-decoder network (RED) connected convo-
lutional and deconvolutional layers through utilizing RL techniques to construct symmetrical CNN
for predicting HR images [46]. Besides, a deeper memory network (MemNet) used RL technique
to mine different level features for enhancing the influence of prior layer in SISR [56]. Using
signal processing idea (i.e., wavelet transform) into CNN can achieve prominent performance for
SISR [42]. The combination of a deep CNN and wavelet idea can obtain more detailed information
to improve quality of predicted images [16]. Although these methods can recover high-definition
images, they had a high computational costs by using bicubic operation for constructing input of
SR network [60]. To overcome the mentioned drawback, scholars directly used LR images as
input of SR network to predict a relation from given unclear images to high-definition images. As
the pioneer, Dong et al. [11] firstly used an up-sampling operation to amplify the resolution of
obtained low-frequency features, which can accelerate training speed with degrading visual effect.

Making full use of hierarchical features from different network layers can enhance robustness
of low-frequency features to enhance the resolution of predicting SR images. For instance, Lim
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et al. presented an enhanced deep network known enhanced deep SR network (EDSR) through
utilizing multi-scale techniques to fuse different low-frequency features for improving visual re-
sults [40]. Besides, Zhang et al. exploited different filter sizes to mine different features, then
fused these features to generate more accurate features in SR [74].Although these methods have
achieved excellent SR results, their deeper network architectures suffered from bigger computa-
tional costs. Additionally, these SR models only dealt with a single scale by one model, which
cannot satisfy requirements of real applications. In this paper, we present an enhanced super-
resolution group CNN (ESRGCNN) through mainly stacking six group enhanced convolutional
blocks (GEBs), connecting a combination of a convolution and an activation function, an adaptive
up-sampling mechanism and a single convolutional layer. Specifically, the GEB uses group convo-
lutions and RL techniques to enhance expressive ability of obtained low-frequency information in
terms of correlations of different channels for balancing SISR performance and complexity. Also,
this combination can prevent over enhancement of obtained low-frequency information. A sig-
nal enhancement operation in GEB can inherit long-distance contextual information from shallow
layers via skip connection operation to offer complementary information for deep layers, which
is useful to deal with long-term dependence ability. Also, an adaptive up-sampling mechanism is
utilized to obtain a super-resolution feature mapping from LR frequency features to HR frequency
features for different scales, which satisfies requirement of SR technique on digital devices. Addi-
tionally, the final convolutional layer is used to construct a HR image.

This main contributions of our ESRGCNN can be reported as follows.
(1) The proposed 40-layer ESRGCNN uses group convolutions and residual operations to en-

hance deep and wide correlations of different channels to implement an efficient SR network.
(2) An adaptive up-sampling mechanism is used to obtain a flexible SR model, which is very

beneficial to real applications.
(3) Shallow ESRGCNN only uses the number of parameters to 5.6% of 134-layer RDN and

9.6% of 384-layer CSFM to obtain excellent visual effects, which also takes the running time to
3% of popular RDN and CSFM in recovering a HR image of 1024× 1024.

The remaining parts of this paper have the following introduce. The second section lists related
work. The third section gives ESRGCNN. The fourth section describes experimental results. The
final section summaries the whole paper.

2. Related work

2.1. Deep CNNs based group convolutions for SISR
Numerous deep learning methods with strong self-learning ability have been used in SISR

[73, 57]. Since most of these methods are treated equally across channels to enhance the effect of
hierarchical features for SISR, that hinders expressive ability of CNN [74]. To resolve this issue,
deep CNNs based group convolutions are developed in SISR. That roughly includes two kinds in
general, such as attention based channels and features fusion based channels.

The first category used attention techniques to strengthen the effect of key channels for boost-
ing the SISR performance and speed. For instance, Hu et al. merged channel-wise attention and
spatial attention into deeper network to extract prominent low-frequency information for promot-
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ing SISR performance [21]. Besides, Dai et al. exploited second-order feature statistics to obtain
more accurate features and more discriminative representations for SISR [8].

The second category fused hierarchical channel features by using RL or concatenation oper-
ations to obtain abundant low-frequency information for SISR. For instance, Jain et al. removed
useless connections via group convolutions to accelerate the speed of training SR model [28].
Since then, to obtain more robust features, Zhao et al. relied two sub-networks channels-based to
expend diversity for offering complementary features in SISR [75]. To further reduce the com-
plexity of the SR model, feature fusion based channel via group convolutions was presented [23].
For instance, Yang et al. utilized softmax feature fusion mechanism and spindle block to reduce
parameters for constructing a lightweight blind SR network [66]. Alternatively, cascading several
group convolutional networks with several convolutions can reduce complexity of SR network
[65]. To address complex scenes, a multimodal deep learning technique uses multi-modal images
of a same scene into two sub-networks to extract complementary features for improving perfor-
mance of image processing task [18]. Additionally, to extract sequence attributes of spectral sig-
natures, a sequential perspective with transformers is developed to learn spectrally local sequence
information. Also, a cross-layer skip connection is used to enhance memory ability of a designed
network for improving performance in image classification [19]. The above two methods have an
important reference value for image super-resolution.

All the mentioned methods illustrate the effectiveness of performance and complexity in SISR.
Therefore, we use group convolutions in this paper for SISR. Specifically, differ from other group
convolutional SR methods, our method enhances correlations of different channels via two adja-
cent layers rather than using the current layer as inputs of later layers to extract more accurate
low-frequency features and reduce complexity in SISR.

2.2. Multilevel feature fusion for SISR
According to previous illustrations, it is known that single feature learning methods cannot

guarantee robustness of learned features for complex screens. Inspired by that, feature fusion
method is developed [18, 53]. Due to its good performance, this method is popular for high-level
computer vision tasks [17]. Besides, it is known that a network with a big depth may keep poorer
memory ability of shallow layers. To overcome this challenge, multilevel feature fusion method in
the CNNs is presented to enlarge the effect of local features for a SR task [63, 36]. That includes
two kinds in general: low-frequency feature fusion and high-frequency feature fusion.

The first category uses a bicubic method to amplify LR images for inputting the deep network
and makes full use of hierarchical high-frequency features to obtain a SR model. For instance,
a deeply-recursive convolutional network (DRCN) combined recursive-supervision and skip con-
nection operations to enhance effect of obtained hierarchical information for relieving difficulty of
training [30]. Besides, the MemNet [56] exploited recursive unit and gate unit to enhance power
of the current layer for improving expressive ability of deep network in SISR. Although these
methods can obtain high-quality images, they had high complexity.

The second category directly utilizes LR image as input of deep network and fully exploits hi-
erarchical low-frequency features to obtain more accurate information with fast processing speed.
Finally, this method uses up-sampling operation in the deep layer of network to magnify obtained
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information to construct a HR image. That is, a cascading residual network (CARN) utilized cas-
cading block and RL operation to strength local obtained features for extracting more abundant
information in SISR [2]. Alternatively, an enhanced SR CNN (LESRCNN) fused RL technique
into heterogeneous convolutional structure to reinforce low-frequency features from deep layers
for achieving significant SR performance and fast speed [60].

According to mentioned illustrations, it is known that multilevel feature fusion method is useful
to obtain a clearer image. Because the first category method has high complexity, we use idea of
the second method into this paper as Fig.1.

3. The proposed method

Our proposed ESRGCNN contains three convolutional layers, six group convolutional blocks
known GEBs and an adaptive upsampling mechanism as shown in Fig.1. Specifically, the GEB
based group convolutions and RL techniques fuse wide and deep channel features to heighten rep-
resentation ability of low-frequency features for boosting SISR performance and reducing com-
plexity, according to correlations of different channels. Also, a signal enhancement in each GEB
can obtain long-distance contextual information to address long-term dependence problem of ES-
RGCNN. Due to shallow architecture, ESRGCNN has fast execution speed for SISR. Besides,
the adaptive upsampling mechanism exploits a flexible valve to deal with LR images of different
scales for achieving a flexible SR model. Thus, the proposed ESRGCNN may be better applied on
real digital devices. More information of ESRGCNN is given in latter sections.

3.1. Network architecture
As reported in Fig.1, a 40-layer ESRGCNN mainly comprises four parts: 2-layer combination

of convolutional layer and ReLU [33], 36-layer GEBs, 1-layer upsampling mechanism and single
convolution layer. Each combination of a convolutional layer and a ReLU is that a convolutional
layer connects a ReLU, which acts head and intermediate of the whole ESRGCNN, respectively.
And they are symboled as Conv+ReLU in Fig.1. Specifically, the first Conv+ReLU uses a con-
volutional layer to obtain key information of a given unclear image, then it connects an activation
function, ReLU [33] to covert obtained linear features into non-linearity, where its input channel
number, output channel number and filter size denote 3, 64 and 3 × 3, respectively. Since then,
six GEBs are used to strengthen expressive ability of low-frequency features by correlations of
different channels for achieving impressive results and competitive complexity of SISR, where
input channel number, output channel number and filter size of each GEB are 64, 64 and 3 × 3,
respectively. Also, a signal enhancement operation is used into each GEB to extract long-distance
contextual information for tackling long-term dependence problem of deep SR network. Next, the
second combination of a convolutional layer and a ReLU is used to prevent of over-enhanced of ob-
tained feature point pixels from the mentioned operation. Specifically, its channel number, output
channel number and filter size are the same as each GEB. Then, this adaptive upsampling oper-
ation uses a flexible threshold to covert extracted low-frequency information to high-frequency
information for achieving a flexible SR model. Finally, the single convolutional layer as the final
layer of ESRGCNN constructs a predicted SR image via obtained high-frequency features, where
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its channel number, output channel number and filter size are 64, 3 and 3×3, respectively. To intu-
itively express the mentioned process, we define some symbols as follows. We assume that given
ILR and ISR denote input and output of ESRGCNN, respectively. Let C and R be a convolutional
function and a ReLU function, respectively. 6GEB stands for functions of six group enhanced
convolutional blocks. And UP represents an upsampling operation. Therefore, the mentioned
illustrations can be formulated as

ISR = C(UP (R(C(6GEB(R(C(ILR)))))))
= ESRGCNN(ILR),

(1)

where ESRGCNN stands for the function of ESRGCNN, which is optimized via loss function
of Section 3.2.

GEB

 

Figure 1: Network architecture of ESRGCNN.

3.2. Loss function
This paper chooses public mean squared error (MSE) [12, 60] as a loss function to determine

optimal parameters of ESRGCNN for predicting SR images. That is, a set of pairs {IkLR, IkHR}Tk=1

from training dataset in Section 4.1 is used into the MSE to train a SR model, where IkLR and
IkHR express the kth low- and high-resolution image patches from training dataset, respectively. T
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denotes the total of training image patches. The process can be shown in Eq.(2):

l(p) = 1
2T

T∑
k=1

∥∥fESRGCNN(I
k
LR)− IkHR

∥∥2, (2)

where l is used to represent loss function, MSE. And p stands for the set of parameters in ES-
RGCNN model.

3.3. Group enhanced convolutional block
A 6-layer group enhanced convolutional block is used to strength representation ability of

low-frequency features for boosting performance and speed in SISR, according to correlations of
different channels. Also, taking network design principle into consideration, a signal enhance-
ment idea is used to inherit long-distance features for handling poorer memory ability problem of
shallow layers in a deep network. Detailed information of the GEB is listed as follows.

It is known that some of existing SR networks directly enhanced deep hierarchical features
rather than fully using correlation information of different channels to improve SISR performance,
which had higher computational cost. Taking this factor above into account, we use group convo-
lutions to split obtained features from first four convolutional layers in each GEB as two groups:
GConv1 known a distilling part (Quarter of channel number of obtained features from current con-
volutional layer) and GConv2 (Three quarters of channel number of obtained features from current
convolutional layer) known a remaining part, as shown in Fig.1. In this paper, the GConv1 is a
group convolution of input channel number of 16, output channel number of 16 and filter size of
3× 3. The GConv2 is a group convolution of input channel number of 48, output channel number
of 48 and filter size of 3 × 3. Specifically, only chosen the remaining part as the input of next
convolutional layer in main network is used to extract more deep features, where can boost the
training efficiency of a SR model. Also, differ from most of SR methods, only fusing two adjacent
GConv2 in the GEB can enhance the effect of deep neighborhood information for improving the
expressive ability of low-frequency features. Besides, the distilling parts besides the first distilling
part indirectly rely on the previous remaining parts and fusing these obtained features can offer
complementary wide information for the remaining part of deep layer to improve the SISR per-
formance. To vividly describe the mentioned implementations of each GConv1 and GConv2, we
formulated the process above as follows.

Simultaneously learning these features of each groups and fusing them to strengthen their
connections for improving expressive ability of low-frequency features as the following steps.

First step fuses obtained features of two adjacent GConv2 via the RL technique as the input
of next convolutional layer to facilitate more accurate deep features of from different channels
in terms of enhancing features of adjacent layers in SISR. Specifically, the outputs of the first
GConv2 from different GEBs can be represented as

O GConv21j =

{
3s
4 (C(R(C(ILR)))), j = 1
3s
4 (C(O GEBj−1)), j = 2, 3, 4, 5, 6,

(3)

where O GEBj−1 denotes output of the j − 1th GEB. Also, O GConv21j is output of the first
GConv2 from the jth GEB. 3s

4
expresses remaining channel number of a convolutional layer,
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where s is 64. Additionally, outputs of other GConv2 from different GEBs can be expressed as:

O GConv2ij = O GConv2i−1j +
3s

4
(C(R(O GConv2i−1j ))), (4)

where O GConv2ij stands for the output of the ith GConv2 in the jth GEB. Also, i = 2, 3, 4 and
j = 1, 2, 3, 4, 5, 6. Specifically, plus denotes the RL operation, which is also expressed as ⊕ in
Fig.1.

Differ from the GConv2, output of the first GConv1 in the GEB can be obtained by the last
quarter of output channel from the first convolutional layer. Outputs of other GConv1 in the GEB
are obtained by upper GConv2. That is, the upper GConv2 connects a ReLU to convert linear
features into non-linearity. Then, the non-linearity acts as a convolutional layer to further learn
low-frequency features. Last quarter channels of output information of obtained features from the
mentioned convolutional layer are as input of GConv1. That can be shown as Eqs.(5) and (6).

O GConv11j =

{
s
4(C(R(C(ILR)))), j = 1
s
4(C(O GEBj−1)), j = 2, 3, 4, 5, 6,

(5)

O GConv1ij =
s

4
(C(R(O GConv2ij−1))), (6)

where O GConv1ij and O GConv1ij represent the outputs of the ith GConv1 and 1− th GConv1
from the jth GEB, respectively.

Second step uses a RL technique to merge obtained features from all the GConv1 for strength-
ening the connection of different distilling parts as follows.

O TGConv14j =

4∑
i=1

O GConv1ij , (7)

where O TGConv1j is output of all the GConv1 of the jth GEB .
Third step utilizes concatenation operation to integrate obtained feature from the last GConv1

and GConv2 in terms of channels for obtaining more complementary features, which uses Eq. (8)
to express the process above.

O EFj = R(Concat(O GConv24j , O TGConv14j )), (8)

where O EFj is the output of enhanced features from the jth GEB. Its output channel number
is 64. Also, Concat denotes a concatenation operation in Eq.(8) and Fig.1. Additionally, O EFj

acts two layers of Conv+ReLU, where Conv+ReLU expresses a convolutional layer connects an
activation function of ReLU. Also, input channel number, output channel number, filter size of
each layer are 64, 64 and 3× 3, respectively. That can be formulated as

O DFj = R(C(R(C(O EFj)))), (9)

where O DFj is the output of two layers of Conv+ReLU in the jth GEB and j = 1, 2, 3, 4, 5, 6.
Due to deeper network architecture, effect of shallow layers on deep layers may weaken. In-

spired by that, we use a signal enhancement idea to inherit long-distance features for handling
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memory ability problem of shallow layers for the whole network. That is, obtained features of a
shallow layer are overlaid on obtained features of a deep layer through a RL technique to improve
the importance of shallow layers in SISR. The mentioned illustrations can be shown as Eq.(10).

O GEBj = O DFj +O GEBj−1, (10)

where O GEBj stands for output of the jth GEB and j = 2, 3, 4, 5, 6. Specifically, O GEB1=O DF1+
R(C(ILR)). Additionally, the O GEB6 acts a Conv+ReLU as shown in Eq.(11), which is used to
prevent transition enhancement of Eq.(10).

OCR = R(C(O GEB6)), (11)

where OCR denotes output of the last Conv+ReLU and is input of the upsampling layer, which is
given in Section 3.4.

3.4. Adaptive upsampling mechanism
It is known that some popular SR methods use a model for single certain scale. However, LR

images in practice are unknown corruption [1]. Motivated by that, we use an adaptive upsampling
mechanism with a flexible valve [60, 2] to achieve high-quality images from LR images of different
scales for achieving a flexible SR model as follows.

The adaptive upsampling mechanism is composed of three modes from different scales (i.e.,
×2, ×3 and ×4). The mentioned three modes include one Conv+Shuffle ×2 (regarded as mode
×2), one Conv+Shuffle ×3 (regarded as ×3 mode) and two Conv+Shuffle ×2 (regarded as ×4
mode), where Conv+Shuffle×2 and Conv+Shuffle×3 express a convolution of 3×3 acts a Shuffle
×2 and Shuffle×3, respectively. The×4 mode is composed of two stacked×2 modes. Also, input
channel number of input and output from these convolutions are 64. Specifically, these modes rely
on a valve to implement a blind SR model. When the valve is set as 0, three modes work in parallel
to train a SR model for ×2, ×3 and ×4 as shown in Fig.2. When the valve is only set as one of
among 2, 3 and 4, one of three modes is chosen to test a blind SR model in Fig.3. Further, the
function of upsampling technique can use Eq. (12) to stand for the mentioned process.

OUP =

{
UP (OCR)
S2(C(O2

CR))� S3(C(O3
CR))� S2(C(S2(C(O4

CR)))),
(12)

where OUP expresses output of the upsampling layer. S2, S3 and S4 represent the functions of
Shuffle ×2, Shuffle ×3 and Shuffle ×4, respectively. O2

CR, O3
CR and O4

CR are outputs of obtained
low-frequency information from ×2, ×3 and ×4, respectively. Also, let � stands for a splicing
operation of tensor in Pytorch. Besides, OUP is input of the last convolutional layer in Eq. (13),
which is used to construct the predicted SR image. Also, its input number, output number and
filter size are 64, 3 and 3× 3, respectively.

ISR = C(OUP ). (13)
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Figure 2: A parallel upsampling operation for training a blind SR model.
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Figure 3: A upsampling operation for testing a blind SR model.

4. Experiments and analysis

4.1. Training dataset
Following popular SR methods in [59, 60, 2], the known SR dataset, DIV2K [1] is chosen

to train a ESRGCNN model. Specifically, the DIV2K dataset is composed of 800 training color
images, 100 validation color images and 100 test color images from three scales (i.e., ×2, ×3, and
×4). Besides, due to shortage of training samples, obtained SR model is not robust. To prevent
this phenomenon, we utilize the following data augment way [59] to expand the training dataset.
First step incorporates color images of the same scale from training dataset and validation dataset
to make up of a new training dataset of ESRGCNN model. Also, taking efficiency of ESRGCNN
into account, we crop each given LR image from this new training dataset as patches of 83 × 83.
Second step exploits random horizontal flips and rotation operation of 90◦ to enhance mentioned
patches.

4.2. Test datasets
To fairly test the performance of ESRGCNN in SISR, four benchmark datasets, including Set5

[3], Set14 [3], BSD100 [47] and Urban100 [22] of three scales (i.e.,×2, ×3, and ×4) are used
as test datasets in this paper. Specifically, the Set5 and Set14 are composed of five and fourteen
color nature images of three different scales, respectively. The BSD100 (abbreviated as B100)
and Urban100 (abbreviated as U100) contain 100 different color images with ×2, ×3, and ×4,
respectively.

Following the state-of-the-art SR methods, such as MemNet [46] and LESRCNN [60], Y chan-
nel of YCbCr space is used to design comparative experiments in this paper. That is, the obtained
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RGB images from the ESRGCNN are required to transform as the Y channel images to valid the
performance of image super-resolution.

4.3. Experimental Settings
The following initial parameters are utilized to train a SR model of ESRGCNN. Specifically,

original learning rate is 1e-4, which halves every 4e+5 steps in all the 6e+5 steps. Also, batch
size of 32, epsilon of 1e-8, beta 1 of 0.9, beta 2 of 0.999 and other initial parameters of Refs.
[59, 60, 2] are used to learn ESRGCNN model. Besides, parameters of ESRGCNN in the training
process are updated by optimizer of Adam [32].

The ESRGCNN model is conducted through Pytorch of 0.41 and Python of 2.7 on Ubuntu of
16.04. Besides, the supplementary PC with RAM of 16G is composed of one GPU of Inter Core
i7-7800 and two GPUs of Nvidia GeForce GTX 1080Ti, where these GPUs can accelerate the
running speed by Nvidia CUDA of 9.0 and cuDNN of 7.5.

4.4. Network analysis
It is known that diversity of expanding network can boost the expressive ability of deep net-

work [58]. Also, most of existing SR methods enhance the SR performance via treating all in-
formation of different channels, which may cause huge computational cost. Inspired by that, we
propose an enhanced super-resolution group CNN (ESRGCNN) by splitting channels to expand
the network width for enhancing expressive ability of low-frequency information in SISR. A signal
enhancement operation in this ESRGCNN is used to transfer long-distance contextual information
to solve long-term dependency problem, according to signal process idea and network design prin-
ciple. Additionally, an adaptive up-sampling mechanism is fused into the ESRGCNN to train a
SR model. More details of network design principle are shown as follows.

ESRGCNN is composed of two Conv+ReLU, several group enhanced convolutional blocks
(GEBs), an up-sampling operation mechanism and a Conv. Specifically, the first Conv+ReLU
is used to covert LR image into non-linear low-frequency features. It is known that deep layer
can learn more accurate features, according to VGG architecture [52]. Motived by that, the first
Conv+ReLU acts six stacked GEBs to mine more robust low-frequency features. The design of
each GEB breaks the rules of promoting SR performance and reducing complexity.

In terms of SR performance, a GEB uses correlation information of different channels to obtain
more accurate low-frequency features as follows. Firstly, first four convolutional layers in each
GEB can be split as two groups via group convolutions: GConv1 and GConv2. The GConv1 (also
called distilling part) and GConv2 (also called remaining part) take quarter and three quarters
of channel number of obtained features from current convolutional layer, respectively. To extract
richer deep features, we only choose GConv2 as input of next convolutional layer in main network.
Also, it can improve the training speed of SR model and reduce the complexity of SR network.
Additionally, most of existing SR networks only fuse hierarchical features of each layer or width
features of different sub-networks to improve the SR effect. For example, some of existing SR
methods only use current layer to act each latter layer in deep network for addressing long-term
dependency problem of deep network and promoting SR performance. However, this method
may increase execution time in recovering high-quality image. Taking design principle of deep
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network and efficiency in SISR into account, we combine deep feature enhancement and wide
feature fusion way to address problem above.

For the deep feature enhancement, we present a two-step mechanism to mine more accurate
low-frequency features. First step only fuses two adjacent GConv2 via residual learning opera-
tion to enhance the correlation of deep neighborhood context for improving the expressive ability
of low-frequency features, where its effectiveness is proved as illustrated in Table 1. That is, ES-
RGCNN without last CR and wide feature fusion (WFF) is superior to ESRGCNN without the last
CR, WFF and distilling parts in Peak signal-to-noise ratio (PSNR) [20] and structural similarity
index (SSIM) [20] on U100 for ×2 upscaling, where CR denotes Conv+ReLU.

Table 1: PSNR and SSIM of different SR methods on U100 for ×2.

Methods PSNR (dB) SSIM
ESRGCNN without last CR, WFF, distilling parts and remaining parts 12.86 0.3788

ESRGCNN without the last CR, WFF and distilling parts 31.20 0.9182
ESRGCNN without the last CR, WFF and group convolutions 31.23 0.9180

ESRGCNN without last CR and wide feature fusion (WFF) 31.31 0.9192
ESRGCNN without the last Conv+ReLU (CR) 31.97 0.9266

ESRGCNN 32.02 0.9268

Second step merges obtained features of each GConv1 through residual operation to enhance
the effect of deep hierarchical channel features. Specifically, GConv1 besides the first GConv1
indirectly by the previous GConv2, which can be shown in details in Section 3.3. Thus, the sec-
ond step is complementary with the first step, which can be introduced in wide feature fusion. The
mentioned fact is tested that ESRGCNN without the last CR, WFF and distilling parts outperforms
ESRGCNN without last CR, WFF, distilling parts and remaining parts on U100 for ×2 upscaling
as shown in Table 1. According to the previous section, it is known that ESRGCNN uses cor-
relations of different channels to strengthen effect of part channels rather than full channels for
improving SR performance, where its effectiveness and complexity are shown in Tables 2 and 3.
We can see that ESRGCNN without the last CR and WFF outperforms ESRGCNN without the last
CR, WFF and group convolutions in both of PSNR and SSIM of recovering high-quality images
of different sizes in Table 2, and complexity, i.e., parameters and flops in Table 3. Specifically, red
and blue lines are defined as the highest and second PSNR and SSIM values in Tables 1, 2 and 3,
respectively.

Table 2: PSNR and SSIM of different SR methods for recovering high-quality images with different sizes.

Methods
256× 256 512× 512

PSNR(dB)/SSIM PSNR(dB)/SSIM
ESRGCNN without the last CR, WFF and group convolutions 28.90/0.8576 30.41/0.8943

ESRGCNN without the last CR and WFF 28.90/0.8584 30.44/0.8952

Table 3: Complexity of different SR networks.

Methods Parameters Flops
ESRGCNN without the last CR, WFF and group convolutions 1,367K 10.21G

ESRGCNN without the last CR and WFF 1,202K 9.08G

It is known that different views can extract diverse information for image processing applica-
tions [73]. Inspired by that, we fuse features from different branches of one network to obtain
more complementary low-frequency features in Eq.(8). That is, using a concatenation operation
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Table 4: Average PSNR/SSIM results of different SR methods for three different upscaling (×2, ×3 and ×4) on Set5.

Dataset Methods
×2 ×3 ×4

PSNR/SSIM PSNR/SSIM PSNR/SSIM

Set5

Bicubic 33.66/0.9299 30.39/0.8682 28.42/0.8104
A+[61] 36.54/0.9544 32.58/0.9088 30.28/0.8603

RFL [50] 36.54/0.9537 32.43/0.9057 30.14/0.8548
SelfEx[22] 36.49/0.9537 32.58/0.9093 30.31/0.8619
CSCN[64] 36.93/0.9552 33.10/0.9144 30.86/0.8732
RED30[46] 37.56/0.9595 33.70/0.9222 31.33/0.8847
DnCNN[71] 37.58/0.9590 33.75/0.9222 31.40/0.8845

TNRD[5] 36.86/0.9556 33.18/0.9152 30.85/0.8732
FDSR[44] 37.40/0.9513 33.68/0.9096 31.28/0.8658

SRCNN[10] 36.66/0.9542 32.75/0.9090 30.48/0.8628
FSRCNN[11] 37.00/0.9558 33.16/0.9140 30.71/0.8657

RCN[51] 37.17/0.9583 33.45/0.9175 31.11/0.8736
VDSR[29] 37.53/0.9587 33.66/0.9213 31.35/0.8838
DRCN[30] 37.63/0.9588 33.82/0.9226 31.53/0.8854
CNF[49] 37.66/0.9590 33.74/0.9226 31.55/0.8856

LapSRN[34] 37.52/0.9590 - 31.54/0.8850
IDN[25] 37.83/0.9600 34.11/0.9253 31.82/0.8903

DRRN[55] 37.74/0.9591 34.03/0.9244 31.68/0.8888
BTSRN[13] 37.75/- 34.03/- 31.85/-
MemNet[56] 37.78/0.9597 34.09/0.9248 31.74/0.8893
CARN-M[2] 37.53/0.9583 33.99/0.9236 31.92/0.8903
EEDS+[62] 37.78/0.9609 33.81/0.9252 31.53/0.8869
DRFN[68] 37.71/0.9595 34.01/0.9234 31.55/0.8861

MADNet-L1[35] 37.85/0.9600 34.16/0.9253 31.95/0.8917
MSDEPC[41] 37.39/0.9576 33.37/0.9184 31.05/0.8797

MADNet-LF [35] 37.85/0.9600 34.14/0.9251 32.01/0.8925
LESRCNN[60] 37.57/0.9582 34.05/0.9238 31.88/0.8907
DIP-FKP[38] 30.16/0.8637 28.82/0.8202 27.77/0.7914

DIP-FKP+USRNet[38] 32.34/0.9308 30.78/0.8840 29.29/0.8508
KOALAnet[31] 33.08/0.9137 - 30.28/0.8658

FALSR-C[6] 37.66/0.9586 - -
SRCondenseNet[28] 37.79/0.9594 - -

SPSR[45] 30.40/0.8627 - -
DWSR[16] 37.43/0.9568 33.82/0.9215 31.39/0.8833

S-BayeSR [14] 31.50/0.8805 - -
ESRGCNN (Ours) 37.79/0.9589 34.24/0.9252 32.02/0.8920

fuses wide features of the first and second steps to obtain more robust features for SISR, where
the effectiveness of wide feature fusion is proved by ESRGCNN without last CR and wide feature
fusion (WFF) and ESRGCNN without the last CR, WFF and distilling parts in Table 1.

To prevent obtained features with redundant information of the mentioned operation, a two-
layer stacked convolutional layers are used to extract more accurate low-frequency features. Ad-
ditionally, due to deeper network architecture, memory ability of shallow layers gets poorer on the
whole network. Motivated by that, a signal enhancement idea is presented to extract long-distance
features for resolving long-term dependency problem in deep network. That is, this signal en-
hancement is implemented by using a RL technique to merge input and output of GEB as the
whole output of GEB, where its good result is validated ESRGCNN without the last Conv+ReLU
(CR) and ESRGCNN without last CR and wide feature fusion (WFF) as illustrated in Table 1. To
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Table 5: Average PSNR/SSIM results of different SR methods for three different upscaling (×2,×3 and×4) on Set14.

Dataset Methods
×2 ×3 ×4

PSNR/SSIM PSNR/SSIM PSNR/SSIM

Set14

Bicubic 30.24/0.8688 27.55/0.7742 26.00/0.7027
A+[61] 32.28/0.9056 29.13/0.8188 27.32/0.7491

RFL[50] 32.26/0.9040 29.05/0.8164 27.24/0.7451
SelfEx[22] 32.22/0.9034 29.16/0.8196 27.40/0.7518
CSCN[64] 32.56/0.9074 29.41/0.8238 27.64/0.7578

RED30 [46] 32.94/0.9144 29.61/0.8341 27.86/0.7718
DnCNN[71] 33.03/0.9128 29.81/0.8321 28.04/0.7672

TNRD[5] 32.51/0.9069 29.43/0.8232 27.66/0.7563
FDSR[44] 33.00/0.9042 29.61/0.8179 27.86/0.7500

SRCNN[10] 32.42/0.9063 29.28/0.8209 27.49/0.7503
FSRCNN[11] 32.63/0.9088 29.43/0.8242 27.59/0.7535

RCN[51] 32.77/0.9109 29.63/0.8269 27.79/0.7594
VDSR[29] 33.03/0.9124 29.77/0.8314 28.01/0.7674
DRCN[30] 33.04/0.9118 29.76/0.8311 28.02/0.7670
CNF[49] 33.38/0.9136 29.90/0.8322 28.15/0.7680

LapSRN[34] 33.08/0.9130 29.63/0.8269 28.19/0.7720
IDN[25] 33.30/0.9148 29.99/0.8354 28.25/0.7730

DRRN[55] 33.23/0.9136 29.96/0.8349 28.21/0.7720
BTSRN[13] 33.20/- 29.90/- 28.20/-
MemNet[56] 33.28/0.9142 30.00/0.8350 28.26/0.7723
CARN-M[2] 33.26/0.9141 30.08/0.8367 28.42/0.7762
EEDS+[62] 33.21/0.9151 29.85/0.8339 28.13/0.7698
DRFN[68] 33.29/0.9142 30.06/0.8366 28.30/0.7737

MADNet-L1[35] 33.38/0.9161 30.21/0.8398 28.44/0.7780
MSDEPC[41] 32.94/0.9111 29.62/0.8279 27.79/0.7581

MADNet-LF [35] 33.39/0.9161 30.20/0.8395 28.45/0.7781
LESRCNN[60] 33.30/0.9145 30.16/0.8384 28.43/0.7776
DIP-FKP[38] 27.06/0.7421 26.27/0.6922 25.65/0.6764

DIP-FKP+USRNet[38] 28.18/0.8088 27.76/0.7750 26.70/0.7383
KOALAnet[31] 30.35/0.8568 - 27.20/0.7541

FALSR-C[6] 33.26/0.9140 - -
SRCondenseNet[28] 33.23/0.9137 - -

SPSR[45] 26.64/0.7930 - -
DWSR[16] 33.07/0.9106 29.83/0.8308 28.04/0.7669

S-BayeSR [14] 28.08/0.7561 - -
ESRGCNN (Ours) 33.48/0.9166 30.29/0.8413 28.57/0.7801

make obtained low-frequency features from six GEBs smoother, we choose a CR to extract more
accurate low-frequency features. The good performance of last CR is tested by ESRGCNN and
ESRGCNN without the last CR in Table 1. Subsequently, to deal with varying scales, an adaptive
upsampling operation with a flexible valve in Eq.(12) is presented to train a blind model. Also,
it can transform obtained low-frequency features into high-frequency features. It acts a convolu-
tional layer, which is used to construct a high-quality image.
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Table 6: Average PSNR/SSIM results of different SR methods for three different upscaling (×2,×3 and×4) on B100.

Dataset Methods
×2 ×3 ×4

PSNR/SSIM PSNR/SSIM PSNR/SSIM

B100

Bicubic 29.56/0.8431 27.21/0.7385 25.96/0.6675
A+[61] 31.21/0.8863 28.29/0.7835 26.82/0.7087

RFL[50] 31.16/0.8840 28.22/0.7806 26.75/0.7054
SelfEx[22] 31.18/0.8855 28.29/0.7840 26.84/0.7106
CSCN[64] 31.40/0.8884 28.50/0.7885 27.03/0.7161
RED30[46] 31.98/0.8974 28.92/0.7993 27.39/0.7286
DnCNN[71] 31.90/0.8961 28.85/0.7981 27.29/0.7253

TNRD[5] 31.40/0.8878 28.50/0.7881 27.00/0.7140
FDSR[44] 31.87/0.8847 28.82/0.7797 27.31/0.7031

SRCNN[10] 31.36/0.8879 28.41/0.7863 26.90/0.7101
FSRCNN[11] 31.53/0.8920 28.53/0.7910 26.98/0.7150

VDSR[29] 31.90/0.8960 28.82/0.7976 27.29/0.7251
DRCN[30] 31.85/0.8942 28.80/0.7963 27.23/0.7233
CNF[49] 31.91/0.8962 28.82/0.7980 27.32/0.7253

LapSRN[34] 31.80/0.8950 - 27.32/0.7280
IDN[25] 32.08/0.8985 28.95/0.8013 27.41/0.7297

DRRN[55] 32.05/0.8973 28.95/0.8004 27.38/0.7284
BTSRN[13] 32.05/- 28.97/- 27.47/-
MemNet[56] 32.08/0.8978 28.96/0.8001 27.40/0.7281
CARN-M[2] 31.92/0.8960 28.91/0.8000 27.44/0.7304
EEDS+[62] 31.95/0.8963 28.88/0.8054 27.35/0.7263
DRFN[68] 32.02/0.8979 28.93/0.8010 27.39/0.7293

MADNet-L1[35] 32.04/0.8979 28.98/0.8023 27.47/0.7327
MSDEPC[41] 31.64/0.8961 28.58/0.7918 27.10/0.7193

MADNet-LF [35] 32.05/0.8981 28.98/0.8023 27.47/0.7327
LESRCNN[60] 31.95/0.8964 28.94/0.8012 27.47/0.7321
DIP-FKP[38] 26.72/0.7089 25.96/0.6660 25.15/0.6354

DIP-FKP+USRNet[38] 28.61/0.8206 27.29/0.7484 25.97/0.6902
KOALAnet[31] 29.70/0.8248 - 26.97/0.7172

FALSR-C[6] 31.96/0.8965 - -
SPSR[45] 25.51/0.6576 - -

DWSR[16] 31.80/0.8940 - 27.25/0.7240
S-BayeSR [14] 27.21/0.7091 - -

ESRGCNN (Ours) 32.08/0.8978 29.05/0.8036 27.57/0.7348

4.5. Comparisons with state-of-the-arts
To comprehensively test the performance of ESRGCNN, quantitative and qualitative analysis

are chosen to conduct experiments in this paper. Specifically, the quantitative analysis uses SR
results both of average PSNR and SSIM, running time of recovering high-quality image, model
complexities and perceptual quality, i.e., feature similarity index (FSIM) [72] of popular SR meth-
ods, including Bicubic [54], A+ [61], RFL [50], self-exemplars super-resolution (SelfEx) [22],
30-layer residual encoder-decoder network (RED30) [46], the cascade of sparse coding based
networks (CSCN) [64], trainable nonlinear reaction diffusion (TNRD) [5], a denoising convolu-
tional neural network (DnCNN) [71], fast dilated super-resolution convolutional network (FDSR)
[44], SRCNN [10], residue context network (RCN) [51], VDSR [29], context-wise network fu-
sion (CNF) [49], Laplacian super-resolution network (LapSRN) [34], information distillation net-
work (IDN) [25], DRRN [55], balanced two-stage residual networks (BTSRN) [13], MemNet
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Table 7: Average PSNR/SSIM results of different SR methods for three different upscaling (×2,×3 and×4) on U100.

Dataset Model
×2 ×3 ×4

PSNR/SSIM PSNR/SSIM PSNR/SSIM

U100

Bicubic 26.88/0.8403 24.46/0.7349 23.14/0.6577
A+[61] 29.20/0.8938 26.03/0.7973 24.32/0.7183

RFL[50] 29.11/0.8904 25.86/0.7900 24.19/0.7096
SelfEx[22] 29.54/0.8967 26.44/0.8088 24.79/0.7374
RED30[46] 30.91/0.9159 27.31/0.8303 25.35/0.7587
DnCNN[71] 30.74/0.9139 27.15/0.8276 25.20/0.7521

TNRD[5] 29.70/0.8994 26.42/0.8076 24.61/0.7291
FDSR[44] 30.91/0.9088 27.23/0.8190 25.27/0.7417

SRCNN[10] 29.50/0.8946 26.24/0.7989 24.52/0.7221
FSRCNN[11] 29.88/0.9020 26.43/0.8080 24.62/0.7280

VDSR[29] 30.76/0.9140 27.14/0.8279 25.18/0.7524
DRCN[30] 30.75/0.9133 27.15/0.8276 25.14/0.7510

LapSRN[34] 30.41/0.9100 - 25.21/0.7560
IDN[25] 31.27/0.9196 27.42/0.8359 25.41/0.7632

DRRN[55] 31.23/0.9188 27.53/0.8378 25.44/0.7638
BTSRN[13] 31.63/- 27.75/- 25.74-
MemNet[56] 31.31/0.9195 27.56/0.8376 25.50/0.7630
CARN-M[2] 30.83/0.9233 26.86/0.8263 25.63/0.7688
DRFN[68] 31.08/0.9179 27.43/0.8359 25.45/0.7629

MADNet-L1[35] 31.62/0.9233 27.77/0.8439 25.76/0.7746
MADNet-LF [35] 31.59/0.9234 27.78/0.8439 25.77/0.7751
LESRCNN[60] 31.45/0.9207 27.76/0.8424 25.78/0.7739
DIP-FKP[38] 24.33/0.7069 23.47/0.6588 22.89/0.6327

DIP-FKP+USRNet[38] 26.46/0.8203 24.84/0.7510 23.89/0.7078
KOALAnet[31] 27.19/0.8318 - 24.71/0.7427

FALSR-C[6] 31.24/0.9187 - -
SRCondenseNet[28] 31.24/0.9190 - -

SPSR[45] 24.80/0.9481 - -
DWSR[16] 30.46/0.9162 - 25.26/0.7548

S-BayeSR [14] 25.50/0.7528 - -
ESRGCNN (Ours) 32.02/0.9222 28.14/0.8512 26.10/0.7850

[56], cascading residual network mobile (CARN-M) [2], end-to-end deep and shallow network
(EEDS+) [62], deep recurrent fusion network (DRFN) [68], multiscale a dense lightweight net-
work with L1 loss (MADNet-L1) [35], multiscale a dense lightweight network with enhanced LF
loss (MADNet-LF ) [35], multi-scale deep encoder-decoder with phase congruency (MSDEPC)
[41], LESRCNN [60], DIP-FKP[38], DIP-FKP+USRNet[38], kernel-oriented adaptive local ad-
justment network (KOALAnet)[31], fast, accurate and lightweight super-resolution architectures
and models (FALSR-C)[6], SRCondenseNet[28], structure-preserving super resolution method
(SPSR)[45], residual dense network (RDN) [74], channel-wise and spatial feature modulation
(CSFM) [21], super-resolution feedback network (SRFBN) [37], deep wavelet super-resolution
(DWSR)[16], S-BayeSR [14], coarse-to-fine super-resolution CNN (CFSRCNN) [59] on four
benchmark datasets, i.e., Set5 [3], Set14 [3], B100 [47] and U100 [22] to verify the SISR per-
formance of the ESRGCNN. Quantitative analysis uses predicted SR images of different methods
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Table 8: Average PSNR/SSIM results of different SR methods for ×4 upscaling on B100.

Methods PSNR(dB) SSIM
RDN [74] 27.72 0.7419

CSFM [21] 27.76 0.7432
SRFBN [37] 27.72 0.7409

CFSRCNN [59] 27.53 0.7333
ESRGCNN (Ours) 27.57 0.7348

to visually test the SR effect of ESRGCNN.
Quantitative analysis: We select indexes of PSNR and SSIM on Set5, Set14, B100 and U100

to verify the SR performance of different techniques in Tables 4-7, where red and blue lines are
symbolized as the highest and second SISR results, respectively.

In Table 4, we see that ESRGCNN is superior to other popular SR methods, i.e., CARN-M,
MADNet-LF and LESRCNN in terms of PSNR on Set5 for ×3 and ×4 upscaling, respectively.
Also, as illustrated in Tables 4-7, ESRGCNN almost achieves the best performance for all the
three scales (i.e., ×2, ×3 and ×4). For instance, the ESRGCNN obtains a notable gain of 0.12dB
in PSNR and 0.0020 in SSIM on Set14 than that of the second MADNet-LF for ×4 upscaling
in Table 5. Also, ESRGCNN implements an excellent PSNR gain over the second MADNet-LF

by 0.36dB and a significant SSIM gain over the second MADNet-LF by 0.0073 on U100 for ×3
upscaling as reported in Table 7. Besides, the proposed ESRGCNN outperforms the state-of-the-
arts, including RDN, CSFM, SRFM and CFSRCNN on large dataset of B100 for SISR as given
in Table 8, where the best and second SISR performance are remarked as red line and blue line,
respectively. To verify validity of our ESRGCNN, we choose deep network cascade (DNC) [37],
fuzzy deep CNN (FDCNN)[15], adaptive network based fuzzy inference system (ANFIS) [27] and
image super-resolution method via a weighted random forest model (SWRF) [43] as comparative
methods for an image super-resolution with a certain scene. As shown in Tables 9 and 10, our
proposed method is superior to other popular super-resolution methods in certain scene. These
materials above prove that the proposed ESRGCNN has good robustness for recovering LR images
of different background.

It is known that execution time and complexity are important metrics for digital devices [59].
Inspired by that, using six popular SR methods, i.e., VDSR, DRRN, MemNet, RDN, SRFBN
and CRAN-M to predict high-quality images of different sizes (i.e., 256 × 256, 512 × 512 and
1024×1024) with×2 upscaling for testing running time of these methods. From Table 11, we can
see that the ESRGCNN obtains the fastest recovering speed in SISR. Also, eight SR networks (i.e.,
VDSR, DnCNN, DRCN, MemNet, CSFM, RDN, SRFBN and CFSRCNN) are used to conduct
experiments for comparing complexity of ESRGCNN. Specifically, total parameters and flops
[57] in Table 12 are denoted as complexity of computational cost and memory consumption for
predicting SR images of size 166× 166. Table 10 reports the ESRGCNN takes the fewest number
of flops for restoring HR images. Besides, FSIM value of perceptual quality is used to evaluate the
visual effect of different SR. Table 13 shows that our ESRGCNN achieves better effects in FSIM
values in comparison with other SR methods on B100 for ×2, ×3 and ×4, respectively. Besides,
the best and second performance are listed by red line and blue line in Tables 11-13, respectively.
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Figure 4: Visual effect of different methods for ×3 upscaling on U100. Also, obtained PSNR and SSIM of these meth-
ods are given as follows. (a) Bicubic (26.19 dB/0.7295), (b) VDSR (28.44 dB/0.8077), (c) DRCN (28.40 dB/0.8074),
(d) CARN-M (28.90 dB/0.8171), (e) LESRCNN (29.06 dB/0.8199), (f) CFSRCNN (29.55 dB/0.8298), (g) ACNet
(29.53 dB/0.8289) and (h) ESRGCNN (Ours) (29.58 dB/0.8303).

Table 9: Performance of different SR methods on a parrot image for ×3 upscaling.

Methods PSNR SSIM
DNC [7] 30.18 0.913

FDCNN [15] 35.47 0.957
ESRGCNN (Ours) 37.69 0.969

Table 10: Performance of different SR methods on a butterfly image for ×2 upscaling.

Methods PSNR SSIM
ANFIS [27] 29.94 0.942
SWRF [43] 32.19 -

ESRGCNN (Ours) 39.80 0.981

Qualitative analysis: Four SR methods (i.e., Bicubic, CARN-M, LESRCNN and ESRGCNN)
on U100 for ×3 upscaling and B100 for ×2 upscaling are used to construct high-quality images,
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Figure 5: Visual effect of different methods for ×2 upscaling on B100. Also, obtained PSNR and SSIM of these meth-
ods are given as follows. (a) Bicubic (27.63 dB/0.8220), (b) VDSR (30.50 dB/0.8956), (c) DRCN (30.47 dB/0.8938),
(d) CARN-M (30.60 dB/0.8967), (e) LESRCNN (30.94 dB/0.8987), (f) CFSRCNN (31.43 dB/0.9067), (g) ACNet
(31.24 dB/0.9036) and (h) ESRGCNN (Ours) (31.56 dB/0.9085).

Table 11: Running time (s) of different SR methods on recovering HR images of sizes 256 × 256, 512 × 512 and
1024× 1024 for ×2 upcaling.

Single image super-resolution
Size 256× 256 512× 512 1024× 1024

VDSR[29] 0.0172 0.0575 0.2126
DRRN[55] 3.063 8.050 25.23

MemNet[56] 0.8774 3.605 14.69
RDN [74] 0.0553 0.2232 0.9124

SRFBN [37] 0.0761 0.2508 0.9787
CARN-M[2] 0.0159 0.0199 0.0320

ESRGCNN (Ours) 0.0157 0.0185 0.0294

Table 12: Complexities of different SR methods for ×2 upscaling.

Methods Parameters Flops
VDSR[29] 665K 18.32G

DnCNN[71] 556K 15.32G
DRCN[30] 1,774K 48.88G

MemNet[56] 677K 18.66G
CSFM [21] 12,841K 89.26G
RDN [74] 21,937K 151.92G

SRFBN [37] 3,631K 26.57G
CFSRCNN [59] 1,200K 13.64G

ESRGCNN (Ours) 1,238K 9.33G
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Table 13: FSIM values of different SR methods for ×2, ×3 and ×4 upscaling on B100.

Dataset Methods ×2 ×3 ×4

B100

A+[61] 0.9851 0.9734 0.9592
SelfEx[22] 0.9976 0.9894 0.9760

SRCNN[10] 0.9974 0.9882 0.9712
CARN-M[2] 0.9979 0.9898 0.9765

LESRCNN[60] 0.9979 0.9903 0.9774
ESRGCNN (Ours) 0.9980 0.9905 0.9777

respectively. To easier observe definition of predicted SR images of different methods, one area
of the predicted SR image is amplified as observation area. It is known that the observation area
has higher clarity, the corresponding SR method has better SR effect. Figs. 4-5 show that selected
regions by ESRGCNN are clearer than that of other SR methods, which show the ESRGCNN
is very competitive in visual effect of SISR. According to mentioned quantitative analysis and
qualitative analysis, we can see that the proposed ESRGCNN is very suitable to SISR on digital
devices.

5. Conclusion

This paper presents an enhanced super-resolution group CNN (ESRGCNN) for SISR. ES-
RGCNN enhances the effect of deep and wide channel features by correlations of different chan-
nels to extract more accurate low-frequency information for SISR. Also, taking long-term de-
pendence problem of deep network into consideration, a signal enhancement operation is fused
into ESRGCNN for inheriting more long-distance contextual information. Besides, to deal with
low-resolution images of different sizes, an adaptive up-sampling operation is applied to achieve
a SR model. Comprehensive experiments on several benchmark datasets prove that ESRGCNN
achieves an excellent effect among SISR results, SISR efficiency, SR model complexity and visual
quality. We will use signal processing techniques, math ideas and deep learning theory to design
lightweight CNNs for blind image super-resolution in the future.

Acknowledgments

This work was supported in part by the Fundamental Research Funds for the Central Uni-
versities, China under Grant D5000210966, Shenzhen-Hong Kong Innovation Circle Category D
Project, China SGDX2019081623300177 (CityU 9240008), and in part by Ministry of science
and Technology, Taiwan, under Grant 110-2634-F-007-015-.

References

[1] Agustsson, E., Timofte, R., 2017. Ntire 2017 challenge on single image super-resolution: Dataset and study, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135.

[2] Ahn, N., Kang, B., Sohn, K.A., 2018. Fast, accurate, and lightweight super-resolution with cascading residual
network, in: Proceedings of the European Conference on Computer Vision (ECCV), pp. 252–268.

[3] Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L., 2012. Low-complexity single-image super-
resolution based on nonnegative neighbor embedding .

20



[4] Chang, H., Yeung, D.Y., Xiong, Y., 2004. Super-resolution through neighbor embedding, in: Proceedings of
the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.,
IEEE. pp. I–I.

[5] Chen, Y., Pock, T., 2016. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective
image restoration. IEEE transactions on pattern analysis and machine intelligence 39, 1256–1272.

[6] Chu, X., Zhang, B., Ma, H., Xu, R., Li, Q., 2021. Fast, accurate and lightweight super-resolution with neural
architecture search, in: 2020 25th International Conference on Pattern Recognition (ICPR), IEEE. pp. 59–64.

[7] Cui, Z., Chang, H., Shan, S., Zhong, B., Chen, X., 2014. Deep network cascade for image super-resolution, in:
European Conference on Computer Vision, Springer. pp. 49–64.

[8] Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L., 2019. Second-order attention network for single image super-
resolution, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11065–11074.

[9] Deng, L.J., Guo, W., Huang, T.Z., 2015. Single-image super-resolution via an iterative reproducing kernel
hilbert space method. IEEE Transactions on Circuits and Systems for Video Technology 26, 2001–2014.

[10] Dong, C., Loy, C.C., He, K., Tang, X., 2015. Image super-resolution using deep convolutional networks. IEEE
transactions on pattern analysis and machine intelligence 38, 295–307.

[11] Dong, C., Loy, C.C., Tang, X., 2016. Accelerating the super-resolution convolutional neural network, in: Euro-
pean conference on computer vision, Springer. pp. 391–407.
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