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Abstract

Improving existing neural network architectures can involve several design choices such as manipulating the loss functions, em-
ploying a diverse learning strategy, exploiting gradient evolution at training time, optimizing the network hyper-parameters, or
increasing the architecture depth. The latter approach is a straightforward solution, since it directly enhances the representation
capabilities of a network; however, the increased depth generally incurs in the well-known vanishing gradient problem. In this
paper, borrowing from different methods addressing this issue, we introduce an interlaced multi-task learning strategy, defined
SIRe, to reduce the vanishing gradient in relation to the object classification task. The presented methodology directly improves a
convolutional neural network (CNN) by preserving information from the input image through interlaced auto-encoders (AEs), and
further refines the base network architecture by means of skip and residual connections. To validate the presented methodology, a
simple CNN and various implementations of famous networks are extended via the SIRe strategy and extensively tested on five col-
lections, i.e., MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100, and Caltech-256; where the SIRe-extended architectures achieve
significantly increased performances across all models and datasets, thus confirming the presented approach effectiveness.

Keywords: neural network architectures, multi-task learning, deep learning, object classification

1. Introduction

Neural networks and, in particular, deep architectures, per-
form well on heterogeneous and complex tasks such as med-
ical image analysis [1, 2, 3], person re-identification [4, 5, 6]
or emotion recognition [7, 8, 9]. A common objective that has
a particularly vast application breadth and spans across many
of these fields is the image classification. In fact, nowadays,
many datasets focusing either on specific categories, e.g., flow-
ers [10] or cars [11], or comprising completely different object
categories [12, 13], are available. Among this plethora of col-
lections, a simple subdivision can be done on the number of
classes contained in a dataset, resulting in increasingly more
complex collections. Although the latter can be preferred to
fully highlight a method’s effectiveness, easier collections can
still be useful. For instance, datasets with a low number of
categories such as MNIST [14] and Fashion-MNIST [15], on
which even simple networks can obtain significant classifica-
tion results in a short time [16], are generally used to validate
new ideas such as multi-resolution knowledge distillation to
detect anomalies [17] or sparse model-agnostic meta-learning
(MAML) to achieve continual learning on a single model [18].
Datasets containing a moderate amount of diverse categories
such as CIFAR-100 [12] and Caltech-101 [19], on the other
hand, start to show the limitations even of renown and effective
models such as ResNet [20], that can reach, for example, an er-
ror rate of ≈22% on the former collection. Nevertheless, there
are already solutions that improve such models. For instance,
the scheme in [21] modifies the internal connections of resid-

ual blocks to increase their reuse of the input features, reducing
the ResNet error rate by ≈2%. In [22], instead, the authors en-
tirely change the training procedure via a sharpness-aware min-
imization (SAM) approach, which allows them to implement
an efficient gradient descent training procedure by simultane-
ously minimizing loss value and loss sharpness, and results in
a sensibly lower error rate of 7.44% on the image classification
task. A similar behavior can also be noticed for the increasingly
more complex datasets, such as Caltech-256 [23] and ImageNet
[13], that can reach up to 1000 different classes. In fact, on Im-
ageNet, a ResNet achieves ≈21% error rate, while more recent
models can reduce this rate close or down to the single digit.
For example, the method presented in [24], which obtains an
error rate of 12.28% on ImageNet, substitutes the backpropaga-
tion by an unsupervised approach based on a competitive ”win-
ner takes all“ mechanism, implemented as activation function to
sparsely update the internal weights of the model. Specifically,
this approach leverages exclusively feed forward information
to emulate biologically plausible deep neural networks. The
work introduced in [25], instead, achieves a 9.12% error rate by
skillfully crafting a method that merges convolutional networks
and transformers. In particular, they show how a simple rela-
tive attention approach can naturally unify both depthwise con-
volutions and self-attention. Then, by vertically stacking this
newfound operation, they can drastically improve performance
even on a complex collection such as ImageNet.

A separate but non-negligible aspect of datasets containing
a medium or a high number of classes is the time required
to train a network. Having more classes, samples, or images
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with increased width and height (e.g., going from a 28×28 to a
224×224 shape when using the MNIST and ImageNet datasets,
respectively) generally requires the design of more complex
architectures to achieve higher performance, which naturally
translates in a given model requiring a considerably longer
training time before it reaches convergence on such a collec-
tion. Regardless, solutions to address these aspects either re-
duce the number of images simultaneously fed to the model,
i.e., the batch size, at the expense of a longer time to com-
plete a training epoch, or use higher-performing hardware with
conspicuous amounts of RAM and processing speed, such as
tensor processing units (TPUs), to limit eventual training time
increases. As a consequence, many approaches are constantly
being developed even on the more complex datasets such as
ImageNet [26, 27, 28].

On a different note, while an ever increasing performance is
generally obtained by newly developed systems, improving ex-
isting architectures can be a daunting experience due, mostly, to
the high number of aspects to be accounted for, when design-
ing a model. Among the many available options, some of the
ideas that are being actively explored concern the use of differ-
ent loss functions, regularization and normalization techniques
as well as architectural innovations through, for example, multi-
path information processing [29]. Focusing on methodologies
exploiting different loss functions, an interesting and effective
solution is associated to the use of composite functions [30, 31]
to represent, for instance, different outputs to be optimized by
a given network, as usually happens in a multi-task learning
scenario [32, 33]. Such approaches can be further improved
by applying weights to the various loss components, allowing
a network to focus more on a specific task among those that
are being optimized [34]. Moreover, further architecture refine-
ments might involve employing intermediate loss functions to
alter the gradient evolution; a strategy that enables a model to
retain better and more meaningful features along the various ar-
chitecture layers, and allows to obtain improved results on the
addressed task [35]. A different strategy to improve the perfor-
mance of a network, often used in conjunction with a custom
loss function, lies instead in regularization [36, 37] and normal-
ization techniques [38], where internal weights are modified to
enhance the abstraction capabilities of a model via direct ma-
nipulation. Well-known examples of such approaches comprise
a dropout strategy [39], to reduce overfitting over the training
dataset distribution by omitting random units at training time
for more robust input representations [40]; and batch normal-
ization [41, 42], to facilitate deep networks training by normal-
izing a given batch according to a specific strategy such as the
batch mean and variance [43]. While these approaches can al-
leviate issues such as the vanishing/exploding gradient, or di-
rectly improve a network performance, a crucial factor is repre-
sented by the internal structure of an architecture. As a matter
of fact, many recent works [29] are focusing on architectural
ideas, starting from clever configurations such as the inception
layers [35], or skip [44] and residual connections [20]. Indeed,
by defining multiple paths inside a given architecture (e.g., in-
ception layer) it is possible to grasp more (or different) details
when analyzing an input [45]; whereas using extra connections

inside a model allows to strengthen feature propagation and
reuse and, consequently, obtain improved performances with
respect to simpler networks [46].

Inspired by these solutions, in this paper we focus on the
image classification task and present the SIRe methodology,
where an interlaced multi-task learning approach is exploited
jointly with skip and residual connections to improve a con-
volutional neural network performances. Specifically, follow-
ing the rationale behind GoogleNet [35], where intermediate
classifications are used to mitigate the vanishing gradient prob-
lem, we implement a simple CNN model and extend its archi-
tectural design to have intermediate auto-encoders that enable
the interlaced multi-task learning. More accurately, these inter-
mediate tasks require the network to recreate the input image
so that information is preserved throughout the network, ulti-
mately providing improved features to the classification layers.
To further enhance both the intermediate and final tasks, we
also borrow residual and skip connections from ResNet [20]
and U-Net architectures [44], respectively, so that both the clas-
sification accuracy and input image reconstruction can obtain
higher results with respect to the base model. To evaluate the
SIRe methodology, extensive experiments were performed on
the MNIST, Fashion-MNIST, CIFAR10, CIFAR100 and Cal-
tech256 datasets by extending both a simple CNN as well as
various well-known models through the presented approach. As
demonstrated by the experimental results, a network is enforced
to preserve information from the input image once it is modified
via the SIRe methodology; thus resulting in a significant per-
formance improvement on the classification task with respect
to the base model, which validates the proposed strategy.

Summarizing, the main contributions of this paper are:

• designing an interlaced multi-task learning approach to di-
rectly affect the gradient evolution;

• exploring some solutions (such as skip and residual con-
nections) that enhance network performances;

• extending the presented SIRe methodology to other well-
known architectures.

2. Related Work

Some of the most effective choices, when designing a new
network architecture, entail the loss function to be minimized,
which is a direct consequence of the task being addressed; pos-
sible regularization and normalization techniques, that might
enable a network to converge faster on a given task; and
the model architecture itself, where defining wrong operations
could result in the network diverging from the required task.

Concerning works exploring loss functions [47, 48, 49, 50,
51, 52, 53, 54, 35], an effective strategy is to multiply the
loss by a parameter, thus creating a weighted function. This
approach directly enables the implementation of adaptive loss
strategies, where the function is modified according to a spe-
cific rationale. In [47], for instance, the relative magnitude be-
tween two subsequent losses is exploited to decide when to up-
date the generative adversarial network (GAN) model; while
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Figure 1: SIRe extended CNN architecture showing the interlaced multi-task learning approach.

the authors of [48] leverage such parameters to explore possi-
ble loss functions and automatically pick the best one. Employ-
ing parameters can be an effective choice, and other approaches
follow a similar reasoning by defining ranking losses to obtain
a parametric loss function such as in [49] and [50]. Specifi-
cally, the former defines a pair-wise ranking loss based on the
input image structure, while the latter designs a distributional
ranking loss to better separate positive examples from negative
ones. A straightforward extension from parametric loss func-
tions is obtained via multi-task loss functions, where different
tasks are learned simultaneously. In [51] and [52], for exam-
ple, the cross-entropy and triplet loss functions, in the former,
and the self/relative samples similarities, in the latter, are opti-
mized jointly to improve the respective network output. A fur-
ther refinement for multi-task losses can finally be defined by
computing intermediate losses, as described by [53] and [35],
where losses for similar tasks are computed along the archi-
tecture structure; and from which we took inspiration for the
proposed interlaced multi-task learning.

Regularization [55, 56, 57, 58] and normalization [59, 60, 61,
62] techniques can help to achieve a better input abstraction or
faster convergence. In [55], for example, a region dropout is ap-
plied to the network input as a data augmentation strategy. The
authors of [56], instead, develop an elastic regularization strat-
egy to capture differences among diverse inputs; while in [57], a
regularization term is applied to smooth the network output and
avoid misclassifying wrong inputs. Regularization procedures

can also be defined for internal layers as shown by [58], where
a parametrized regularization is designed to improve the model
performance by accounting for both network filters and penalty
functions. Differently from these methods, [60] and [61] pro-
pose normalization strategies to improve the learning capabili-
ties of an architecture. Specifically, [60] employs instance and
batch normalizations to retain, respectively, information invari-
ant to appearance changes (e.g., color) and related to content;
while [61] defines a group normalization, applied on the filters
channels, to improve performances even for lower mini-batch
sizes. Input weights can also be normalized, as shown by [62],
where the authors also parametrize such weights to speedup the
training procedure. Finally, to directly affect data distributions
along their architecture, the authors of [59] present an automatic
method to learn the best normalization approach for a given
layer. Notice that while many significant advances and inter-
esting approaches have been proposed, in this work we employ
standard dropout and batch normalization techniques since they
are widely accepted procedures.

This paper also draws inspirations from model architecture
variations [20, 35, 44, 63, 64, 65, 66, 67, 68] that aim to improve
the optimization task by analyzing and modifying gradient-
derived information. More accurately, the authors of [35] im-
plement intermediate losses to reduce the vanishing gradient
problem. In [63], losses computed on internal convolution out-
puts are exploited to improve the input representation. The au-
thors of [64] and [65], instead, show how intermediate losses
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can reduce the internal representation distance between the
components of their respective architectures. Exploiting inter-
mediate loss functions directly affects the gradient evolution
during training time; however, more information can also be
forwarded inside the architecture through specific connections
such as the skip and residual ones. In particular, [20] and [66]
apply long skip connections to retain information from previous
layers and successfully improve the final output. In [44] and
[67], instead, residual connections are implemented to forward
more information along the architecture, ultimately improving
the underlying network abstraction capabilities.

3. Method

To present a methodology that consistently improves CNNs
performances on the image classification task, we first design a
simple network and then extend it through the SIRe technique.
In particular, in the proposed approach we implement an in-
terlaced multi-task learning strategy by means of intermediate
auto-encoders, to ensure the input image information is pre-
served; and further improve the model through long skip and
short residual connections, to augment the quality of features
forwarded throughout the architecture. The presented SIRe-
extended CNN architecture is shown in Fig. 1.

3.1. Base CNN Model

The first step to introduce the SIRe methodology requires the
implementation of a simple CNN architecture to be used as a
baseline. Specifically, starting from the well-known VGG [69]
architecture, we define a less powerful model (i.e., using a fewer
number of convolutions and dense units) that can be easily ex-
tended and used as a baseline to validate the SIRe adaptation.
Notice that the VGG was selected since it has a straightfor-
ward implementation, however any other network can be used
and extended through the presented methodology, as also high-
lighted by the experimental results. In more details, the baseline
CNN extracts features from an input image through 8 convo-
lutional layers, each followed by a batch normalization, and 4
max pooling layers, placed every 2 convolutions. Subsequently,
3 dense layers are used for the classification task, similarly to
the original VGG structure. Concerning the convolutions, in
all layers a kernel size k = 3 is jointly applied with a padding
p = 1 to ensure the input shape is retained and reduced only
via the max pooling layers. Moreover, the number of filters
generated by the convolutions is doubled after every max pool-
ing operation, starting from 64 in the first convolution (i.e., 64,
128, 256, and 512). Regarding the dense layers, the first two
employ the same number of nodes (i.e., 1024) and a dropout
strategy to avoid overfitting over the training dataset; while the
third one contains m units, where |m| corresponds to the number
of classes to be recognized. Finally, the activation function ap-
plied to all l − 1 layers is the rectified linear activation function
(ReLU), while the last one uses a softmax function to obtain a
probability distribution for the input classification.

3.2. SIRe Extension
Core component behind the SIRe adaptation lies in the in-

terlaced multi-task learning strategy, where intermediate auto-
encoders are used to extend the architecture and manipulate the
gradient. Intuitively, these auto-encoders are tasked with the
input image reconstruction as to preserve its attributes inside
the convolutions. Notice that by defining such components,
the base architecture effectively performs an interlaced multi-
task learning, where the original task is the object classifica-
tion, while the intermediate ones correspond to the input re-
construction. Furthermore, the rationale behind this approach
is two-fold. First, it can indirectly alleviate the classification
task vanishing gradient problem, as was also suggested by the
authors of [35], by defining extra tasks that inject additional
gradient error inside the model at training time. Second, it nat-
urally enforces the network to preserve meaningful input char-
acteristics (i.e., features) along the whole architecture; there-
fore providing an improved input abstraction to the classifier
that can then achieve higher performances. In particular, an
auto-encoder is built upon each max pooling layer, i.e., AEi,
with i ∈ [1, . . . , |max pool layers|], since they correspond to
most of the information loss due to the dimensionality reduc-
tion. Moreover, in order to allow the correct output genera-
tion, every AE follows the underlying architecture structure.
Specifically, they invert all max pooling operations and con-
volution layers, through the upscaling strategy proposed in [44]
and transposed convolutional layers [70], respectively. For ex-
ample, as shown in Fig. 1, the auto-encoder built upon the third
max pooling layer will perform 3 upscale operations, to reach
the original input image size, interleaved by 6 transposed con-
volutions (i.e., 2 layers after each upscale) employing the same
k and p of the convolutional layers to correctly reinterpret the
input.Notice that each AE inverting the base architecture is en-
tirely distinct from the others, so they can all preserve the max-
imum amount of information within the network structure.

Attaching interleaved tasks via auto-encoders helps to inject
gradient error during the backpropagation algorithm execution.
However, since the intermediate tasks greatly differ from the fi-
nal output in both structure and purpose, a further enhancement
is implemented to improve the information forwarded inside the
architecture by means of skip and residual connections. In more
details, short residual connections are applied before each max
pool operation and connect two subsequent convolutions with
their input, similarly to [20]; while long skip connections bond
a given convolution with its corresponding transposed convo-
lution in the auto-encoder, to compensate with missing infor-
mation derived from both the max pool and upscale operations.
Notice that neither short residual and long skip connections in-
crease the number of parameters or network complexity, since
they are implemented through identity maps and simple sum-
mations in accordance with the findings of [20]; therefore re-
sulting in great tools for information propagation and perfor-
mance improvement.

3.3. Loss Function
A SIRe extended network addressing the classification task,

can still be trained end-to-end via classical algorithms such as
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the stochastic gradient descent (SGD) with backpropagation.
However, a specific loss function needs to be implemented to
fully leverage the presented methodology and correctly merge
the intermediate objectives with the original task. Intuitively,
by exploiting the computational graph associated to the network
structure, each auto-encoder will focus on specific portions of
the architecture and automatically increase the gradient error
throughout the model. For instance, observing Fig. 1, the first
auto-encoder will affect only the first two convolutions, while
the fourth one will influence the whole architecture during the
error backprogation. What is more, through the backprogation,
the interlaced multi-task methodology enforces to retain struc-
tural information on the input since all auto-encoders try to cor-
rectly reconstruct the original image. Formally, given a SIRe
extended network with several auto-encoders AE, the interlaced
multi-task loss function is computed as:

L = −
1
m

m∑
i=1

yi log(ŷi) + λ
∑
AE

1n
n∑

j=1

(AEo j − x j)2

 , (1)

where the first term is a cross-entropy loss computed over the m
classes, used to classify the input image; while the second mem-
ber corresponds to a mean squared error loss for each available
auto-encoder AE, evaluating the input image reconstruction. In
particular, AEo j and x j indicate, respectively, the j-th pixel pre-
dicted output of a given auto-encoder AE and input image (i.e.,
ground truth for the intermediate task); n represents the input
image number of pixels; while λ is an hyperparameter regulat-
ing the interlaced multi-task loss strength over the underlying
architecture, empirically set to 0.2 in this work. Notice that due
to the diverse nature of the intermediate tasks and final output,
a too high value of λ might result in the network focusing on
the input reconstruction instead of the classification, as demon-
strated by the performed experiments.

4. Experiments

Extensive experiments were carried out to fully evaluate the
proposed SIRe methodology. The datasets and test protocols
employed to ensure sound results across all tests, are described
in Section 4.1. Quantitative and qualitative ablation studies are
discussed in Section 4.2, where in depth details on the described
approach are provided. Finally, experiments on SIRe extended
networks are presented in Section 4.3, to highlight the method-
ology effectiveness and its limitations.

4.1. Implementation Details

The SIRe extension was evaluated on five distinct collec-
tions, i.e., MNIST [14], Fashion-MNIST [15], CIFAR-10 [12],
CIFAR-100 [12], and Caltech-256 [23]. Firstly, extensive abla-
tion studies of a SIRe-CNN model were performed on CIFAR-
100. This dataset contains 60000 32×32 RGB images spanning
over 100 classes. In particular, there are 500 training and 100
test images per class, resulting in the training and test sets con-
taining 50000 and 10000 images, respectively. Moreover, in
this work we further split the training set to retain 50 images

per class to define a validation set. Therefore, the final col-
lections count 45000, 5000, and 10000 samples, for the train-
ing, validation, and test sets. These splits were also used to
evaluate other SIRe-extended literature networks on a dataset
containing a medium amount of categories. Secondly, MNIST,
Fashion-MNIST, and CIFAR-10 datasets were used to validate
the SIRe effectiveness on collections with a fewer number of
classes. More specifically, MNIST and Fashion-MNIST com-
prise 70000 28×28 grayscale images of digits from 0 to 9 and
common Zalando’s fashion articles, respectively. CIFAR-10,
instead, consists of 70000 32×32 RGB images of ten diverse
object categories. All three datasets were divided into train,
validation and test sets containing 50000, 10000, and 10000
samples. Finally, the Caltech-256 dataset was used to assess
the SIRe methodology on a collection with a higher number
of classes. More specifically, this dataset contains 30607 real-
world images of different sizes spanning over 257 classes, i.e.,
256 object categories and an additional clutter class. To handle
the shape discrepancy, all images are resized to a dimension of
224×224. In this last collection, due to the increased difficulty
and lower number of images per class, i.e., a minimum of 80
images, the dataset was divided only into training and test sets
using a 70%/30% split for a total of 21531 and 9076 samples.

Regarding the various experimental settings, all models were
trained following a protocol similar to [71] for tests on CIFAR-
10, CIFAR-100, and Caltech-256. Specifically, each network
was trained for 200 epochs using the SGD algorithm, with an
initial learning rate lr set to 0.1, a weight decay of 5e-4, a Nes-
terov momentum of 0.9, and a batch size ranging from 4 up
to 64, depending on the datasets and underlying architecture.
Moreover, a scheduler was also implemented to divide the lr
by 5 at epochs 60, 120, and 160, so that the gradient update
speed would be gradually reduced. Contrary to these settings,
for MNIST and Fashion-MNIST we trained the models only
for 5 epochs, using exclusively the first 10 batches of the train-
ing set, i.e., 1280 images. This decision was necessary since
even the base models would otherwise reach near perfect clas-
sification accuracy after the first training epoch. In all cases, a
simple data augmentation strategy was also applied by means
of random horizontal flips. Finally, for all models, the weights
associated to the epoch with the highest performance on the val-
idation set (or best training epoch in the case of Caltech-256,
due to the validation set absence) were used to compute the re-
ported results on the test set. Notice that for all experiments, the
metrics of choice were the top-1(-5) error percentage, which is
computed as 1 − rank #1(#5) accuracy; and where lower scores
correspond to better performances.

Lastly, all networks were implemented through the PyTorch
framework and tests were performed using a single GPU, i.e., a
GeForce GTX 1070 with 8GB of RAM.

4.2. Ablation Studies
The first experiment explores the sheer effectiveness of each

SIRe component, i.e., the skip connections (S), interlaced
multi-task learning (I), and residual connections (Re). Per-
formances are summarized in Table 1. As shown, all config-
urations can achieve significant top-1 and top-5 classification
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Model
Top-1

Error%
Top-5

Error% Params
Training

Time
Baseline 35.44 12.11 7.9M ≈124’
Re-CNN 32.21 10.78 7.9M ≈132’
I-CNN 29.05 9.33 14.0M ≈205’
IRe-CNN 27.65 8.97 14.0M ≈207’
SI-CNN 27.83 9.01 14.0M ≈206’
SIRe-CNN 26.15 8.22 14.0M ≈212’

Table 1: Ablation study on SIRe components. S, I, and Re, indicate skip con-
nections, interleaved multi-task learning, and residual connections, respetively.
All models employ the same CNN, which is also reported as Baseline.

Model λ-Value
Top-1

Error%
Top-5

Error%
Baseline - 32.21 10.78
SIRe-CNN 0.1 31.87 10.66
SIRe-CNN 0.2 26.15 8.22
SIRe-CNN 0.5 99.00 99.00
SIRe-CNN 1.0 99.00 99.00

Table 2: Ablation study on λ-value effects. The Baseline model corresponds to
the Re-CNN of Table 1.

performances, with the former obtaining substantially higher
gains, independently from the SIRe component. Notice that
this score increment difference is most entirely attributable to
classes having similar characteristics (e.g., girl and boy) that
can be lost due to the small image format of the dataset, but that
would still allow for the correct category to be selected among
the first 5 most probable classes. What is more, while each
extension offers a performance boost, even when applied as a
standalone solution, they affect different aspects of the under-
lying architecture and should, therefore, be used jointly. In par-
ticular, the Re unit provides a direct upgrade to the base CNN
final classification by forwarding residual information along its
architecture. The I component offers the highest error reduc-
tion among the single extensions, by focusing on the input im-
age structure preservation; however, it also requires more pa-
rameters to be implemented and, as a consequence, more time
to be trained (i.e., ≈ 1.7x more time with respect to the base
network). Finally, the S component directly refines the inter-
laced multi-task outputs by forwarding information to the var-
ious AEs and, therefore, also reduces the final network error.
This intermediate output refinement can be clearly observed in
Fig. 2. As shown, without implementing skip connections, the
max pool and upsample operations result in information loss,
especially when moving toward the deeper auto-encoders that,
consequently, reconstruct blurred images. Through the S com-
ponents, instead, all lost input information is retrieved and al-
most perfect input reconstruction is achieved (i.e., MSE loss ≤
3e-6). Nevertheless, while skip connections improve the AEs
output and enforce the input image structure preservation, they
do not guarantee a comprehensive class abstraction. As a mat-
ter of fact, the last two images (i.e., lion and lamp) are correctly
classified only in the top-5 most probable classes, even though
they are still correctly recreated.

input image 𝐴𝐸! output 𝐴𝐸" output𝐴𝐸# output𝐴𝐸$ output

Figure 2: Skip connections effect on the auto-encoders output. The first row for
each image corresponds to the IRe-CNN model, while the second row to the
full SIRe-CNN. From left to right, the input image and the four auto-encoder
outputs.

The second experiment investigates the λ-value effects on
the training task; where λ = 0 removes the interlaced auto-
encoders, while λ ≥ 1.0 takes into account the entire AE er-
ror. Several significant results for these tests are reported in
Table 2. As can be seen, using a small λ-value (i.e., ≤ 0.2)
enables the underlying CNN to extract more meaningful fea-
tures and increase its classification performances. Differently,
by increasing λ over the value 0.2, which was empirically found
to be the best amount, the underlying CNN error increases un-
til the classification task does not reach convergence anymore,
i.e., the CNN always outputs the same class for any given input;
thus resulting in the reported 99% error. The rationale behind
this outcome can be easily explained by the backprogated gra-
dient derived from the interlaced auto-encoders. Specifically,
for higher λ-values, the loss function focuses on the input im-
age reconstruction and all internal parameters are modified to
address this task that should, instead, support the classification
one. In practice, the gradient associated to the classification
task, due to being affected by the vanishing gradient problem,
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is completely overridden by the reconstruction error backprop-
agated by the AEs, thus resulting in the reported divergence.
Nevertheless, by choosing an opportune λ-value (i.e., λ = 0.2),
the right amount of AE error is backpropagated and a perfor-
mance increase is obtained; indicating that intermediate and di-
verse tasks (e.g., the proposed image reconstruction) can help
to improve the original one.

The third experiment analyzes the amount of information
each AE provides to the classification task. An evaluation com-
prising all possible AE combinations, where each i-th AEi cor-
responds to those presented in Fig. 1, is reported in Table 3.
As shown, by implementing more AEs (e.g., AE1,2,4) the error
decreases sensibly, however more parameters and training time
are required as a trade-off for the improved performance. What
is more, this compromise is more marked for models employing
deeper AEs (i.e., AE3 and AE4) since more upscale and trans-
posed convolution operations have to be performed to correctly
recreate the input. Nevertheless, redundancy by means of shal-
lower AEs (i.e., AE1 and AE2) enables for relevant information
to be extracted by the base-CNN and allows to obtain better
results on the final classification task; thus encouraging the ap-
plication of multiple AEs even though deeper ones have slightly
better performance gains. The rationale behind this behavior is
also highlighted in Fig. 3, where the convolutional layers gradi-
ent flow, i.e., the average error propagated in the backward pass
of the backpropagation algorithm computed at training time,
is reported for each AE, as well as the whole SIRe-CNN and
base CNN models. As can be seen, while each AE mitigates
the vanishing gradient problem (i.e., additional error is propa-
gated along the architecture due to the information preservation
encouraged by the reconstruction task) they still do not solve it
entirely and, therefore, support the chosen redundancy for a bet-
ter error propagation. As a matter of fact, the gradient flow for
the SIRe-CNN is more uniform across all convolutions, while
it shows error peaks when analyzing the single AEs (e.g., SIRe-
AE1 has such a peak in convolutional layers 1 and 2). Notice
that applying different λ-values to each auto-encoder to address
the vanishing gradient does not solve the issue due to dimin-

Model
Top-1

Error%
Top-5

Error% Params
Training

Time
Baseline 35.44 12.11 7.9M ≈124’
SIRe-AE1 32.54 11.41 7.9M ≈125’
SIRe-AE2 32.28 11.29 8.2M ≈126’
SIRe-AE3 32.04 11.13 9.0M ≈133’
SIRe-AE4 31.89 11.00 12.6M ≈195’
SIRe-AE1,2 30.31 10.27 8.2M ≈127’
SIRe-AE1,3 30.12 10.05 9.1M ≈134’
SIRe-AE1,4 30.07 9.71 12.6M ≈197’
SIRe-AE2,3 30.09 9.70 9.3M ≈138’
SIRe-AE2,4 29.91 9.39 12.8M ≈199’
SIRe-AE3,4 29.55 9.31 13.7M ≈208’
SIRe-AE1,2,3 26.99 8.92 9.3M ≈141’
SIRe-AE1,2,4 26.71 8.24 12.9M ≈200’
SIRe-AE2,3,4 26.32 8.23 14.0M ≈211’
SIRe-CNN 26.15 8.22 14.0M ≈212’

Table 3: Ablation study on information propagated by the various auto-
encoders defined in the SIRe methodology focused on their depth and their
redundancy. All models employ λ = 0.2 for a fair comparison.

ished returns on far layers (e.g., the first convolution is slightly
affected by AE4 in comparison with AE1). Moreover, the same
issue described in the λ-value ablation study (i.e., failed conver-
gence) also applies to the single components, forcing the final
value to be close to the selected λ = 0.2 to obtain a significant
performance boost. Finally, observe that the interlaced auto-
encoders directly affect only the gradient flow of the convolu-
tional layers that are responsible for the extraction of features
from an input image. Regardless, gradients associated to the
classification layers can also benefit from this manipulation for
two reasons. Firstly, they are backpropagated throughout the
network together with λ-regulated (i.e., reduced) errors from
the AEs. Secondly, more relevant features can be extracted by
the network due to the information preserved by the input image
reconstruction. Indeed, in accordance with the results shown
in Table 3, performances improve when more information is
preserved throughout the architecture, i.e., the error decreases
when more AEs are implemented.

Summarizing, each component of the SIRe methodology can
improve the base CNN performance even as a standalone solu-
tion. Moreover, provided an opportune λ-value is selected, im-
plementing multiple intermediate tasks further boosts the orig-
inal network performance; demonstrating the SIRe extension
effectiveness.

4.3. SIRe-Networks Performance Evaluation
To complete the SIRe methodology evaluation, several net-

works were extended to implement the interlaced multi-task
learning approach. Notice that while the proposed method can
be theoretically applied to any given model performing clas-
sification, we selected a few well-known and good performing
architectures to both validate the methodology as well as to pro-
vide more insights on its strengths and weaknesses. In particu-
lar, the chosen models are the VGG [69], from which our base
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Figure 4: SIRe-VGG16 architecture showing the interlaced multi-task learning approach.

CNN takes inspiration, with its VGG16 and VGG19 variants
employing the batch normalization; ResNet [20], that already
implements short residual connections, with its ResNet34 and
ResNet50 implementations; and GoogleNet [35], which reiter-
ates the classification task in its internal layers to mitigate the
vanishing gradient and reinforce the final output.

To correctly apply the SIRe methodology to the aforemen-
tioned networks, the various SIRe components need to be inte-
grated with the underlying architectures that might, on the other
hand, have articulated solutions (e.g., inception layers). Notice
that analogously to the presented CNN, in this work we invert
all operations in a given AE path of an extended network to
recreate the input image, i.e., we pair each max pooling layer
with an upsampling one, and convolutions with their transposed
implementation; short residual and long skip connections are
subsequently implemented to increase the information propa-
gation. In particular, concerning VGG models, the SIRe exten-
sion follows the same approach proposed for the CNN in Fig. 1,
inverting each path in conjunction with the max pooling opera-
tions. Similarly, short residual connections and long skip con-
nections are subsequently defined to obtain the full SIRe-VGG
architecture. Notice that VGG models also implement a fifth
max pool operation to create a single 512-D feature vector used
for classification. Therefore, there will be five distinct AEs in-

verting the various blocks in the original architecture for these
extended models (i.e., SIRe-VGG16 and SIRe-VGG19). The
extended SIRe-VGG16 model is illustrated in Fig. 4. In relation
to the ResNet architectures, the base models already implement
residual connections through residual blocks. Consequently, to
obtain their SIRe version, the backbone network is extended
only via the interlaced multi-task learning and long skip con-
nections. Notice that residual blocks are employed also in the
various AEs but with transposed convolutions to fully invert the
various operations. Moreover, similarly to VGG models, the
ResNet architecture also implements 5 down sampling opera-
tions, resulting in five distinct AEs for both extended models
(i.e., SIRe-ResNet34 and SIRe-ResNet50). The extended SIRe-
ResNet34 model is illustrated in Fig. 5. Lastly, regarding the
GoogleNet model, AEs were once again attached to each of the
4 max pool operations. Furthermore, inception layers were only
partially inverted due to their internal structure. Specifically, all
convolutions were substituted via their transposed, while the
max pooling operation inside each AE inception layer was left
as is for two reasons: first, the operation is only partially invert-
ible, since it loses information about non-maxima values; and
second, in the original inception implementation the filter size
remains fixed, therefore allowing for the same max pool oper-
ation to be employed in the inverted inception layer. Notice,

8



33

Input

bear

Classifier

3 5

Block 2

7

Block 4 Block 5

9 11

Block 3

13 15 17 19 21 23 25 27 29 31

AE1

Inverted B
lock 1

1

Inverted B
lock 1

Inverted Block 2

Inverted B
lock 2

Inverted Block 1
AE3

Inverted Block 3

Inverted Block 4
Inverted B

lock 3
Inverted Block 2

Inverted B
lock 1

AE4

AE2

Inverted B
lock 4

Inverted Block 3
Inverted B

lock 2
Inverted B

lock 1

AE5

Inverted Block 5

Block 1

5

7

3

5

7

3

1

9

15

1

1

1

9

15

5

7

3

5

7

3

27

17

9

15

27

17

29

31

33

1

n

Inverted Residual Block

n

Residual Block

convolution
max pooling
upscale
transp. conv.
dense layer

summation
residual connection
identity skip connection
batch norm + ReLU
data flow
error loss flow

Legend

avg. pooling
residual block
inverted residual block

Figure 5: SIRe-ResNet34 architecture showing the interlaced multi-task learning approach.

moreover, that the auxiliary tasks were left untouched, thus re-
sulting in 4 interlaced AEs, used for the input image structure
preservation, and 2 original internal classifications for a total of
6 internal tasks in the extended model (i.e., SIRe-GoogleNet).

Concerning the evaluation, we compare several base models
and their SIRe extension on five datasets. More specifically,
we start from CIFAR-100 to assess the proposed method effec-
tiveness on a dataset containing a medium number of classes.
We then report experiments on MNIST, Fashion-MNIST, and
CIFAR-10 to analyze our method on less complex datasets with
a smaller number of classes. Finally, we conclude this evalua-
tion using Caltech-256, which can fully highlight both strengths
and weaknesses of the proposed approach. All results are re-
ported in Tables 4, 5, 6, 7, and 8. Notice that for each dataset,
the corresponding test protocol described in Section 4.1 is em-
ployed to assess the various models to provide a fair compari-
son. Starting from CIFAR-100, we report the results obtained
on this dataset in Table 4. As shown, the presented method-
ology improves all architectures for both top-1 and top-5 error
metrics; with the former obtaining sensibly higher performance
gains (i.e., up to 9% and 3% for top-1 and top-5 metrics, re-
spectively). Similarly to the ablation studies, this discrepancy
is easily explained by samples moving from a top-5 selection
to a top-1 due to the input image information preservation from
the AEs, i.e., a given object was already close to being cor-
rectly classified and the extra information allowed for the right

decision. What is more, while not reported due to negligible re-
sults differences, a good performing λ-value is close to 0.2 also
for other SIRe extended networks; further confirming both the
findings and the discussion presented in Section 4.2. On a dif-
ferent note, while SIRe-extended networks can perform better
with respect to their original implementation, there is a signifi-
cant trade-off between the improved performance and the num-
ber of parameters required to implement the SIRe methodology.
Notice, however, that all extra parameters are employed to ex-
clusively address the input image reconstruction task, therefore
highlighting the proposed extension effectiveness in improving
the original task. Furthermore, the extra parameters amount is
highly dependent on the underlying architecture. For instance,
SIRe-ResNet50 requires a ≈132% parameter number increase,
while SIRe-VGG19 only a ≈23% increment to implement the
SIRe methodology. Observe that this lower amount, in correla-
tion with the total parameter quantity shown in Table 4, is a con-
sequence of most parameters being associated to the classifier
in the original VGG19 architecture. We also note that the inter-
nal structure of a given network directly affects the total train-
ing time. For instance, even though the VGG19 has roughly
6x the number of parameters of a ResNet50 (i.e., 143M against
25M), it still requires less time to be fully trained according to
the presented test protocol. Moreover, the trainable number of
parameters also influences the time required to train a given net-
work and, consequently, its SIRe extension (e.g., up to ≈70%
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Model Batch
Size λ-value Top-1 Error% Top-5 Error% Params Training Time

Baseline-CNN 64 - 35.44 12.11 7.9M ≈119’
SIRe-CNN 64 0.20 26.15 8.22 14.0M ≈202’
VGG16 64 - 29.18 13.01 138.3M ≈187’
SIRe-VGG16 64 0.20 23.02 10.00 160.9M ≈336’
VGG19 64 - 28.29 11.43 143.6M ≈195’
SIRe-VGG19 64 0.20 22.67 9.62 176.8M ≈370’
ResNet34 64 - 22.17 6.29 21.8M ≈412’
SIRe-ResNet34 64 0.21 18.35 6.01 50.4M ≈698’
ResNet50 64 - 21.26 5.41 25.6M ≈433’
SIRe-ResNet50 64 0.21 17.89 5.32 59.4M ≈721’
GoogleNet 64 - 22.92 6.61 13.0M ≈317’
SIRe-GoogleNet 64 0.19 18.21 5.99 17.0M ≈380’

Table 4: Comparison between several literature networks and their SIRe-extended version on the CIFAR100 dataset.

Model Batch
Size

Top-1
Error%

Top-5
Error% Params Training

Time

Baseline-CNN 64 37.28 4.50 7.9M ≈10”
SIRe-CNN 64 22.88 1.08 14.0M ≈18”
VGG16 64 30.80 3.48 138.3M ≈13”
SIRe-VGG16 64 14.70 0.97 160.9M ≈23”
VGG19 64 47.63 4.17 143.6M ≈15”
SIRe-VGG19 64 34.71 8.53 176.8M ≈24”
ResNet34 64 14.38 0.62 21.8M ≈16”
SIRe-ResNet34 64 5.22 0.27 50.4M ≈29”
ResNet50 64 36.08 3.37 25.6M ≈23”
SIRe-ResNet50 64 18.55 2.09 59.4M ≈37”
GoogleNet 64 57.77 0.99 13.0M ≈13”
SIRe-GoogleNet 64 32.98 1.25 17.0M ≈16”

Table 5: Comparison between several literature networks and their SIRe-
extended version on the MNIST dataset.

for the selected models).

Similar results can be observed also on datasets with a lower
number of classes, i.e., MNIST (Table 5), Fashion-MNIST (Ta-
ble 6), and CIFAR-10 (Table 7), where the SIRe-extended mod-
els outperform the corresponding baseline architectures on each
dataset. An interesting aspect of the first two of these collec-
tions is that the SIRe-extended models achieve considerably
lower Top-1 error rates even though they are trained using con-
strained settings, i.e., 1280 samples for five epochs. The im-
proved performance indicates that the information preserved
from the input by the AEs can affect the classification task and
enables the model to reach convergence faster, even on datasets
with fewer classes. This result is particularly noticeable on
more complex architectures, i.e., ResNet50 and VGG19, that
have higher error rates as they require more epochs to reach
convergence with the proposed constraints, due to their design.
Unlike the first two datasets, on CIFAR-10, where the networks
are trained thoroughly, the error rate discrepancy between base
models and their SIRe-extended version is reduced as a conse-
quence of the low number of classes. Nevertheless, the SIRe-
networks still outperform the corresponding base models inde-

Model Batch
Size

Top-1
Error%

Top-5
Error% Params Training

Time

Baseline-CNN 64 24.21 0.65 7.9M ≈9”
SIRe-CNN 64 20.04 0.63 14.0M ≈19”
VGG16 64 24.53 0.75 138.3M ≈12”
SIRe-VGG16 64 22.32 0.75 160.9M ≈23”
VGG19 64 31.44 1.11 143.6M ≈13”
SIRe-VGG19 64 27.11 1.29 176.8M ≈25”
ResNet34 64 25.09 0.81 21.8M ≈18”
SIRe-ResNet34 64 21.73 0.79 50.4M ≈31”
ResNet50 64 56.78 5.25 25.6M ≈22”
SIRe-ResNet50 64 48.98 4.60 59.4M ≈38”
GoogleNet 64 43.32 1.31 13.0M ≈14”
SIRe-GoogleNet 64 39.51 1.28 17.0M ≈18”

Table 6: Comparison between several literature networks and their SIRe-
extended version on the F-MNIST dataset.

pendently of the underlying architecture. In this context, notice
that even though the Top-5 error of the base models is low on all
three datasets, the SIRe-extended architectures can achieve bet-
ter performance also on this metric. Regardless, the increased
training time can already be observed even on this constrained
scenario, and becomes non-negligible on the CIFAR-10, i.e.,
Table 7, where several SIRe networks required ≈1.7x the train-
ing time compared with their base version.

Unlike datasets containing a small or a medium number of
samples, where the only drawback of the SIRe methodology
lies in the increased training times, the experiments on Caltech-
256 also expose another weakness. As reported on Table 8, it
can be observed that the models use the same number of pa-
rameters across all datasets. However, due to the input size of
Caltech-256 (i.e., 224×224), the SIRe-extended models require
a lower batch size in order to be executed, which directly re-
sults in a ≈5.3x time increase for some architecture, e.g., SIRe-
VGG16. Moreover, this extreme degradation of the training
time lead to some of the extended models requiring higher per-
formance hardware. As a matter of fact, SIRe-ResNet50 and
SIRe-GoogleNet, contrary to their base versions, could not be
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Model Batch
Size

Top-1
Error%

Top-5
Error% Params Training

Time

Baseline-CNN 64 7.05 0.28 7.9M ≈121’
SIRe-CNN 64 6.17 0.25 14.0M ≈207’
VGG16 64 6.08 0.29 138.3M ≈190’
SIRe-VGG16 64 4.94 0.28 160.9M ≈342’
VGG19 64 6.02 0.30 143.6M ≈201’
SIRe-VGG19 64 4.95 0.31 176.8M ≈393’
ResNet34 64 4.72 0.10 21.8M ≈437’
SIRe-ResNet34 64 3.99 0.10 50.4M ≈741’
ResNet50 64 4.57 0.11 25.6M ≈465’
SIRe-ResNet50 64 3.82 0.10 59.4M ≈798’
GoogleNet 64 5.16 0.24 13.0M ≈324’
SIRe-GoogleNet 64 4.09 0.18 17.0M ≈392’

Table 7: Comparison between several literature networks and their SIRe-
extended version on the CIFAR10 dataset.

Model Batch
Size

Top-1
Error%

Top-5
Error% Params Training

Time

Baseline-CNN 32 43.12 24.53 7.9M ≈16h
SIRe-CNN 16 34.51 22.94 14.0M ≈27h
VGG16 32 38.13 20.67 138.3M ≈20h
SIRe-VGG16 16 30.65 17.20 160.9M ≈107h
VGG19 16 38.07 20.68 143.6M ≈31h
SIRe-VGG19 8 30.96 17.19 176.8M ≈155h
ResNet34 16 35.65 19.98 21.8M ≈84h
SIRe-ResNet34 8 29.80 19.01 50.4M ≈149h
ResNet50* 8 35.04 19.95 25.6M ≈88h
SIRe-ResNet50* 4 29.53 18.97 59.4M ≈164h
GoogleNet* 8 37.77 22.18 13.0M ≈66h
SIRe-GoogleNet* 4 31.82 20.69 17.0M ≈97h

Table 8: Comparison between several literature networks and their SIRe-
extended version on the Caltech256 dataset. Marked (*) models were trained
and tested on an Nvidia RTX 3080 with 10 GB of RAM.

trained on the configuration presented in Section 4.1. Notice
that, to show a fair comparison, the reported performances re-
fer to experiments carried out on the same hardware even for
the base models, although the original architectures, albeit with
a low batch size, could still be run on the GeForce GTX 1070.
In conclusion, while the proposed SIRe extension can be theo-
retically applied to any network performing classification, fur-
ther investigations on possible reduced interlaced multi-task
implementations (e.g., less AE layers) are required to simplify,
without loss of generality, the SIRe extended network training
procedure; an improvement that would enable the presented
methodology application to the ever more complex architec-
tures being developed, but which is left as future work.

5. Conclusion

In this paper we introduced the SIRe methodology, that
allowed us to improve the classification capabilities of a
given network by preserving information from the input im-
age through an interlaced multi-task learning strategy. Further-
more, the latter was refined via long skip and short residual
connections to increase the quality of the reconstructed images.

Moreover, both strengths and weaknesses for the proposed ap-
proach, i.e., a significant classification performance boost and
a required training time increase, were presented and discussed
through several ablation studies. Finally, the SIRe methodol-
ogy was also applied to different well-known literature works,
validating the proposed strategy by means of improved perfor-
mances on all of the extended architectures when tested on five
different datasets containing a low, a medium, and a high num-
ber of classes.

As future work we plan to investigate possible strategies to
reduce the amount of parameters required to implement the
SIRe approach in even more complex architectures, without any
loss of generality for the input image reconstruction and infor-
mation preservation rationale. Furthermore, other extensive ex-
periments will be carried out to explore the effects of different
and multiple interlaced tasks with respect to the classification
one, to ultimately obtain ever improving feature abstractions.
In this context, a thorough analysis of the loss landscape will
also be performed by following the ideas presented in [72] to
have an in-depth understanding of how the SIRe components
and the multiple interlaced tasks affect the gradient evolution at
training time.
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