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Abstract

Deep learning has recently achieved best-in-class performance in several fields, including

biomedical domains such as X-ray images. Yet, data scarcity poses a strict limit on training

successful deep learning systems in many, if not most, biomedical applications, including those

involving brain images. In this study, we translate state-of-the-art transfer learning techniques for

single-subject prediction of simpler (sex and age) and more complex phenotypes (number of

people in household, household income, fluid intelligence and smoking behavior). We fine-tuned

2D and 3D ResNet-18 convolutional neural networks for target phenotype predictions from brain

images of ~40,000 UK Biobank participants, after pretraining on Youtube videos from the

Kinetics dataset and natural images from the ImageNet dataset. Transfer learning was effective

on several phenotypes, especially sex and age classification. Additionally, transfer learning in

particular outperformed deep learning models trained from scratch especially on smaller sample

sizes. The out-of-sample performance using transfer learning from previously learned

knowledge based on real world images and videos could unlock the potential in many areas of

imaging neuroscience where deep learning solutions are currently infeasible.
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Abrégé

L'apprentissage en profondeur a récemment atteint les meilleures performances de sa catégorie

dans plusieurs domaines, notamment des domaines biomédicaux tels que les images

radiographiques. Pourtant, la rareté des données pose une limite stricte à la formation de

systèmes d'apprentissage en profondeur réussis dans de nombreuses, sinon la plupart, des

applications biomédicales, y compris celles impliquant des images cérébrales. Dans cette

étude, nous traduisons des techniques d'apprentissage par transfert de pointe pour la prédiction

sur un seul sujet de phénotypes plus simples (sexe et âge) et plus complexes (nombre de

personnes dans le ménage, revenu du ménage, intelligence fluide et comportement tabagique).

Nous avons affiné les réseaux de neurones convolutifs ResNet-18 2D et 3D pour les prédictions

de phénotype cible à partir d'images cérébrales d'environ 40 000 participants à la biobanque

britannique, après une pré-formation sur des vidéos Youtube de l'ensemble de données Kinetics

et des images naturelles de l'ensemble de données ImageNet. L'apprentissage par transfert a

été efficace sur plusieurs phénotypes, en particulier la classification du sexe et de l'âge. De

plus, l'apprentissage par transfert en particulier a surpassé les modèles d'apprentissage en

profondeur formés à partir de zéro, en particulier sur des échantillons de plus petite taille. Les

performances hors échantillon utilisant l'apprentissage par transfert à partir de connaissances

acquises précédemment basées sur des images et des vidéos du monde réel pourraient libérer

le potentiel dans de nombreux domaines de la neuroscience de l'imagerie où les solutions

d'apprentissage en profondeur sont actuellement infaisables.
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1. Introduction

The advent of deep learning has brought forth transformative results in domains such as image

and video classification, natural language processing and audio recognition (LeCun et al.,

2015). Similarly, medical imaging has also seen state-of-the-art success through the application

of deep learning (Biswas et al., 2019). However, deep neural networks (DNN) need to ingest a

large amount of data to achieve effective predictions which are difficult to attain in many fields

including brain imaging. As a means to a possible turning point, the UK Biobank (UKBB) is the

largest currently existing biomedical dataset in the world. This resource also provides images

from various brain imaging modalities of ~40,000 participants, with the anticipated goal of

acquiring data from ~100,000 participants by 2022 (Miller et al., 2016). Previous research has

investigated the application of various machine learning models on brain imaging data from the

UKBB where DNNs often struggled to outperform simple linear models (Schulz et al., 2020).

These benchmarking analyses indicated that much larger datasets could be required for DNNs

to be able to fully exploit the non-linearities in the brain images to outperform even standard

linear models. As such, the challenge is to effectively train DNNs on brain imaging data despite

its data scarcity.

Transfer learning is the notion of using previously learned knowledge to aid in the learning of a

new and different task from another dataset. More specifically, a DNN that has been trained on

a larger and more general purpose dataset for a base task can then be fine-tuned for a wholly

different target task (Yosinski et al., 2014). A DNN is first trained on the base task using an

original dataset such as Kinetics to identify hierarchical non-linear representations in the

features. In contrast, the target task has a much smaller dataset and is more specific such as a

brain imaging classification task that is used to adapt the learned weights from the base task.

Although DNNs trained on videos from the Kinetics dataset or natural images from the
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ImageNet dataset learn to classify different tasks, the DNNs learn a non-linear cascade of

processing operations to aid in its overall generalization. For example, the lowest and most

general layers of a DNN typically detect features such as edges and curves that have been

reported to be universally useful in most image recognition tasks. In comparison to real life,

humans develop their vision through sights and sounds of real world experiences that in turn

help with more specific tasks over time. In this sense, transfer learning can be seen as the

acquisition of knowledge from a vast array of images and videos from a base task which in turn

can be fine-tuned to be used on a target task that may not be strictly related to the original base

task. There have been successful uses of transfer learning in other biomedical based machine

learning studies including diagnosis of appendicitis, analysis of abdominal images and detection

of Alzheimer’s Disease (Cheng & Malhi, 2017; Khan et al., 2019; Rajpurkar et al., 2020). By

means of transfer learning, it may be possible to take advantage of the massive amounts of

general knowledge based on general-purpose real-world images and actions to then fine-tune it

to our brain imaging classification tasks. In fact, bringing transfer learning to the brain imaging

community may be one of the best avenues to enable training of successful DNNs in areas that

suffer from data scarcity.

In the biology of the brain, sex differences have been found to be one of the most important

sources of variability (Ritchie et al., 2018). There have been observed sex differences in

previous studies focused on topics ranging from daily social lifestyle to psychiatric disorders

(Iraji et al., 2021; Kiesow et al., 2020). In order acknowledge and exploit the many distinctive

features found in the brains of males and female, we incorporate sex difference into our

machine learning pipelines. Additionally, phenotype targets as well as machine learning models

of varying complexities may exhibit different results. Therefore, it is important to investigate

various transfer learning techniques on 2D and 3D DNNs in a systematic manner to observe

any effects. Our goal thus in this study is to combine the UKBB brain imaging dataset with novel
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transfer learning techniques to take advantages of learned knowledge from large, general

purpose datasets to effectively train DNNs based on data split by sex.
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2. Literature Review

2.1. Imaging neuroscience and machine learning

Biomedical domains have seen shifts in datasets allowing for more complex data analysis using

varying levels of machine learning in recent years (Foster et al., 2014). Use cases such as

classification of arrhythmia from ECG signals is one of many examples of using machine

learning on biomedical datasets. However, challenges have needed to be overcome to be able

to successfully apply machine learning to such datasets: the limitations of sample sizes as well

as selecting and validating models appropriate for the datasets. Many such datasets offer

limited amounts of structured and labeled data which inherently places constraints on models

that are fit for the tasks. Models such as logistic regression and support vector machines (SVM)

have been the standard for analyses due to the lower computation requirements as well as

smaller sample sizes (Bzdok, 2017; Bzdok & Ioannidis, 2019; Efron & Hastie, 2016).

Additionally, data analysis tasks in the biomedical domain also often require inference and

association to better understand the effects of input variables on the classification results.

However, the focus put on inference compared to prediction is solely based on the overall goal

of the analysis (Bzdok et al., 2020; Bzdok & Ioannidis, 2019). There is also a growing focus on

personalized medicine along with increasing sample sizes. In such settings where the outcomes

may be uncommon or unobserved based on specific individuals, raw prediction performance

could be key (Bzdok et al., 2021).

Imaging neuroscience has recently experienced the arrival of large datasets such as the UKBB

with multiple modalities and high resolution images (Sudlow et al., 2015). Due to the larger

sample sizes as well as the vast array of target variables that are included in the UKBB, novel

analyses that were not previously possible are now able to be investigated. Not only does the
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UKBB aim to have ~100,000 participants’ brain imaging data by the year 2022, the scope in

addition to the size is impressive. Each participant also has lifestyle outcomes, biological

measurements, brain and body imaging as well as biomarkers. There are also follow-up data for

participants to enable longitudinal studies (Bycroft et al., 2018). Naturally, a dataset of such

scale and scope warrants experiments that include more complex, non-linear machine learning

models with potentially greater prediction capabilities.

A previous study carried out a set of thorough benchmarking analyses on the UKBB across

various machine learning models on brain imaging data (Schulz et al., 2020). It was found that

even while using MRI brain scans from the UKBB dataset, deep learning struggled to

outperform simpler linear models. The authors posit the main reason for this is data scarcity.

That is, even using the full UKBB dataset at the time, there may not be enough samples to

effectively train DNNs and that larger amounts of training data would be needed for better

applications of deep learning in imaging neuroscience. Similarly, He et al. had found that DNNs

were not able to outperform kernel regression models on functional connectivity data to predict

fluid intelligence (T. He et al., 2018). On the same note as Schulz et al., the authors state that

more samples may be required to apply deep learning to brain imaging.

2.2. Deep learning

Deep learning has become the state-of-the-art for many machine learning tasks. DNNs

encompass hierarchical non-linearities across many hidden layers, starting from the input

variables until the outputs. Whereas traditional machine learning techniques require manual

feature engineering of the input data, a DNN learns by itself the best feature representations

through its multi-level abstraction (Goodfellow et al., 2016). For example, in terms of an image

classification task, the early, lower layers of a DNN would typically learn basic shapes like
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edges, curves and color blobs. The later layers would build upon the hierarchy of the lower

layers to form together more specific shapes such as the tires of a car. The latest, highest layers

would then combine together the abstracted information learned from the previous layers to

classify images such as cars. DNNs in turn have produced state of the art results in tasks such

as image and video recognition, speech and audio recognition and natural language processing

(LeCun et al. 2015).

Convolutional neural networks (CNN) in particular have had tremendous success in image

processing. In 2012, AlexNet won the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC), sparking the vast advancements in this kind of technology (Krizhevsky et al., 2012).

Since then, there have been various types of CNN architectures providing iterative

improvements such as VGGNet, GoogleLeNet and ResNet (K. He et al., 2016; Simonyan &

Zisserman, 2014; Szegedy et al., 2014). The main goal for all these architectures has been to

improve overall prediction performance with some opting for more layers while others trying to

be more efficient. Generally, it has been found that deeper networks perform the best. ResNet,

for example, implements residual blocks to avoid the vanishing gradient problem while keeping

a greater number of layers.

The success of deep learning has also been ever increasing in medical imaging. In a

meta-analysis by Aggarwal et al. deep learning resulted in impressive classification accuracies

(Aggarwal et al., 2021). Opthalmology tasks for diagnosis of diabetic retinopathy, age-related

macular degeneration and glaucoma from retinal fundus images and optical coherence

tomography ranged between AUCs of 0.933 and 1. Respiratory imaging tasks for diagnosis of

lung nodules in lung cancer using chest X-rays or CT scans ranged from AUCs of 0.864 and

0.937. Breast imaging diagnosis from mammogram, ultrasound, MRI and digital breast

tomosynthesis had AUCs ranging from 0.868 and 0.909. In addition to just classification
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accuracy, Liu et al. have compared the performance of deep learning classification performance

to health-care professionals when classifying diseases from medical imaging (Liu et al., 2019).

In their meta-analysis across studies filtering for highest accuracy, they found deep learning

models to have a pooled sensitivity of 87.0% (95% CI 83.0-90.2) compared to 86.4% (95% CI

79.9-91.0) by health-care professionals. In terms of specificity, the deep learning models had a

pooled specificity of 92.5% (95% CI 85.1-96.4) compared to 90.5% (95% CI 80.6-95.7) by

health-care professionals. However, as Schulz et al. have found, deep learning struggles in the

domain of imaging neuroscience due to data scarcity (Schulz et al., 2020). The lack of

availability of enough data to train deep learning models effectively is not uncommon especially

for more specialized tasks. Such models cannot solve any task just through the complexity of

the models themselves; there needs to be a balance between the models and enough data

required to utilize them (Emmert-Streib et al., 2020).

2.3. Transfer learning

In order to more efficiently use deep learning with smaller datasets, transfer learning shows

potential. Although the ultimate goal for any given task could be to have sufficiently large sample

sizes, it is oftentimes infeasible to do so due to the novelty and difficulty of acquiring more data.

In such scenarios transfer learning can be applied, which uses knowledge learned from a larger

source dataset to then modify and apply the information on a smaller target dataset by

fine-tuning the weights of the DNN (Hutchinson et al., 2017; Yosinski et al., 2014). DNNs using

transfer learning have been shown to be effective in many tasks (Weiss et al., 2016).

Image recognition has benefited greatly from transfer learning. Comparing the performance of

models pretrained on ImageNet and models trained from scratch, Hossain et al. found transfer

learning to provide much better classification accuracy on the CIFAR-10 dataset with 70%
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compared to 38% when trained from scratch using a much smaller dataset (Hussain et al.,

2019). Additionally, Zawadzka-Gosk et al. found transfer learning exceeded 99% classification

accuracy on a car model recognition task (Zawadzka-Gosk et al., 2019). Video, which can be

seen as a series of 2D image frames, has also seen performance improvements from utilizing

transfer learning. Sarhan et al. found that first pretraining on the Kinetics dataset resulted in

better than state-of-the-art accuracy on sign language recognition on the ChaLearn249 Isolated

Gesture Recognition dataset. Audio processing has similarly benefitted from transfer learning.

Various speech recognition tasks have shown to train faster when first pretrained on a source

dataset indicating much more efficient training requiring less time. When fine-tuning is applied to

the pretrained models, the classification accuracies were often found to be greater than with

models trained from scratch (Kunze et al., 2017; Qin et al., 2018; Wang & Zheng, 2015). Even

natural language processing has been positively impacted by transfer learning. Howard et al.

show their ULMFiT model when using transfer learning vastly outperforms state of the art results

in multiple classification tasks while requiring 100x less data (Howard & Ruder, 2018).

Although the tasks and types of datasets differ, the main idea of reusing knowledge that is

acquired from a larger source dataset to be applied to a smaller target dataset is a common

theme across transfer learning applications. Not only does transfer learning outperform many

state of the art solutions, but the lower amount of training data is key for data-scare tasks such

as many in the biomedical domain. There have been many notable and successful uses of

transfer learning in the medical imaging field including tasks in kidney diagnosis, appendicitis

detection, classification of Alzheimer’s disease and abdominal ultrasound images (Cheng &

Malhi, 2017; Khan et al., 2019; Rajpurkar et al., 2020; Ravishankar et al., 2017). However, as

discussed by Schulz et al. brain imaging remains a challenge to effectively pair with deep

learning due to its limited sample sizes (Schulz et al., 2020).
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2.4. Phenotypes split by sex

Sex difference is one of the most important sources of variability in biology and the human brain

(Ritchie et al., 2018). In order to more effectively classify different phenotypes using brain

imaging data, we therefore also focused on sex differences in the brain. However,

acknowledging and applying sex differences in data analysis tasks have not been very common.

Sex plays a wide range of factors on human brain function (Cahill, 2014). Jazin et al. have

shown that the sex dimorphisms in the brain stem from molecular neuroscience to ultimately

modify signal pathways and thus need to be considered in studies where distinguishing between

males and females is possible (Jazin & Cahill, 2010).

Previous research shows many instances of effects of sex difference. When accounting for sex

difference, males and females have showcased varying anatomical measurements, differences

in antisocial behaviour, different brain volumes from early age trauma, distinct theta activity

during fluid intelligence tasks as well as social stimulation factors (Anderson et al., 2019;

Badura-Brack et al., 2020; Kiesow et al., 2020; Ritchie et al., 2018; Taylor et al., 2020). There

have also been noted differences between males and females in functional connectivity during

response inhibition, processing of the visual network as well as connectivity in intrinsic brain

dynamism (Cai et al., 2020; Chung et al., 2020; de Lacy et al., 2019). Due to sex difference

being such a great source of variability in the human brain, all the following analyses include

splitting of the phenotypes by male and female.
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3. Methods

3.1. Rationale and workflow summary

To explore how to make the most out of the sample sizes available today, we tested for gains

from transfer learning using 3D DNNs pretrained on Youtube videos from Kinetics and 2D DNNs

pretrained on images from ImageNet. The obtained pretrained DNNs were then fine-tuned to

our target classification tasks based on brain images. For training and fine-tuning the 2D DNNs,

single image slices were extracted from the 3D structural brain scans along the sagittal plane in

the anterior-posterior direction to use as input variables. In contrast, the 3D pretrained DNNs

were fed “videos of brain images” as inputs. That is, we interpreted each 3D structural brain

scan as an ordered series of 2D brain images along the sagittal plane in the anterior-posterior

direction for a given participant. In so doing, the full collection of component brain images were

used as input to our 3D DNNs. Using this feature engineering and model fine-tuning strategy,

we have examined prediction performance of a range of simple to more complex target

phenotypes. Doing so allowed for apples-to-apples comparisons across phenotypes and model

complexities.

We further split up the phenotypes by sex, which was critical in order to observe differences in

prediction accuracies for males and females. As a consequence, we systematically conducted

our phenotype prediction experiments (Table 1) broken up by sex across linear and non-linear

models of different representational capacities applied to the UKBB dataset. In particular, we

trained a series of complementary deep learning architectures, starting with a linear baseline

and progressing to 2D and 3D DNNs. We intended to observe the predictive capabilities of each

model on simple and more complex phenotypes. Being the largest dataset of its kind, the UKBB
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enables us to experiment with larger, more complex predictive models to investigate the

differences in predicting phenotypes than was possible before.

3.2. Population data resource

The UKBB dataset is the largest uniformly acquired brain imaging dataset in the world. In 2014

the UKBB initiative started collection of its brain imaging supplement. This extension included

acquisition of several brain MRI modalities from ~100,000 subjects by 2022 (Miller et al., 2016).

This study used the available data as of February/March 2020. As part of the large dataset,

various phenotype descriptors allow for a comprehensive investigation of classification tasks.

We used T1-weighted MRI imaging measures of grey matter morphology (sMRI, structural

magnetic resonance imaging) from 38,701 participants. We also examined the scenario where

only brain scans from a smaller subset from 5,000 subjects are available, which recapitulates

the sample size of the first UKBB imaging release (Miller et al., 2016). The smaller and larger

sample sizes make it possible to observe the effects of scaling behavior on our classification

tasks. All analyses in this study were conducted using the UKBiobank resource under Data

Access Application 25163. All participants were informed and consented to participate. Further

details about the consent procedures can be found online

(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200).

3.3. Target phenotypes

The present investigation considered six target phenotypes: sex, age, number in household,

household income, fluid intelligence and past smoking, following previous research (Schulz et

al., 2020). Using phenotypes from past research enabled a level of comparison to past work.

These phenotypes also range in expected challenge in extracting meaningful brain patterns for
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the goal of out-of-sample prediction. The sex and age phenotypes explain a lot of the signal

from the MRI-derived data. In contrast, the number in household, fluid intelligence, household

income and past smoking phenotypes present much more challenging classification tasks.

Table 1: Target phenotypes examined in our study.

Phenotype UKBB Data-Field Description

Sex 31 Participant’s sex at birth.

Number in household 709 Participant’s answer to the question “Including

yourself, how many people are living together

in your household?”

(https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id

=709)

Fluid intelligence 20016 Sum of the number of correct answers given

to the 13 fluid intelligence questions, such as

“add the following numbers together”, “stop

means the same as”, and “relaxed means the

opposite of”

(https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id

=20016)

Household income 738 Participant’s answer to the question, “What is
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the average total income before tax received

by your household?” The answers are

grouped into 7 categories: less than 18,000,

18,000 to 30,999, 31,000 to 51,999, 52,000 to

100,000, greater than 100,000, do not know

and prefer not to answer.

(https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id

=738)

Past smoking 1249 Participant’s answer to the question “In the

past, how often have you smoked tobacco?”

The answers are grouped into 5 categories:

smoked on most or all days, smoked

occasionally, just tried once or twice, and I

have never smoked.

(https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id

=1249)

Age 21003 Participant’s age at time of recruitment.

(https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id

=21003)
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For the large-sample scenario, sex classification included the whole ~40,000 subjects and the

classification tasks for the rest of the target phenotype predictions included ~20,000 subjects.

As an added layer of analysis in our study, we split all phenotype classification tasks by sex,

which led to all phenotypes (except sex itself) to have approximately half of the total subject

count. For example, the number in household phenotype was split into two classification tasks:

number in household (male) and number in household (female).

3.4. Model selection: cross validation schemes for linear baseline and DNNs

All of the analyses in this study across all phenotypes and sample sizes consisted of a linear

baseline using Linear Support Vector Classification (SVC) and non-linear deep neural networks

that can identify and exploit hierarchical non-linear representations in the input variables. Each

of the two types of model representation capacity conformed to a different cross validation

scheme. Along with the Linear SVC, we used a nested k-fold cross validation for 10 outer loops

and 5 inner loops using stratified shuffle splits. The stratified shuffle split first permuted the order

of the participant data points and split it into training and test sets while keeping the class

balance of the original dataset. The inner loop of the nested cross validation was used for

hyperparameter tuning and model selection. Instead, the outer loop is used to obtain a

principled estimate of the predictive accuracy that we would expect in fresh data points or newly

recruited participants. This procedure allowed us to get an unbiased measure of the predictive

ability of the model across multiple out-of-sample predictions. The described cross validation

scheme was used for all linear baseline predictions across sample sizes and phenotypes.

In comparison to the linear baseline, training the DNNs required a considerably larger

computational budget and took longer to complete. As a commonly practiced scheme in the

deep learning community (Goodfellow et al., 2016), we used a random, but fixed partition of our
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participant sample into an 80% training set, 10% validation set and 10% test set. In order to

explicitly quantify the uncertainty attributable to sampling variation, we obtained model

estimates across different model parameter initializations. Three different initializations were

used per sample size and per target phenotype. The initialization of the DNN parameters was

influenced by two sources of randomness: the initial random weights of the model and the order

of the input data passed into the mini-batches in stochastic gradient descent. The seeds for the

random generators across runs were kept consistent for future reproducibility. All other aspects

of the data analysis settings were kept constant across the 3 different parameter initializations to

ensure reproducibility of our results. For the pretrained models, fine-tuning was done on the

training set. All hyperparameter tuning was done exclusively on the validation set. Instead, the

participant data from the test set was solely used for out-of-sample prediction from the

hyperparameter-tuned model. The learning rates to train from scratch as well as the

discriminative learning rates for transfer learning are presented below (cf. Transfer learning). For

all of the considered DNN models, we used the ADAM optimization algorithm as solver (Kingma

& Ba, 2014), a batch size of 8 data points or participants and a maximum of 250 epochs with an

early stopping criterion that took effect at 10 epochs with no decrease in validation loss.

3.5. Linear baseline

Support vector machines have been a widely used classification algorithm for biomedicine

(Bishop, 2006; Murphy, 2012). In order to compare against other, more complex models as well

as to understand the efficacy of a linear model on the dataset, a Linear SVC for binary

classification was used as the linear baseline. The features of the Linear SVC were principal

components of the MRI scans.
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Using the Nilearn python library (https://nilearn.github.io), the brain scans were preprocessed by

slicing and dicing before model fitting. The MRI scans were resampled to a dimension of

91x108x91 based on the MNI mask resolution. Then, a mask was fitted on the MRI scans to

then transform each MRI scan using the predefined grey matter mask, which yielded a final

resolution of 296,811 grey matter voxels. The voxel features were z-scored across all

participants within the cross validation pipeline in the respective iterations followed by dimension

reduction using PCA within the grid search used for hyperparameter tuning (cf. below). Nested

cross validation was done with 10 outer loops and 5 inner loops using stratified shuffle splits. As

part of the nested cross validation, grid search was used for hyperparameter tuning of the

number of PCA components and the Linear SVC C regularization parameter. The grid search

values for the PCA components were 100 and 500 and the Linear SVC C values that control the

regularization strength as hyperparameter values were 0.1, 0.25, 1, 25 and 100. This

combination of hyperparameters led to an exploration of 10 different modeling regimes that were

probed and selected on the validation set.

3.6. Transfer learning techniques

DNNs have been shown to struggle to outperform linear models in certain brain imaging tasks,

which could partially be due to the smaller dataset sizes as demonstrated in our previous work

(Schulz et al., 2020). Transfer learning is a methodical toolkit that can potentially overcome

some of these limitations of earlier use in deep learning in brain imaging data. In transfer

learning, we can take the structured knowledge that a DNN has gleaned from one base task

and apply it to a different target task. To make progress towards this goal, we have built on

Kinetics and ImageNet as our large, general-purpose datasets (Deng et al., 2009; Kay et al.,

2017).
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Kinetics is one of the largest, openly available datasets that provides high-quality videos taken

from Youtube. It consists of a range of everyday human actions. More specifically, the

Kinetics-400 dataset is composed of 276,708 separate videos that were labeled to belong to

one of 400 different human actions. Such action categories include breakdancing, hitting a

baseball, windsurfing, eating spaghetti, riding a bike and so forth. For the purpose of the present

study, we considered the video clips from the Kinetics dataset to be analogous to the 3D MRI

brain scans as both are made up of a series of 2D frames. In addition to the Kinetics resource,

we also gauged the performance of using transfer learning on 2D slices taken from the 3D MRI

scans on the sagittal plane using the ImageNet dataset. ImageNet is one of the largest

repositories of 2D images with over 14,000,000 images spanning more than 20,000 categories

such as cats, dogs, helicopters, cars, apples, bananas, etc. It is one of the most widely used

datasets in machine learning, highlighted by the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC), which has been pivotal in the progress of computer vision, especially

convolutional neural networks (Russakovsky et al., 2015).

It is crucial when applying transfer learning to avoid catastrophic forgetting: the loss of

knowledge acquired from the base task while adapting the pretrained weights for the target task

(Kirkpatrick et al., 2017). The pretrained weights after training on the base task (i.e.,

distinguishing 400 actions in Youtube videos or 20,000 categories in natural images) encode the

knowledge that is gained from the base dataset. The lowest layers (closest to the input) of such

a model typically extract the most general features such as edges, curves, features similar to

Gabor filters and color blobs (Yosinski et al., 2014). The layers get more and more specific to

the actual prediction task at hand, with the highest layers (closest to the output) having the most

specific features. The base model with the pretrained weights is then further trained using the

target dataset which in our case is the UKBB brain scans. The training set of the target dataset

further adjusts the pretrained weights to adapt to the target task; this process is known as
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fine-tuning. Thus, the goal was to keep most of the learned general knowledge from the large,

general-purpose dataset (Kinetics or ImageNet) that are in the lower layers and in comparison,

update the specific knowledge in the higher layers more by modifying particular sets or layers of

weights in order to avoid catastrophic forgetting. We have used discriminative learning rates

(Figure 1, Table 2) to achieve this strategy (Howard & Ruder, 2018). By using discriminative

learning rates, the learning rates are largest in the highest, most specific layers and are reduced

for lower, more general layers, which in turn modifies the higher, specific layers more compared

to the lower, general layers. When not using transfer learning and instead training from scratch

(starting with random model weights), discriminative learning rates were not used. Through

hyperparameter tuning of all the target phenotypes, the learning rates were found to differ

across phenotypes, but were the same across the 2D and 3D models.

When benefitted from transfer learning, the final fully connected layer with softmax output is

changed to have the same number of classes as our target classification task, which is 2 for all

our prediction settings. Then, we assigned a starting learning rate to our fully connected layer

and divided the learning rates for each block before the current block to have a learning rate

that is half of the learning rate of the current block. In this manner, the learning rates were

inversely decreased as a function of the depth of the blocks. All our transfer learning techniques

utilized discriminative learning rates with consistency. When training from scratch, one learning

rate was used for all layers.
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Figure 1: Illustration of discriminative learning rates.

When training from scratch (above), the learning rate is the same across all layers and

convolutional blocks for a representative ResNet-18 model. When using discriminative learning

rates (below), the highest layer starting from the fully connected layer has the largest learning

rate. The convolutional block prior to the last fully connected layer has a learning rate that is half

of the fully connected layer. Similarly, earlier convolutional blocks have decreasing learning

rates as well, with the first convolutional block having the smallest learning rate.

Table 2: Learning rates used for discriminative learning rates and training from scratch

differed based on the target phenotype.

There were two sets of learning rates that were used to train the DNNs: one for training the

models from scratch (first column) and another for transfer learning to fine-tune using

discriminative learning rates (second column). Hyperparameter tuning was done on each of the

phenotypes (rows). When training from scratch, the learning rate was kept constant across the

layers of the model (for example, 0.0001 for the sex phenotype). However, when using transfer

learning and using discriminative learning rates, in order to preserve the the most general

knowledge in the lower layers and modify the higher layers more in comparison (cf. above),
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groups of convolutional layers organized in blocks in the ResNet models (cf. below) had

different learning rates. The starting learning rate indicates the learning rate of the last fully

connected layer (for example, 0.001 for the sex phenotype). From there, the block before the

fully connected layer would have a learning rate that is half of that of the fully connected layer.

Similarly, the earlier block would have a learning rate that is half of the block after it and so forth.

This process ultimately results in the learning rates of earlier layers in the model to have smaller

learning rates compared to the later layers.

Phenotype Learning rate Starting learning rate

(transfer learning using

discriminative learning

rates)

Sex 0.0001 0.001

Age 0.0001 0.001

Number in household 0.001 0.01

Household income 0.001 0.01

Fluid intelligence 0.001 0.01

Past smoking 0.001 0.01

3.7. Deep learning models

All of the deep learning analyses were done using both transfer learning as well as training from

scratch in order to observe differences (Figure 2). Analysis scenarios with training from scratch
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did not use the pretrained models. The DNNs used were of the residual nets (ResNet) family.

Compared to traditional DNNs that stack layers on top of each other, ResNets make use of a

residual mapping by introducing skipped connections between layers to overcome the vanishing

gradient problem for deeper networks. ResNets with deeper layers have been shown to be

more easily trainable than traditional DNNs with state-of-the-art results on benchmark tests (K.

He et al., 2016).

Figure 2: Workflow diagrams for the three distinct types of transfer learning approaches.

We have conducted 3 different types of pipelines to examine the potential of transfer learning in

brain-imaging (cf. below). The 3D analyses used a 3D DNN that was fine-tuned on brain images
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after pretraining on 240,000 Youtube videos from the Kinetics dataset, whereas the 2D analyses

used a 2D DNN pretrained on 1,280,000 images from the ImageNet dataset. The DNNs were

fine-tuned accordingly (cf. below) for each respective workflow. The 3D DNN (a) took in as input

full 3D structural brain scans. In contrast, the 2 different 2D analyses had different approaches

with (b) having a stacking approach across 21 separate slices and (c) using a canvas of 25 tiles

as a single input.

(a) 3D model: The 3D analysis used a 3D ResNet-18 model pretrained on 240,000 Youtube

videos from the Kinetics dataset

(https://pytorch.org/vision/0.8/models.html#torchvision.models.video.r3d_18). The 3D

ResNet-18 model has a total of 33,371,472 model parameters. This neural network architecture

is composed of 18 convolution layers with varying layer widths that are broken up in 4

convolution layer blocks. The last fully connected layer uses cross entropy loss. The input data

used were the full 3D structural MRI brain scans, with the frames being passed into the model

on the sagittal plane in the anterior-posterior direction. When trained on the Kinetics base task,

each individual frame from the videos were clipped to a dimension of 112x112. As such, the

input data is recommended to have frames of dimension 112x112 for the best performance. The

original pretrained model also scaled the video pixel values to a range from 0 to 1 and centered

them to 0 mean and scaled the variance to 1 using the mean and standard deviation values

derived from the Kinetics dataset (Tran et al., 2018). Accordingly, the 3D MRI scans were

resampled to a dimension of 112x134x112 using Nilearn, with the first and third axes being used

for the individual frames and the second axis serving as the number of frames or depth in the

anterior-posterior direction. Each scan was scaled to have values ranging from 0 to 1. When

using transfer learning, the data were standardized using the mean and standard deviation

values that are provided by Pytorch based on their pretraining of the 3D ResNet-18 model on
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Kinetics. The models were then trained with 3 different random parameter initializations and the

out-of-sample prediction accuracy was calculated for each.

(b) 2D model with stacking: The first 2D analysis used a 2D ResNet-18 model pretrained on

1,280,000 images from the ImageNet reference dataset

(https://pytorch.org/vision/0.8/models.html#torchvision.models.resnet18). Our model was trained

on the 2012 version of the Imagenet classification task which contains 1,280,000 images from

1000 classes. The 2D ResNet-18 model has 11,689,512 total parameters. It is composed of 18

convolution layers with varying layer widths that are broken up into 4 convolution layer blocks.

The last fully connected layer uses cross entropy loss. The input data used were 21 different 2D

slices of a whole-brain scan along the sagittal plane in the anterior-posterior direction. The

slices were selected based on taking the middle slice in the sagittal direction and the respective

10 slices from each side of the middle slice, totaling in 21 slices. The 2D ResNet-18 model also

had specific settings used for its training: each image used to train the pretrained model was

cropped to a dimension of 224x224, the data were scaled to have a range of 0 to 1 and

standardized similarly to (a) (K. He et al., 2016). Akin to the 3D analysis, the scans were

resampled, this time to a dimension of 224x268x224, with the first and third axes being used for

each individual slice, while the second axis serving as the depth in the anterior-posterior

position from which each of the 21 slices were picked. The values were again scaled and

standardized similarly to (a). Each of the 21 slices had a respective model that was trained

across 3 different model initializations. In order to aggregate the results from all 21 slices into a

single outcome, stacking was used. Stacking is an ensemble model averaging technique

(Hastie et al., 2009) that we have used in our previous research (Karrer et al., 2019). Multiple

base models can be used for separate classifications to then blend the results into a top-level,

composite model for a final prediction. The goal of stacking is hence to combine the outcome

predictions on a given data point or observation of multiple base models by learning a top-level
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linear combination between them to further improve the overall prediction accuracy (Hastie et

al., 2009). For our stacking analysis, instead of using a single slice, we were able to combine

and estimate the optimal weights from each of the 21 models per slice. The log odds derived

from the validation set from the 21 different DNNs per slice, which served as the base models,

were used to train a logistic regression model serving as the top-level stacking model. The C

value of the logistic regression that controls the regularization strength was kept to the default

value of 1. To get the final out-of-sample prediction accuracy, the test set softmax probabilities

from each of the 21 base models were used to get the final predictions from using the logistic

regression.

(c) 2D model with tiles: The second 2D analysis used the same a 2D ResNet-18 model as (b)

that was pretrained on 1,280,000 images from the ImageNet dataset

(https://pytorch.org/vision/0.8/models.html#torchvision.models.resnet18). The input data was a

canvas of dimension 1000x1000 that was filled with 25 2D slices (tiles) from the sagittal plane

as the data used to train, validate and test the DNNs. The tiles were selected based on the

dimension of each slice as compared to the dimension of the full 1000x1000 canvas. Filling the

canvas from the top left to the bottom right in a row by row manner, the tiles were fitted on the

full canvas on a 5x5 grid, resulting in 25 total tiles selected in an incremental step manner to

cover all of the slice indexes. Although the input data in this case is quite different than the full

3D scan and single 2D slices from (a) and (b), this tiling method manages to include more

information on a single image than (b) while being more computationally efficient since we no

longer needed to train one model per slice. Similar to (b), the values were scaled to have a

range of 0 to 1 and standardized when using transfer learning. The canvases were used as the

constructed conglomerate input data. The models were then trained with 3 different random

parameter initializations with each having an out-of-sample prediction accuracy.
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4. Results

We leveraged transfer learning using real-world videos and images using the Kinetics and

ImageNet datasets for all of our analyses. The massive amounts of data used to pretrain the

DNNs provided a robust set of features to further fine-tune to our brain imaging target tasks. We

also trained a Linear SVC as the linear baseline to compare against the more complex,

non-linear DNNs and examine if there are further non-linear patterns that can be extracted from

the data. Linear models have long been a standard used for data analysis due to computational

limitations (Bzdok, 2017; Bzdok & Ioannidis, 2019; Efron & Hastie, 2016). Based on previous

research, in a variety of common data-analysis scenarios, linear models can perform similarly

well as deep learning models in classification tasks utilizing the UKBB dataset in common

analysis scenarios (Schulz et al., 2020). With the ~40,000 participant release of the UKBB

Imaging resource, we could train more complex DNNs in various ways to further examine the

levels of prediction capabilities across a range of phenotype targets and sample sizes.

4.1. Sex classification

Our first analysis focused on sex classification, which is a binary classification task between

males and females (Figure 3, Table 3). We chose sex classification to start our investigation due

to several reasons. To start, it is the simplest of our examined phenotypes which enabled us to

evaluate our linear and non-linear models in a controlled manner. Previous research also

showed sex to be the most predictable among other phenotypes (Schulz et al., 2020). More

generally, as we examined sex difference in neuroimaging, starting our investigation with sex

classification was apt. All our analyses included sample sizes of 5,000 and 40,000 subjects in

order to identify any present scaling behavior.
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Figure 3: Transfer learning improves sex classification accuracy from brain scans in

three different deep learning architectures.

The first analysis was based on sex classification which served as an ingredient for later

analyses. The 3D DNNs were pretrained using 240,000 Youtube videos from the Kinetics

dataset and the 2D DNNs were pretrained on 1,280,000 images from the ImageNet dataset.

The x-axis shows two sample sizes to observe scaling behaviour and the y-axis shows the test

set out-of-sample prediction accuracy across the different models. The linear baseline error bars

are the standard deviations around the mean across nested cross validations. The DNN error

bars are standard deviations around the mean of out-of-sample prediction accuracies across 3

model initializations. DNNs pretrained on both Kinetics (3D) and ImageNet (2D) outperformed

DNNs that were trained from scratch. The improved performance from transfer learning was

greater on the smaller sample size.
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Table 3: Results from sex classification.

Linear

baseline

2D DNN

(non-pretrain

ed) with

stacking

2D DNN

(pretrained)

with stacking

2D DNN

(non-pretrain

ed) with tiles

2D DNN

(pretrained)

with tiles

3D DNN

(non-pretrain

ed)

3D DNN

(pretrained)

Sex (smaller

sample size)

96.38% ±

0.77%

95.13% ±

0.25%

96.67% ±

0.34%

96.73% ±

0.25%

97.40% ±

0.00%

97.33% ±

0.34%

98.20% ±

0.43%

Sex (larger

sample size)

97.63% ±

0.23%

98.35% ±

0.10%

98.37% ±

0.06%

98.89% ±

0.06%

99.03% ±

0.16%

99.10% ±

0.08%

99.41% ±

0.17%
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The 3D pretrained DNNs with transfer learning (98.20% ± 0.43% with the smaller sample size

and 99.40% ± 0.17% with the larger sample size) outperformed all candidate models,

consistently across both sample-size scenarios. We posit a few reasons for this. The Kinetics

dataset with its vast array of real world videos created a rich set of features that were aided by

further fine-tuning (cf. Methods) as the pretrained version of the 3D DNN outperformed its

non-pretrained (trained from scratch) counterpart. Additionally, when using the 3D DNNs, the full

3D information from the MRI brain scan was treated as a series of consecutive image frames

akin to a video, which preserved all of the information. In contrast, the 2D DNNs only used parts

of the full scan. We observed that the non-pretrained 3D DNN (97.33% ± 0.34% with the smaller

sample size and 99.10% ± 0.08% with the larger sample size) outperformed all other

non-pretrained 2D DNNs as well as the linear baseline. Using the full MRI scan in conjunction

with the rich features acquired from the Kinetics dataset resulted in the 3D pretrained DNNs

having the best out-of-sample prediction accuracies. Although the 2D DNNs underperformed

the 3D DNNs, the pretrained versions of both the stacking and tiles DNNs performed better than

the non-pretrained counterparts. This constellation of findings is similar to that of the 3D DNNs,

except in the case of the 2D DNNs, the ImageNet dataset was used to create the pretrained

weights in the 2D regime. The pretrained 2D DNNs with the 25 tiles canvas (97.40% ± 0.00%

with the smaller sampler size and 99.03% ± 0.16% with the larger sample size) performed better

than the stacking models with 21 slices (96.67% ± 0.34% with the smaller sample size and

98.37% ± 0.06% with the larger sample size). There could be a few reasons for this: the tiles

canvas had the information of 4 additional slices and the architecture provided an end to end

deep learning solution instead of an additional stacking procedure. As a whole, transfer learning

outperformed training from scratch for all 3 types of DNNs in our sex classification analyses.

In fact, for the smaller 5,000 sample size, the linear baseline (96.38% ± 0.77%) outperformed

the non-pretrained 2D DNN with stacking (95.13% ± 0.25%). When using transfer learning with
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the 2D DNN with stacking (96.67% ± 0.34%), the performance was on par with the linear

baseline which is important to note due to several reasons. For the smaller sample size, using

transfer learning in this instance was required to perform at a similar level to the linear baseline

for this particular model which could be due to a lack of training observations for the DNN. In

addition, the non-pretrained 2D DNN with tiles (96.73% ± 0.25%), with more information per

canvas, still only performed similarly to the linear baseline. When using the 2D DNNs with the

smaller sample size, we were only able to outperform the linear baseline when using the 25 tiles

canvas in conjunction with transfer learning. In the 2D and smaller sample size regime, transfer

learning was required to outperform the linear baseline for sex classification.

4.2. Classifying more complex phenotypes

Following sex classification, we directed attention to more complex phenotypes. We divided the

phenotypes into two groups by ascending difficulty, and, in each instance, models were fitted by

sex. The first group included i) age, ii) number of people in household and iii) household income

(Figure 4, Table 4). Although more complex than just sex classification, these phenotypes have

shown to be predictable in previous research (Kiesow et al., 2020; Schulz et al., 2020). Along

with sex, age is also known to be one of the most salient sources of variability in neuroimaging

data, which is hence among the phenotypes that are easiest to predict from brain scans (Ritchie

et al., 2018). The second group of phenotypes included i) fluid intelligence and ii) past smoking

(Figure 5, Table 5). All of the complex phenotype measures were dichotomized to maximize

class balance and enable binary classification. Due to the complex phenotypes being split up by

sex, the larger sample size in these instances involved brain images from 20,000 subjects while

the smaller sample size remained the same as sex classification with 5,000 subjects.
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Figure 4: Age exhibited benefits from transfer learning while number in household and

household income showcased clear classification differences between males and

females.

The first group of complex phenotypes were examined to observe any effects regarding how

transfer learning functions on increasing levels of prediction difficulty. The figure shows

out-of-sample prediction accuracies for the age, number in household and household income

phenotypes split by sex. The x-axis shows two sample sizes to observe scaling behaviour and

the y-axis shows the test set out-of-sample prediction accuracy across the different models. The

linear baseline error bars are the standard deviations around the mean across nested cross
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validations. The DNN error bars are standard deviations around the mean of out-of-sample

prediction accuracies across 3 model initializations. The horizontal dashed line (grey), when

present, is the chance accuracy. Among the first group of complex phenotypes, age is the most

predictable phenotype and it also shows effectiveness with transfer learning.
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Table 4: Results from age, number in household and household income classifications. Each phenotype was split by sex.

Linear

baseline

2D DNN

(non-pretrain

ed) with

stacking

2D DNN

(pretrained)

with stacking

2D DNN

(non-pretrain

ed) with tiles

2D DNN

(pretrained)

with tiles

3D DNN

(non-pretrain

ed)

3D DNN

(pretrained)

Age (male,

smaller

sample size)

78.28% ±

3.63%

81.00% ±

0.57%

80.53% ±

0.41%

79.00% ±

2.01%

80.47% ±

0.34%

79.80% ±

1.50%

81.20% ±

1.56%

Age (male,

larger sample

size)

78.39% ±

2.35%

83.43% ±

0.28%

83.05% ±

0.25%

83.07% ±

1.52%

83.05% ±

0.53%

83.45% ±

0.65%

84.64% ±

0.78%

Age (female,

smaller

sample size)

78.14% ±

1.07%

81.60% ±

1.07%

82.87% ±

0.81%

78.13% ±

1.48%

79.33% ±

1.73%

82.20% ±

0.65%

81.80% ±

1.23%
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Age (female,

larger sample

size)

79.90% ±

0.92%

82.95% ±

0.37%

83.88% ±

0.14%

84.53% ±

0.67%

83.36% ±

0.99%

83.34% ±

1.31%

84.06% ±

1.02%

Number in

household

(male, smaller

sample size)

58.30% ±

4.35%

63.80% ±

1.88%

64.93% ±

0.90%

66.60% ±

0.59%

66.20% ±

0.59%

66.00% ±

1.40%

65.40% ±

0.59%

Number in

household

(male, larger

sample size)

56.80% ±

2.31%

65.08% ±

0.18%

64.86% ±

0.16%

65.26% ±

0.35%

65.20% ±

0.27%

65.95% ±

0.23%

65.15% ±

0.26%

Number in

household

(female,

smaller

sample size)

58.92% ±

2.94%

69.33% ±

1.00%

67.60% ±

0.91%

66.87% ±

1.20%

65.60% ±

0.65%

66.93% ±

0.90%

67.53% ±

1.15%
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Number in

household

(female,

larger sample

size)

59.22% ±

2.39%

66.73% ±

0.42%

66.93% ±

0.22%

66.32% ±

0.30%

65.87% ±

0.36%

66.54% ±

0.25%

66.13% ±

0.61%

Household

income (male,

smaller

sample size)

53.72% ±

4.86%

60.20% ±

2.20%

58.73% ±

1.00%

59.87% ±

0.25%

59.47% ±

0.96%

61.20% ±

1.34%

59.40% ±

1.18%

Household

income (male,

larger sample

size)

55.58% ±

4.55%

62.32% ±

0.65%

62.95% ±

0.39%

63.11% ±

1.03%

62.61% ±

0.98%

63.03% ±

1.04%

62.51% ±

0.54%

Household

income

(female,

52.12% ±

4.11%

55.87% ±

1.04%

56.60% ±

2.14%

56.80% ±

0.71%

55.20% ±

1.96%

55.87% ±

0.66%

55.67% ±

1.82%
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smaller

sample size)

Household

income

(female,

larger sample

size)

55.63% ±

2.38%

61.58% ±

0.62%

60.91% ±

0.64%

60.52% ±

0.95%

61.05% ±

0.41%

62.56% ±

0.64%

59.96% ±

1.22%
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Whereas sex classification demonstrated clear benefits of transfer learning as well as the 3D

DNNs performing the best, we did not observe the same constellation of findings for the more

complex phenotypes. Among the target phenotypes of age, number in household and

household income, age was by far the most predictable phenotype, for both males and females.

The DNNs outperformed the linear baselines especially with the larger sample size, but there

was not a single model that outperformed all other models consistently. For age among males,

the pretrained 3D DNNs (81.20% ± 1.56% with the smaller sample size and 84.64% ± 0.78%

with the larger sample size) achieved the best prediction accuracies across sample sizes, but

among females for the smaller sample size, the pretrained 2D DNN with stacking (82.87% ±

0.81%) performed the best and as for the larger sample size, the non-pretrained 2D DNN with

tiles (84.53% ± 0.67%) and the pretrained 3D DNN (84.06% ± 1.02%) had similar results.

Although there was not a single best performing model, transfer learning did benefit

classification for the age phenotype for males and females. Furthermore, the effectiveness of

transfer learning in this setting was encouraging for more complex phenotype targets.

Compared to age, number in household and household income exhibited a greater difference in

prediction accuracy when split by sex. In terms of number in household, the female splits

exhibited higher prediction accuracies across sample sizes, with the best performing models

being the non-pretrained 2D DNN with stacking for the smaller sample size (69.33% ± 1.00%)

and the pretrained 2D DNN with stacking for the larger sample size (66.93% ± 0.22%). In

comparison to males, the best performing model was the non-pretrained 2D DNN with tiles

(66.60% ± 0.59%) for the smaller sample size and the non-pretrained 3D DNN (65.95% ±

0.22%) for the larger sample size. However, using the larger sample size did not improve the

results as the highest prediction accuracies were from the smaller sample size. In contrast,

household income showed the opposite effect where the results from males exhibited higher
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out-of-sample prediction accuracies across sample sizes, with the non-pretrained 3D DNN

(61.20% ± 1.34%) having the best results for the smaller sample size and the non-pretrained 2D

DNN with tiles (63.11% ± 1.03%) performing best on the larger sample size compared to

females where the pretrained 2D DNN with stacking (56.60% ± 2.14%) did best on the smaller

sample size and the non-pretrained 3D DNN (62.56% ± 0.64%) had the best results on the

larger sample size. In comparison to the age phenotype that showcased beneficial usage of

transfer learning, the number in household and household income phenotypes did not exhibit a

similarly equivocal set of findings.

We then examined further complex phenotypes: fluid intelligence and past smoking (Figure 5,

Table 5). These phenotypes were the most challenging classification tasks confronted in this

work. Similar to the number in household and household income phenotypes (cf. above), there

was no pattern of transfer learning greatly outperforming models that were trained from scratch

as the best performing models varied across both models and sample sizes (66.60% ± 0.59%

with non-pretrained 2D DNN with tiles for males in number in household in the smaller sample

size, 69.33% ± 1.00% with non-pretrained 2D DNN with stacking for females in number in

household in the smaller sample size, 63.11% ± 1.03% with non-pretrained 2D DNN with tiles

for males in household income in the larger sample size, 62.56% ± 0.64% with non-pretrained

3D DNN for females in household income in the larger sample size, 56.24% ± 0.34% with

non-pretrained 2D DNN with stacking for males in fluid intelligence in the larger sample size,

54.73% ± 0.75% with pretrained 2D DNN with stacking for females in fluid intelligence in the

larger sample size, 59.27% ± 0.93% with non-pretrained 3D DNN for males in past smoking in

the smaller sample size, 53.87% ± 1.32% with non-pretrained 2D DNN with tiles for females in

past smoking in the smaller sample size). Whereas sex classification displayed transfer learning

efficacy and a singular best performing model, the results from the more complex phenotypes

were much more mixed.
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Both across males and females, fluid intelligence showed the poorest predictability in both

sample-size scenarios, with females having slightly higher prediction accuracies with the

pretrained 2D DNN with stacking performing the best on both the smaller (52.73% ± 0.19%) and

larger (54.73% ± 0.75%) sample sizes. In comparison, although the past smoking phenotype

showed a similar lack of predictability in females with all results being close to chance, there

appeared to be a distinct increase in prediction accuracy among males, with the best performing

models being the non-pretrained 3D DNN for the smaller sample size (59.27% ± 0.93%) and the

non-pretrained 2D DNN with stacking for the larger sample size (59.08% ± 0.64%). Of note, all

examined DNN architectures showed overlapping results, which became even more similar

using the larger sample size when classifying past smoking in males.
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Figure 5: Fluid intelligence and past smoking showed different out-of-sample prediction

accuracies in males and females, despite the difficult prediction tasks.

The group of complex phenotypes provided higher levels of prediction difficulty. The figure

shows prediction accuracies for the fluid intelligence and past smoking phenotypes split by sex.

The x-axis shows two sample sizes to observe scaling behaviour and the y-axis shows the test

set out-of-sample prediction accuracy across the different models. The linear baseline error bars

are the standard deviations around the mean across nested cross validations. The DNN error

bars are standard deviations around the mean of out-of-sample prediction accuracies across 3

model initializations. The horizontal dashed line (grey), when present, is the chance accuracy.
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Fluid intelligence and past smoking were the two least predictable phenotypes both in terms of

lack of consistency using transfer learning as well as overall out-of-sample prediction accuracy,

but there were distinct differences in predictability for males and females.
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Table 5: Results from fluid intelligence and past smoking classifications (each phenotype was split by sex).

Linear

baseline

2D DNN

(non-pretrain

ed) with

stacking

2D DNN

(pretrained)

with stacking

2D DNN

(non-pretrain

ed) with tiles

2D DNN

(pretrained)

with tiles

3D DNN

(non-pretrain

ed)

3D DNN

(pretrained)

Fluid

intelligence

(male, smaller

sample size)

52.08% ±

2.90%

54.13% ±

1.98%

55.53% ±

1.79%

55.20% ±

0.00%

55.20% ±

0.00%

55.40% ±

0.59%

55.67% ±

0.66%

Fluid

intelligence

(male, larger

sample size)

52.13% ±

1.89%

56.24% ±

0.34%

55.84% ±

0.21%

55.37% ±

0.22%

55.22% ±

0.40%

55.84% ±

0.47%

55.26% ±

0.10%

Fluid

intelligence

50.74% ±

2.11%

52.13% ±

2.69%

52.73% ±

0.19%

48.67% ±

0.25%

51.47% ±

0.90%

51.40% ±

0.33%

50.60% ±

1.70%
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(female,

smaller

sample size)

Fluid

intelligence

(female,

larger sample

size)

51.11% ±

0.76%

53.38% ±

0.40%

54.73% ±

0.75%

53.23% ±

1.03%

54.50% ±

0.32%

52.53% ±

0.30%

53.17% ±

1.02%

Past smoking

(male, smaller

sample size)

51.28% ±

3.34%

58.13% ±

0.82%

56.33% ±

3.40%

58.47% ±

0.77%

58.20% ±

0.75%

59.27% ±

0.93%

56.67% ±

4.05%

Past smoking

(male, larger

sample size)

53.10% ±

1.89%

59.08% ±

0.64%

58.00% ±

0.83%

58.36% ±

0.44%

57.82% ±

0.64%

58.25% ±

0.38%

58.45% ±

1.10%
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Past smoking

(female,

smaller

sample size)

52.62% ±

0.98%

51.33% ±

1.32%

52.07% ±

2.08%

53.87% ±

1.32%

53.07% ±

1.36%

53.40% ±

0.57%

53.40% ±

1.14%

Past smoking

(female,

larger sample

size)

51.07% ±

0.77%

52.16% ±

1.04%

51.96% ±

0.72%

52.37% ±

0.56%

52.70% ±

0.09%

52.37% ±

0.22%

52.37% ±

0.07%
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It is also important to note the difference between the linear baseline and the deep learning

models across phenotype predictions. Among the simpler phenotypes such as sex and age,

although the DNNs mostly outperformed the linear baseline, the results were relatively closer in

an inverse manner to the complexity of the phenotype. For example, with sex being the simplest

to predict of our studied phenotypes, the linear baseline results are closer to the deep learning

results. A more complex phenotype than sex, age has a greater disparity of out-of-sample

prediction accuracy between the linear baseline and DNNs. For the remaining complex

phenotypes (number in household, household income, fluid intelligence and past smoking), the

differences in out-of-sample prediction accuracy between the linear baseline and the DNNs are

even greater when prediction above chance is possible. This could be due to any exploited

non-linearities by the DNNs that are not accessible to the linear model.
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5. Discussion

The data scarcity in brain-imaging presents a major challenge to effectively train DNNs in many

mission-critical settings. We used emerging transfer learning techniques that learned structured

a-priori knowledge (inductive biases) from general purpose datasets: the massive video

databases Youtube and the natural images from reference dataset ImageNet. Once trained, the

DNN parameters were then fine-tuned to refine the prediction of target tasks with much smaller

datasets (Deng et al., 2009; Kay et al., 2017). Although not directly related to brain scans, the

vast array of real-world actions depicted by the images and videos can provide the basis for a

strong, general feature extractor. By applying transfer learning in combination with the largest

biomedical dataset in the world in the UKBB, we show improved DNN predictions out-of-sample.

Sex difference is one of the most salient sources of variability in biology in general and in the

human brain in particular (Kiesow et al., 2020; Ritchie et al., 2018). As such, we aimed to apply

transfer learning to examine differences exhibited in classification tasks for phenotypes in males

and females from structural brain MRI scans. Varying extents of sex difference in the human

brain has been shown across many studies. A previous study based on the UKBB, which was

the largest study of its kind at the time, has reported sex difference in anatomical measurements

(Ritchie et al., 2018). Males were found to have larger volumes and surface area, while females

showed thicker cortices in a series of brain regions. The larger brain volumes were found to be

greater in some regions associated with emotion and decision making. Despite the differences,

there were overlaps in measurement distributions found between males and females. Machine

learning has also been previously applied to study specific phenotypes specifically in males or

females, such as antisocial behaviour in incarcerated individuals (Anderson et al., 2019). For

both datasets, the sex classification accuracy was found to be above 93%, suggesting that in

terms of brain imaging data, the male and female brains are differentiable across datasets.
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Brain volume has likewise been found to be related to male and female children with early age

traumatic life events such as death of a loved one, violence and accidents (Badura-Brack et al.,

2020). There was no main effect in regional volumes observed on the whole sample. However,

when broken out by sex, the authors reported significant differences: in the high trauma group,

girls exhibited greater volumes in the hippocampal and parahippocampal regions than boys,

with follow-up analyses showing increasing volumes for girls and decreasing volumes for boys.

Fluid intelligence is one of the phenotypes we examined in this study and it has also been

studied for its development in adolescents (Taylor et al., 2020). When examining the sample as

a whole, these authors found that older participants had stronger theta activity around the

calcarine fissure and in the cerebellar cortices compared to younger participants. More

specifically, when examining the sexes separately, although the mean performance for males

and females were found to be similar, males exhibited increased theta activity associated with

increasing age and faster reaction times, whereas females had decreased theta activity with

increasing age and better task accuracy. The authors also point out similarities of their findings

in conjunction with the Parieto-Frontal Integration Theory of intelligence (Jung & Haier, 2007),

noting that sex difference may play a significant role in the abstraction of fluid intelligence and

reasoning. The largest study of its kind examined phenotypes centered around social

stimulation (Kiesow et al., 2020). Complementary to Ritchie et al., although some degree of

overlap between males and females was observed, there were also differences found between

the sexes in phenotypes such as the number of people in the household and socioeconomic

status, both of which we examine in this study as well. Notably, the dissimilarities between

males and females in social interactions may hold significance in how males and females have

survived and evolved in social settings.
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Our objective was twofold. First, we applied transfer learning to more effectively train DNNs of

various levels of complexities in the data scarce brain imaging setting and compared the results

against DNNs trained from scratch as well as a linear baseline. Second, we further investigated

the effects of sex differences on machine learning pipelines, which has been suggested by

previous studies to be one of the key sources of variability in brain imaging across datasets and

analyses, on phenotypes of varying complexities (Schulz et al., 2020). Data scarcity in brain

imaging poses challenges to effectively exploit DNNs that require a large amount of data to train

robust features. In order to facilitate training of DNNs on brain imaging data, we applied transfer

learning using the Kinetics and ImageNet datasets, which are widely used to pretrain DNNs in

various kinds of tasks including ones in medical imaging, to build separate models for males

and females. More intuitively, we can think of humans experiencing real world events over time

to develop our vision which certainly plays a part in a medical health professional’s ability to

view and assess MRI brain scans.

To harness the learned structured knowledge encoded within the pretrained DNN parameters,

transfer learning has been used on many medical classification tasks. Transfer learning using

pretrained weights from the Kinetics dataset has been found to improve the diagnosis of

appendicitis from abdominal CT scans with an AUC of 0.810 (95% CI 0.725, 0.895) compared

to training from scratch with an AUC of 0.724 (95% CI 0.625, 0.823) (Rajpurkar et al., 2020).

The authors also note that the effectiveness of transfer learning would likely diminish with more

training samples in the target dataset, reiterating more general principles of transfer learning

regarding the size of the target dataset (Yosinski et al., 2014). Similarly, ImageNet pretrained

DNNs have previously aided classification of Alzheimer’s disease using brain MRI scans from

the ADNI dataset (Jack et al., 2008; Khan et al., 2019). The DNN was able to achieve

state-of-the-art results on both binary classification and a 3-class classification task between

Alzheimer’s Disease, mild cognitive impairment and normal control. The analysis used a small
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training dataset to achieve the results to emphasize the efficacy of transfer learning. For the

binary classification, the transfer learning approach showed improvements of 4% and 7% over

the previous state of the art and the 3-way classification task using transfer learning had an

improved prediction accuracy of 95.19% over 89.1% using random weights. The authors also

discuss freezing parts of the DNN, which relates to our usage of discriminative learning rates (cf.

Methods) to keep the general acquired knowledge from the pretraining step. There has also

been work done on multi-class classification of abdominal ultrasound images using ImageNet

pretrained DNNs (Cheng & Malhi, 2017). Comparing the classification results between a trained

radiologist and the DNNs, the models showcased a higher classification accuracy of 77.9% on

the test set compared to the radiologist’s 71.7%. The authors also noted that transfer learning

could effectively be used to train classification models for abdominal ultrasound images.

Transfer learning has also shown some mixed results in our analyses. A previous study focusing

on retinal fundus images to detect diabetic retinopathy and chest x-rays to detect 5 different

pathologies found that on the retina task, transfer learning performed comparably to training

from scratch, whereas the chest x-ray tasks had mixed results based on pathologies (Raghu et

al., 2019). The lack of consistent improvements using transfer learning on certain tasks may

signal the level of difficulty of a particular target task could potentially aid or hinder transfer

learning. Additionally, when trained on a smaller subset of the retina dataset, transfer learning

performed better than training from scratch with a prediction accuracy of 94.6% compared to

92.2%, with the larger models showing the best results compared to the smaller models. The

authors propose the reason for the larger models performing better with transfer learning could

be due to over-parameterization as well as feature reuse. Over-parameterization would occur if

the number of parameters would be quite large compared to the training dataset, which could

potentially introduce “memorization” of the data. There is also evidence of feature reuse of more

general features learned from ImageNet such as edges and curves. It was found that most
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meaningful features were from the lower layers containing the most general features, which is

our reason for using discriminative learning rates to train our DNNs. We took the learnings from

previous research of transfer learning on medical datasets and applied them to our brain

imaging data.

In our analyses, sex classification, which is the simplest of our 6 target phenotypes, showed

obvious benefits from using transfer learning across sample sizes. For both the smaller and

larger sample sizes, the pretrained 3D DNNs using transfer learning outperformed all other

models. The pretrained version of each model also outperformed its non-pretrained counterpart

for both sample sizes with a higher rate of improvement for the smaller sample size, a detail

consistent with other studies. Based on the results from sex classification, transfer learning

appears to be more effective on smaller datasets compared to larger datasets on two facets:

transfer learning was required to outperform the linear baseline when using the 2D DNNs and

relatively, comparing the non-pretrained and pretrained version of each model, we observed a

more significant prediction improvement for the smaller sample size (1.53 p.p., 0.67 p.p., 0.87

p.p. improvements respectively for the 2D DNN with stacking, 2D DNN with tiles and 3D DNN

for the smaller sample size compared to 0.02 p.p., 0.14 p.p., 0.31 p.p. for the larger sample

size). Although a larger training set would be expected to produce higher prediction accuracies,

the diminishing efficacy of transfer learning for the larger sample size can be explained by

revisiting the original reasoning for using transfer learning: to train models more effectively using

smaller sample sizes. It is possible that the current full UKBB dataset could have enough

observations to effectively train DNNs for sex classification. The encouraging results of transfer

learning on sex classification could signal that transfer learning could improve prediction

accuracy on brain imaging data. In order to further investigate this notion, we applied transfer

learning to additional phenotypes broken up by sex.
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The more complex phenotypes in our analyses included age, number in household, household

income, fluid intelligence and past smoking. Our results were mixed with regards to

out-of-sample prediction accuracies on the complex phenotypes. Age, which is the second

simplest phenotype we examined, showed some benefits of transfer learning among males

across sample sizes and for the smaller sample size for females. Generally, the prediction

accuracies for the age phenotype in males and females were overall similar. However, for the

rest of the phenotypes (number in household, household income, fluid intelligence and past

smoking), we did not find any consistent pattern of efficacy when transfer learning was applied

to either sex or sample size, with different models performing the best for different phenotypes.

There was no pattern of greater prediction accuracy improvement in the smaller sample size

when transfer learning was used nor was there any consistent, best performing model across

sample sizes. It is interesting to note as well that these complex phenotypes in general are

difficult prediction tasks. In conjunction with the lack of pattern using transfer learning, it is

possible that the general features that are extracted from the base dataset may not be as useful

in such settings. As Raghu et al. discuss in their work regarding feature reuse, it could be

possible that despite preserving the knowledge in the lower layers, for more complicated tasks,

it is oftentimes difficult to outperform training from scratch.

Although transfer learning did not exhibit clear benefits when predicting complex phenotypes in

terms of improved out-of-sample prediction accuracy, there were differences in the overall

results in males and females. For the number in household phenotype, females showed higher

out-of-sample prediction accuracies for the smaller and larger sample sizes; a detail that is

consistent with previous research showing household sizes were associated with greater brain

volume overlap in males (Kiesow et al., 2020), which could mean lower variability. Features with

high variability can help a machine learning model exploit predictive patterns in the dataset.

Conversely, lower variability could in turn lower predictive power. The household income
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phenotype had the opposite effect with males having better out-of-sample prediction accuracies.

Again, the results were in line with previous research which found there to be greater overlap in

brain volume in association with household income among females which could suggest lower

variability (Kiesow et al., 2020) and predictive power. Although difficult classification tasks, the

number in household and household income phenotypes showed divergent patterns in males

and females, whereas fluid intelligence was found to be the most challenging phenotype. In

several meta-analyses examining cognitive skills that could be related to fluid intelligence

(Feingold, 1988; Hines, 2010; Janet S. Hyde & Linn, 1988; J. S. Hyde et al., 1990), it was found

for tasks and categories potentially related to fluid intelligence such as SAT mathematics,

computational skills, math concepts, verbal fluency, perceptual speed, vocabulary and SAT

verbal, there was very little to no differences between males and females. Hyde et al. also note

that the magnitude of any differences in the measured tasks tend to diminish over time. By the

same logic, with the recent UKBB dataset, we could expect decreasing differences in such

phenotypes across sexes. The difficulty of the fluid intelligence classification task is also

consistent with previous research (Schulz et al., 2020). In comparison to previous analyses

carried out by Schulz et al., we observed a similar pattern of level of difficulty for prediction

tasks, with sex classification performing the best, age being the second simplest phenotype to

predict, number in household and household income being of similar difficulty following age, and

fluid intelligence being the least predictable of our set of phenotypes. Additionally, we examined

past smoking in the current study where males had greater out of sample prediction accuracies

compared to females who had accuracies around chance. There have been other studies

showing greater reactivity to smoking in males compared to females (Dumais et al., 2017).

However, it has also been noted that smoking differences among males and females have

decreased over time (Peters et al., 2014), so future work could include further splits by both sex

and age to observe differences. In all of the stated phenotypes, it is obvious there is a drop in

predictive performance after sex and age classification. As studied before by Ritchie et al., there
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are significant distribution overlaps in brain measurements in males and females which could

lead to challenges in predicting certain phenotype targets.

Our overarching goal has been to combine state-of-the-art transfer learning techniques along

with the UKBB dataset to enhance training of DNNs in the data-scarce brain imaging setting.

Moreover, we divided the dataset by sex for a range of phenotype complexities to observe sex

differences and most successfully train our machine learning models. Although we showcased

both the success of transfer learning as well as shortcomings in our selected phenotypes, we

also observed distinct sex differences in out-of-sample prediction performance in our results.

However, the importance of studying sex differences goes beyond raw prediction capabilities.

Despite being one of the most conserved differences through evolution, potential gains of

acknowledging sex difference in machine learning pipelines has remained neglected in research

(Klein et al., 2015). Incorporating sex differences in analyses can potentially help in discovery

and innovation in science and engineering (Tannenbaum et al., 2019). Conforming to the status

quo of experimental designs often ignores sex differences in datasets. More thorough analyses

split up by sex could potentially surface patterns that would otherwise be hidden for some of the

greatest challenges facing us in the 21st century including human therapeutics, safer products,

reducing AI bias, equalizing stereotypes and reproducibility of algorithms (Tannenbaum et al.,

2019). Therefore, it is key for us to understand the minutiae of sex differences to better train

machine learning models using transfer learning in order to ultimately affect positive changes.
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6. Conclusion

The focus of this study has been to draw upon the state of the art transfer learning techniques to

improve brain imaging classification tasks to overcome important challenges imposed by data

scarcity. To this end, the integration of transfer learning with brain imaging shows promise in

utilizing deep learning to maximize out-of-sample prediction accuracies with more room for

improvement in fine-tuning models with more complex phenotypes. Although this study did not

focus on clinical tasks, it could be possible to extend models to tasks such as diagnosis

detection, risk prediction and automated treatment selection. There are many examples of

studies focusing on clinical tasks in the brain imaging setting, but it is paramount that the model

pipelines are correctly implemented for specific diseases and tasks due to issues such as

incorrect cross-validation and overfitting (Mateos-Pérez et al., 2018). The added nuance of sex

differences in datasets could also play a significant role in exploiting existing variabilities in

datasets as is the case in autism (Baron-Cohen et al., 2005). However, today’s biggest

problems such as precision medicine and AI in healthcare exhibit ever increasing complexities.

In order to better tackle such challenges, instead of applying singular facets such as larger

datasets, certain deep learning models or data that is split by sex, it is more likely that richer

solutions composed of various different methods and techniques could be required. Transfer

learning is an increasingly active area of research that is focused on more efficient AI and it

could be key in imaging neuroscience advancements.

58

https://paperpile.com/c/3GzRj8/SmxPv
https://paperpile.com/c/3GzRj8/lagNv


References

Aggarwal, R., Sounderajah, V., Martin, G., Ting, D. S. W., Karthikesalingam, A., King, D.,

Ashrafian, H., & Darzi, A. (2021). Diagnostic accuracy of deep learning in medical imaging:

a systematic review and meta-analysis. NPJ Digital Medicine, 4(1), 65.

Anderson, N. E., Harenski, K. A., Harenski, C. L., Koenigs, M. R., Decety, J., Calhoun, V. D., &

Kiehl, K. A. (2019). Machine learning of brain gray matter differentiates sex in a large

forensic sample. Human Brain Mapping, 40(5), 1496–1506.

Badura-Brack, A. S., Mills, M. S., Embury, C. M., Khanna, M. M., Klanecky Earl, A., Stephen, J.

M., Wang, Y.-P., Calhoun, V. D., & Wilson, T. W. (2020). Hippocampal and parahippocampal

volumes vary by sex and traumatic life events in children. Journal of Psychiatry &

Neuroscience: JPN, 45(4), 288–297.

Baron-Cohen, S., Knickmeyer, R. C., & Belmonte, M. K. (2005). Sex differences in the brain:

implications for explaining autism. Science, 310(5749), 819–823.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Biswas, M., Kuppili, V., Saba, L., Edla, D. R., Suri, H. S., Cuadrado-Godia, E., Laird, J. R.,

Marinhoe, R. T., Sanches, J. M., Nicolaides, A., & Suri, J. S. (2019). State-of-the-art review

on deep learning in medical imaging. Frontiers in Bioscience , 24, 392–426.

Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T., Sharp, K., Motyer, A., Vukcevic,

D., Delaneau, O., O’Connell, J., Cortes, A., Welsh, S., Young, A., Effingham, M., McVean,

G., Leslie, S., Allen, N., Donnelly, P., & Marchini, J. (2018). The UK Biobank resource with

deep phenotyping and genomic data. Nature, 562(7726), 203–209.

Bzdok, D. (2017). Classical Statistics and Statistical Learning in Imaging Neuroscience.

Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00543

Bzdok, D., Engemann, D., & Thirion, B. (2020). Inference and Prediction Diverge in

Biomedicine. In Patterns (Vol. 1, Issue 8, p. 100119).

59

http://paperpile.com/b/3GzRj8/2GF7
http://paperpile.com/b/3GzRj8/2GF7
http://paperpile.com/b/3GzRj8/2GF7
http://paperpile.com/b/3GzRj8/kusxC
http://paperpile.com/b/3GzRj8/kusxC
http://paperpile.com/b/3GzRj8/kusxC
http://paperpile.com/b/3GzRj8/F3Ot9
http://paperpile.com/b/3GzRj8/F3Ot9
http://paperpile.com/b/3GzRj8/F3Ot9
http://paperpile.com/b/3GzRj8/F3Ot9
http://paperpile.com/b/3GzRj8/lagNv
http://paperpile.com/b/3GzRj8/lagNv
http://paperpile.com/b/3GzRj8/wtgUi
http://paperpile.com/b/3GzRj8/kSjU9
http://paperpile.com/b/3GzRj8/kSjU9
http://paperpile.com/b/3GzRj8/kSjU9
http://paperpile.com/b/3GzRj8/MdoH
http://paperpile.com/b/3GzRj8/MdoH
http://paperpile.com/b/3GzRj8/MdoH
http://paperpile.com/b/3GzRj8/MdoH
http://paperpile.com/b/3GzRj8/IX0YY
http://paperpile.com/b/3GzRj8/IX0YY
http://dx.doi.org/10.3389/fnins.2017.00543
http://paperpile.com/b/3GzRj8/pRiF
http://paperpile.com/b/3GzRj8/pRiF


https://doi.org/10.1016/j.patter.2020.100119

Bzdok, D., & Ioannidis, J. P. A. (2019). Exploration, Inference, and Prediction in Neuroscience

and Biomedicine. Trends in Neurosciences, 42(4), 251–262.

Bzdok, D., Varoquaux, G., & Steyerberg, E. W. (2021). Prediction, Not Association, Paves the

Road to Precision Medicine. JAMA Psychiatry , 78(2), 127–128.

Cahill, L. (2014). Fundamental sex difference in human brain architecture [Review of

Fundamental sex difference in human brain architecture]. Proceedings of the National

Academy of Sciences of the United States of America, 111(2), 577–578.

Cai, B., Zhang, G., Zhang, A., Hu, W., Stephen, J. M., Wilson, T. W., Calhoun, V. D., & Wang,

Y.-P. (2020). A GICA-TVGL framework to study sex differences in resting state fMRI

dynamic connectivity. Journal of Neuroscience Methods, 332, 108531.

Cheng, P. M., & Malhi, H. S. (2017). Transfer Learning with Convolutional Neural Networks for

Classification of Abdominal Ultrasound Images. Journal of Digital Imaging, 30(2), 234–243.

Chung, Y. S., Calhoun, V., & Stevens, M. C. (2020). Adolescent sex differences in

cortico-subcortical functional connectivity during response inhibition. Cognitive, Affective &

Behavioral Neuroscience, 20(1), 1–18.

de Lacy, N., McCauley, E., Kutz, J. N., & Calhoun, V. D. (2019). Sex-related differences in

intrinsic brain dynamism and their neurocognitive correlates. NeuroImage, 202, 116116.

Deng, J., Dong, W., Socher, R., Li, L., Kai Li, & Li Fei-Fei. (2009). ImageNet: A large-scale

hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern

Recognition, 248–255.

Dumais, K. M., Franklin, T. R., Jagannathan, K., Hager, N., Gawrysiak, M., Betts, J., Farmer, S.,

Guthier, E., Pater, H., Janes, A. C., & Wetherill, R. R. (2017). Multi-site exploration of sex

differences in brain reactivity to smoking cues: Consensus across sites and methodologies.

Drug and Alcohol Dependence, 178, 469–476.

Efron, B., & Hastie, T. (2016). Computer Age Statistical Inference. Cambridge University Press.

60

http://paperpile.com/b/3GzRj8/pRiF
http://dx.doi.org/10.1016/j.patter.2020.100119
http://paperpile.com/b/3GzRj8/qktuT
http://paperpile.com/b/3GzRj8/qktuT
http://paperpile.com/b/3GzRj8/3HYC
http://paperpile.com/b/3GzRj8/3HYC
http://paperpile.com/b/3GzRj8/94s5
http://paperpile.com/b/3GzRj8/94s5
http://paperpile.com/b/3GzRj8/94s5
http://paperpile.com/b/3GzRj8/JhfGz
http://paperpile.com/b/3GzRj8/JhfGz
http://paperpile.com/b/3GzRj8/JhfGz
http://paperpile.com/b/3GzRj8/Ru8xM
http://paperpile.com/b/3GzRj8/Ru8xM
http://paperpile.com/b/3GzRj8/yzqU5
http://paperpile.com/b/3GzRj8/yzqU5
http://paperpile.com/b/3GzRj8/yzqU5
http://paperpile.com/b/3GzRj8/DtUvp
http://paperpile.com/b/3GzRj8/DtUvp
http://paperpile.com/b/3GzRj8/E0XJQ
http://paperpile.com/b/3GzRj8/E0XJQ
http://paperpile.com/b/3GzRj8/E0XJQ
http://paperpile.com/b/3GzRj8/l5KbC
http://paperpile.com/b/3GzRj8/l5KbC
http://paperpile.com/b/3GzRj8/l5KbC
http://paperpile.com/b/3GzRj8/l5KbC
http://paperpile.com/b/3GzRj8/x56t4


Emmert-Streib, F., Yang, Z., Feng, H., Tripathi, S., & Dehmer, M. (2020). An Introductory Review

of Deep Learning for Prediction Models With Big Data. Frontiers in Artificial Intelligence, 3,

4.

Feingold, A. (1988). Cognitive gender differences are disappearing. The American Psychologist,

43(2), 95.

Foster, K. R., Koprowski, R., & Skufca, J. D. (2014). Machine learning, medical diagnosis, and

biomedical engineering research - commentary. Biomedical Engineering Online, 13, 94.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, Second Edition. Springer Science & Business Media.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition.

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.

He, T., Kong, R., Holmes, A. J., Sabuncu, M. R., Eickhoff, S. B., Bzdok, D., Feng, J., & Yeo, B.

T. T. (2018). Is deep learning better than kernel regression for functional connectivity

prediction of fluid intelligence? 2018 International Workshop on Pattern Recognition in

Neuroimaging (PRNI), 1–4.

Hines, M. (2010). Sex-related variation in human behavior and the brain. Trends in Cognitive

Sciences, 14(10), 448–456.

Howard, J., & Ruder, S. (2018). Universal Language Model Fine-tuning for Text Classification.

Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), 328–339.

Hussain, M., Bird, J. J., & Faria, D. R. (2019). A Study on CNN Transfer Learning for Image

Classification. Advances in Computational Intelligence Systems, 191–202.

Hutchinson, M. L., Antono, E., Gibbons, B. M., Paradiso, S., Ling, J., & Meredig, B. (2017).

Overcoming data scarcity with transfer learning. In arXiv [cs.LG]. arXiv.

http://arxiv.org/abs/1711.05099

61

http://paperpile.com/b/3GzRj8/0xE4
http://paperpile.com/b/3GzRj8/0xE4
http://paperpile.com/b/3GzRj8/0xE4
http://paperpile.com/b/3GzRj8/fMhzO
http://paperpile.com/b/3GzRj8/fMhzO
http://paperpile.com/b/3GzRj8/a8Kc
http://paperpile.com/b/3GzRj8/a8Kc
http://paperpile.com/b/3GzRj8/WuOLm
http://paperpile.com/b/3GzRj8/hsUgv
http://paperpile.com/b/3GzRj8/hsUgv
http://paperpile.com/b/3GzRj8/3Lwy4
http://paperpile.com/b/3GzRj8/3Lwy4
http://paperpile.com/b/3GzRj8/OCPI
http://paperpile.com/b/3GzRj8/OCPI
http://paperpile.com/b/3GzRj8/OCPI
http://paperpile.com/b/3GzRj8/OCPI
http://paperpile.com/b/3GzRj8/XQ95K
http://paperpile.com/b/3GzRj8/XQ95K
http://paperpile.com/b/3GzRj8/XkKPT
http://paperpile.com/b/3GzRj8/XkKPT
http://paperpile.com/b/3GzRj8/XkKPT
http://paperpile.com/b/3GzRj8/ojik
http://paperpile.com/b/3GzRj8/ojik
http://paperpile.com/b/3GzRj8/T946
http://paperpile.com/b/3GzRj8/T946
http://arxiv.org/abs/1711.05099


Hyde, J. S., Fennema, E., & Lamon, S. J. (1990). Gender differences in mathematics

performance: a meta-analysis. Psychological Bulletin, 107(2), 139–155.

Hyde, J. S., & Linn, M. C. (1988). Gender differences in verbal ability: A meta-analysis.

Psychological Bulletin, 104(1), 53.

Iraji, A., Faghiri, A., Fu, Z., Rachakonda, S., Kochunov, P., Belger, A., Ford, J. M., McEwen, S.,

Mathalon, D. H., Mueller, B. A., Pearlson, G. D., Potkin, S. G., Preda, A., Turner, J. A., van

Erp, T. G. M., & Calhoun, V. D. (2021). Multi-Spatial Scale Dynamic Interactions between

Functional Sources Reveal Sex-Specific Changes in Schizophrenia. In Cold Spring Harbor

Laboratory (p. 2021.01.04.425222). https://doi.org/10.1101/2021.01.04.425222

Jack, C. R., Jr, Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski,

B., Britson, P. J., L Whitwell, J., Ward, C., Dale, A. M., Felmlee, J. P., Gunter, J. L., Hill, D.

L. G., Killiany, R., Schuff, N., Fox-Bosetti, S., Lin, C., Studholme, C., … Weiner, M. W.

(2008). The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. Journal of

Magnetic Resonance Imaging: JMRI, 27(4), 685–691.

Jazin, E., & Cahill, L. (2010). Sex differences in molecular neuroscience: from fruit flies to

humans. Nature Reviews. Neuroscience, 11(1), 9–17.

Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence:

converging neuroimaging evidence. The Behavioral and Brain Sciences, 30(2), 135–154;

discussion 154–187.

Karrer, T. M., Bassett, D. S., Derntl, B., Gruber, O., Aleman, A., Jardri, R., Laird, A. R., Fox, P.

T., Eickhoff, S. B., Grisel, O., Varoquaux, G., Thirion, B., & Bzdok, D. (2019). Brain-based

ranking of cognitive domains to predict schizophrenia. Human Brain Mapping, 40(15),

4487–4507.

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., Viola, F., Green,

T., Back, T., Natsev, P., Suleyman, M., & Zisserman, A. (2017). The Kinetics Human Action

Video Dataset. In arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1705.06950

62

http://paperpile.com/b/3GzRj8/OKGa8
http://paperpile.com/b/3GzRj8/OKGa8
http://paperpile.com/b/3GzRj8/6JJx8
http://paperpile.com/b/3GzRj8/6JJx8
http://paperpile.com/b/3GzRj8/9iGeJ
http://paperpile.com/b/3GzRj8/9iGeJ
http://paperpile.com/b/3GzRj8/9iGeJ
http://paperpile.com/b/3GzRj8/9iGeJ
http://paperpile.com/b/3GzRj8/9iGeJ
http://dx.doi.org/10.1101/2021.01.04.425222
http://paperpile.com/b/3GzRj8/Owqf
http://paperpile.com/b/3GzRj8/Owqf
http://paperpile.com/b/3GzRj8/Owqf
http://paperpile.com/b/3GzRj8/Owqf
http://paperpile.com/b/3GzRj8/Owqf
http://paperpile.com/b/3GzRj8/EqDt
http://paperpile.com/b/3GzRj8/EqDt
http://paperpile.com/b/3GzRj8/SPP1z
http://paperpile.com/b/3GzRj8/SPP1z
http://paperpile.com/b/3GzRj8/SPP1z
http://paperpile.com/b/3GzRj8/pyPSx
http://paperpile.com/b/3GzRj8/pyPSx
http://paperpile.com/b/3GzRj8/pyPSx
http://paperpile.com/b/3GzRj8/pyPSx
http://paperpile.com/b/3GzRj8/eWVF9
http://paperpile.com/b/3GzRj8/eWVF9
http://paperpile.com/b/3GzRj8/eWVF9
http://arxiv.org/abs/1705.06950


Khan, N. M., Abraham, N., & Hon, M. (2019). Transfer Learning With Intelligent Training Data

Selection for Prediction of Alzheimer’s Disease. In IEEE Access (Vol. 7, pp. 72726–72735).

https://doi.org/10.1109/access.2019.2920448

Kiesow, H., Dunbar, R. I. M., Kable, J. W., Kalenscher, T., Vogeley, K., Schilbach, L., Marquand,

A. F., Wiecki, T. V., & Bzdok, D. (2020). 10,000 social brains: Sex differentiation in human

brain anatomy. Science Advances, 6(12), eaaz1170.

Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. In arXiv [cs.LG].

arXiv. http://arxiv.org/abs/1412.6980

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K.,

Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D., &

Hadsell, R. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of

the National Academy of Sciences of the United States of America, 114(13), 3521–3526.

Klein, S. L., Schiebinger, L., Stefanick, M. L., Cahill, L., Danska, J., de Vries, G. J., Kibbe, M. R.,

McCarthy, M. M., Mogil, J. S., Woodruff, T. K., & Zucker, I. (2015). Opinion: Sex inclusion in

basic research drives discovery. Proceedings of the National Academy of Sciences of the

United States of America, 112(17), 5257–5258.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. Advances in Neural Information Processing Systems, 25,

1097–1105.

Kunze, J., Kirsch, L., Kurenkov, I., Krug, A., Johannsmeier, J., & Stober, S. (2017). Transfer

Learning for Speech Recognition on a Budget. In arXiv [cs.LG]. arXiv.

http://arxiv.org/abs/1706.00290

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

Liu, X., Faes, L., Kale, A. U., Wagner, S. K., Fu, D. J., Bruynseels, A., Mahendiran, T., Moraes,

G., Shamdas, M., Kern, C., Ledsam, J. R., Schmid, M. K., Balaskas, K., Topol, E. J.,

Bachmann, L. M., Keane, P. A., & Denniston, A. K. (2019). A comparison of deep learning

63

http://paperpile.com/b/3GzRj8/rlqJl
http://paperpile.com/b/3GzRj8/rlqJl
http://paperpile.com/b/3GzRj8/rlqJl
http://dx.doi.org/10.1109/access.2019.2920448
http://paperpile.com/b/3GzRj8/Yubbm
http://paperpile.com/b/3GzRj8/Yubbm
http://paperpile.com/b/3GzRj8/Yubbm
http://paperpile.com/b/3GzRj8/LWQ0p
http://paperpile.com/b/3GzRj8/LWQ0p
http://arxiv.org/abs/1412.6980
http://paperpile.com/b/3GzRj8/EUuw5
http://paperpile.com/b/3GzRj8/EUuw5
http://paperpile.com/b/3GzRj8/EUuw5
http://paperpile.com/b/3GzRj8/EUuw5
http://paperpile.com/b/3GzRj8/ATTkr
http://paperpile.com/b/3GzRj8/ATTkr
http://paperpile.com/b/3GzRj8/ATTkr
http://paperpile.com/b/3GzRj8/ATTkr
http://paperpile.com/b/3GzRj8/uAsq
http://paperpile.com/b/3GzRj8/uAsq
http://paperpile.com/b/3GzRj8/uAsq
http://paperpile.com/b/3GzRj8/Ezj4
http://paperpile.com/b/3GzRj8/Ezj4
http://arxiv.org/abs/1706.00290
http://paperpile.com/b/3GzRj8/a4bus
http://paperpile.com/b/3GzRj8/RY34
http://paperpile.com/b/3GzRj8/RY34
http://paperpile.com/b/3GzRj8/RY34


performance against health-care professionals in detecting diseases from medical imaging:

a systematic review and meta-analysis. The Lancet. Digital Health, 1(6), e271–e297.

Mateos-Pérez, J. M., Dadar, M., Lacalle-Aurioles, M., Iturria-Medina, Y., Zeighami, Y., & Evans,

A. C. (2018). Structural neuroimaging as clinical predictor: A review of machine learning

applications. NeuroImage. Clinical, 20, 506–522.

Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E., Xu, J., Bartsch, A.

J., Jbabdi, S., Sotiropoulos, S. N., Andersson, J. L. R., Griffanti, L., Douaud, G., Okell, T.

W., Weale, P., Dragonu, I., Garratt, S., Hudson, S., Collins, R., Jenkinson, M., … Smith, S.

M. (2016). Multimodal population brain imaging in the UK Biobank prospective

epidemiological study. Nature Neuroscience, 19(11), 1523–1536.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.

Peters, S. A. E., Huxley, R. R., & Woodward, M. (2014). Do smoking habits differ between

women and men in contemporary Western populations? Evidence from half a million people

in the UK Biobank study. BMJ Open, 4(12), e005663.

Qin, C.-X., Qu, D., & Zhang, L.-H. (2018). Towards end-to-end speech recognition with transfer

learning. EURASIP Journal on Audio, Speech, and Music Processing, 2018(1), 1–9.

Raghu, M., Zhang, C., Kleinberg, J., & Bengio, S. (2019). Transfusion: Understanding Transfer

Learning for Medical Imaging. In arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1902.07208

Rajpurkar, P., Park, A., Irvin, J., Chute, C., Bereket, M., Mastrodicasa, D., Langlotz, C. P.,

Lungren, M. P., Ng, A. Y., & Patel, B. N. (2020). AppendiXNet: Deep Learning for Diagnosis

of Appendicitis from A Small Dataset of CT Exams Using Video Pretraining. Scientific

Reports, 10(1), 3958.

Ravishankar, H., Sudhakar, P., Venkataramani, R., Thiruvenkadam, S., Annangi, P., Babu, N., &

Vaidya, V. (2017). Understanding the Mechanisms of Deep Transfer Learning for Medical

Images. In arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1704.06040

Ritchie, S. J., Cox, S. R., Shen, X., Lombardo, M. V., Reus, L. M., Alloza, C., Harris, M. A.,

64

http://paperpile.com/b/3GzRj8/RY34
http://paperpile.com/b/3GzRj8/RY34
http://paperpile.com/b/3GzRj8/SmxPv
http://paperpile.com/b/3GzRj8/SmxPv
http://paperpile.com/b/3GzRj8/SmxPv
http://paperpile.com/b/3GzRj8/qettC
http://paperpile.com/b/3GzRj8/qettC
http://paperpile.com/b/3GzRj8/qettC
http://paperpile.com/b/3GzRj8/qettC
http://paperpile.com/b/3GzRj8/qettC
http://paperpile.com/b/3GzRj8/ECvXu
http://paperpile.com/b/3GzRj8/Iwmj7
http://paperpile.com/b/3GzRj8/Iwmj7
http://paperpile.com/b/3GzRj8/Iwmj7
http://paperpile.com/b/3GzRj8/TqRi
http://paperpile.com/b/3GzRj8/TqRi
http://paperpile.com/b/3GzRj8/taufZ
http://paperpile.com/b/3GzRj8/taufZ
http://arxiv.org/abs/1902.07208
http://paperpile.com/b/3GzRj8/ZYxYB
http://paperpile.com/b/3GzRj8/ZYxYB
http://paperpile.com/b/3GzRj8/ZYxYB
http://paperpile.com/b/3GzRj8/ZYxYB
http://paperpile.com/b/3GzRj8/BKkv
http://paperpile.com/b/3GzRj8/BKkv
http://paperpile.com/b/3GzRj8/BKkv
http://arxiv.org/abs/1704.06040
http://paperpile.com/b/3GzRj8/g75gY


Alderson, H. L., Hunter, S., Neilson, E., Liewald, D. C. M., Auyeung, B., Whalley, H. C.,

Lawrie, S. M., Gale, C. R., Bastin, M. E., McIntosh, A. M., & Deary, I. J. (2018). Sex

Differences in the Adult Human Brain: Evidence from 5216 UK Biobank Participants.

Cerebral Cortex , 28(8), 2959–2975.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,

Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer Vision, 115(3), 211–252.

Schulz, M.-A., Yeo, B. T. T., Vogelstein, J. T., Mourao-Miranada, J., Kather, J. N., Kording, K.,

Richards, B., & Bzdok, D. (2020). Different scaling of linear models and deep learning in

UKBiobank brain images versus machine-learning datasets. Nature Communications,

11(1), 4238.

Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale

Image Recognition. In arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1409.1556

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P.,

Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A.,

Sprosen, T., Peakman, T., & Collins, R. (2015). UK biobank: an open access resource for

identifying the causes of a wide range of complex diseases of middle and old age. PLoS

Medicine, 12(3), e1001779.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., &

Rabinovich, A. (2014). Going Deeper with Convolutions. In arXiv [cs.CV]. arXiv.

http://arxiv.org/abs/1409.4842

Tannenbaum, C., Ellis, R. P., Eyssel, F., Zou, J., & Schiebinger, L. (2019). Sex and gender

analysis improves science and engineering. Nature, 575(7781), 137–146.

Taylor, B. K., Embury, C. M., Heinrichs-Graham, E., Frenzel, M. R., Eastman, J. A., Wiesman, A.

I., Wang, Y.-P., Calhoun, V. D., Stephen, J. M., & Wilson, T. W. (2020). Neural oscillatory

dynamics serving abstract reasoning reveal robust sex differences in typically-developing

65

http://paperpile.com/b/3GzRj8/g75gY
http://paperpile.com/b/3GzRj8/g75gY
http://paperpile.com/b/3GzRj8/g75gY
http://paperpile.com/b/3GzRj8/g75gY
http://paperpile.com/b/3GzRj8/nyxrZ
http://paperpile.com/b/3GzRj8/nyxrZ
http://paperpile.com/b/3GzRj8/nyxrZ
http://paperpile.com/b/3GzRj8/rzCZ
http://paperpile.com/b/3GzRj8/rzCZ
http://paperpile.com/b/3GzRj8/rzCZ
http://paperpile.com/b/3GzRj8/rzCZ
http://paperpile.com/b/3GzRj8/S7TC
http://paperpile.com/b/3GzRj8/S7TC
http://arxiv.org/abs/1409.1556
http://paperpile.com/b/3GzRj8/2AEX
http://paperpile.com/b/3GzRj8/2AEX
http://paperpile.com/b/3GzRj8/2AEX
http://paperpile.com/b/3GzRj8/2AEX
http://paperpile.com/b/3GzRj8/2AEX
http://paperpile.com/b/3GzRj8/nl6A
http://paperpile.com/b/3GzRj8/nl6A
http://arxiv.org/abs/1409.4842
http://paperpile.com/b/3GzRj8/ZQymg
http://paperpile.com/b/3GzRj8/ZQymg
http://paperpile.com/b/3GzRj8/7bmIR
http://paperpile.com/b/3GzRj8/7bmIR
http://paperpile.com/b/3GzRj8/7bmIR


children and adolescents. Developmental Cognitive Neuroscience, 42, 100770.

Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., & Paluri, M. (2018). A Closer Look at

Spatiotemporal Convolutions for Action Recognition. 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 6450–6459.

Wang, D., & Zheng, T. F. (2015). Transfer Learning for Speech and Language Processing. In

arXiv [cs.CL]. arXiv. http://arxiv.org/abs/1511.06066

Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big

Data, 3(1), 1–40.

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep

neural networks? Proceedings of the 27th International Conference on Neural Information

Processing Systems - Volume 2, 3320–3328.

Zawadzka-Gosk, E., Wołk, K., & Czarnowski, W. (2019). Deep Learning in State-of-the-Art

Image Classification Exceeding 99% Accuracy. New Knowledge in Information Systems

and Technologies, 946–957.

66

http://paperpile.com/b/3GzRj8/7bmIR
http://paperpile.com/b/3GzRj8/0C5fa
http://paperpile.com/b/3GzRj8/0C5fa
http://paperpile.com/b/3GzRj8/0C5fa
http://paperpile.com/b/3GzRj8/Agl3
http://paperpile.com/b/3GzRj8/Agl3
http://arxiv.org/abs/1511.06066
http://paperpile.com/b/3GzRj8/QNAL
http://paperpile.com/b/3GzRj8/QNAL
http://paperpile.com/b/3GzRj8/B58tk
http://paperpile.com/b/3GzRj8/B58tk
http://paperpile.com/b/3GzRj8/B58tk
http://paperpile.com/b/3GzRj8/DxBO
http://paperpile.com/b/3GzRj8/DxBO
http://paperpile.com/b/3GzRj8/DxBO

