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ABSTRACT
Dimensional reduction (DR) maps high-dimensional data into a lower dimensions latent space
with minimized defined optimization objectives. The two independent branches of DR are feature
selection (FS) and feature projection (FP). FS focuses on selecting a critical subset of dimensions
but risks destroying the data distribution (structure). On the other hand, FP combines all the input
features into lower dimensions space, aiming to maintain the data structure; but lacks interpretability
and sparsity. Moreover, FS and FP are traditionally incompatible categories and have not been
unified into an amicable framework. Therefore, we consider that the ideal DR approach combines
both FS and FP into a unified end-to-end manifold learning framework, simultaneously performing
fundamental feature discovery while maintaining the intrinsic relationships between data samples in
the latent space. This paper proposes a unified framework named Unified Dimensional Reduction
Network (UDRN) to integrate FS and FP in an end-to-end way. Furthermore, a novel network
framework is designed to implement FS and FP tasks separately using a stacked feature selection
network and feature projection network. In addition, a stronger manifold assumption and a novel loss
function are proposed. Furthermore, the loss function can leverage the priors of data augmentation
to enhance the generalization ability of the proposed UDRN. Finally, comprehensive experimental
results on four image and four biological datasets, including very high-dimensional data, demonstrate
the advantages of DRN over existingmethods (FS, FP, and FS&FP pipeline), especially in downstream
tasks such as classification and visualization.

1. Introduction
Dimensional reduction (DR) [1, 2, 3] transforms a high-

dimensional (h-dim) data into an intrinsic low-dimensional (l-
dim) embedding. The performance of typical classification
or visualization methods degrades when data has too many
features. Therefore, DR is introduced to overcome this
issue. DR have a broad range of applications in signal
processing [4], speech recognition [5], neuroinformatics [6],
and bioinformatics [7].

The ideal DR method is expected to have two char-
acteristics [8]. (1) Structural maintainability. The local
structures of the data need to be preserved from being broken
while reducing the data dimensionally. Under the manifold
assumption, ensuring the local connectivity of the data is
the golden rule for structure preservation. (2) Sparse in-
terpretability. Redundant features and noisy features need
to be identified while reducing the data dimensionally. It
is because these useless features can affect the accuracy of
downstream tasks.

In many biology exploration fields, such as single-
cell analysis [9, 10, 11] genomics [12] and proteomics [13],
DR is required to have both characteristics. However, the
current DR methods cannot achieve the above character-
istics with a unified framework. The current DR methods
often contain two incompatible branches, feature projec-
tion (FP) [14] and feature selection (FS) [15]. FP methods
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concentrate on structural maintainability. They produce
new variables obtained from the original features via an arbi-
trarily complex mapping, thus having better distinguish and
structure-preserving performance. In contrast, FS methods
concentrate on sparse interpretability. They allow the user
to find an essential feature subset during the generalization
phase of the model but often break the structure of the data
by losing features [16, 17, 18].

Due to the needs of practical fields such as biology
exploration, some researchers build pipeline methods by
splicing the FS and FP methods together to solve the above
issues [19, 11, 13]. However, these pipeline methods are
not satisfying due to the following reasons. (1) Inconsistent
optimization objective. The stacked approach of FS and
FP may introduce conflicting objectives, e.g., FS focuses on
reconstruction error while FP focuses on distance/similarity
preserving. The DR method that can combine both FS and
FP has not been found yet. (2) Weak generalizability. FS
and FP are mainly applied in scenarios with a huge number
of features, where it is easy to fall into overfitting due to the
relatively small number of samples.

In this paper, an end-to-end Unified Dimensional Reduc-
tion Network, named UDRN, is designed to perform feature
selection and projection (FS&FP) in a unified framework.
To design consistent optimization objective, a novel neural
network framework is designed. The framework includes a
feature selection network (FS network) and feature projec-
tion network (FP network) for both FS and FP tasks. The

Zelin Zang et al.: Preprint submitted to Elsevier Page 1 of 14

ar
X

iv
:2

20
7.

03
80

9v
2 

 [
cs

.L
G

] 
 2

3 
N

ov
 2

02
2



Unified Dimensional Reduction Neural Network

gate layer of the FS network mask off unimportant features
and generate feature subset during the forward propagation
process, thus implementing online feature selection and
enabling the following FP with selected features. The FP
network then maps the feature subset to l-dim space for
downstream tasks such as classification and visualization.
To improve the generalizability of UDRN, a manifold con-
nectivity [20, 21] based manifold assumption using priors of
data augmentation is proposed. Furthermore, based on the
above assumption, a novel loss function is designed to train
the FS&FP neural network with online generated augmented
data. The proposed unsupervised loss function is compatible
with the new data generated by data augmentation, thus
allowing a finer depiction of the datamanifold and ultimately
leading to improved performance.

To the best of our knowledge, UDRN is the first attempt
to apply data augmentation-compatible structure-preserving
loss functions on the neural network for the FS&FP task. Our
contributions are summarized as follows.

• A unified FS&FP task and a novel neural net-
work framework. We explicitly define the FS&FP
task and design a neural network framework with a
unified objective to solve this task. The proposed task
is extensively employed in biology, genomics, and
proteomics.

• A manifold connectivity assumption under aug-
mented data and corresponding novel loss func-
tion. We propose a novel structure-preserving loss
function and online data augmentation to provide a
consistent and generalizable objective function.

• Extensive experiments and promising results. We
compare UDRN with state-of-the-art FS, FP, and
FS&FP pipeline methods on ten datasets and a case
study of the supervised scenarios.

2. Related Work
2.1. Feature Selection (FS)

The FS methods include four categories [22], (a) filter
methods, which are independent of learning models; (b)
wrapper methods, which rely on learning models for selec-
tion criteria; (c) embedder methods, which embed the FS
into learning models to also achieve model fitting simulta-
neously; (d) hybrid approaches, which are a combination
of more than one of the above three. Unsupervised FS is
more widely used because it does not require information
about the label. At the same time, unsupervised FS is more
challenging due to the same reasons [23, 24].

From another perspective, FS methods can be divided
into non-parametric and parametricmethods.Non-parametric
models select the appropriate features based on statistics.
For example, Laplacian score (LS) [25] uses the nearest
neighbor graph to model the local geometric structures of
the data. Principal feature analysis (PFA) [26] utilizes the
structure of the main components of a set of features to

select the subset of relevant features. Multi-cluster feature
selection (MCFS) [27] selects a subset of features to cover
the multi-cluster structure of the data, where spectral anal-
ysis is used to find the inter-relationship between different
components. In Unsupervised discriminative feature selec-
tion (UDFS) [28], the discriminatory analysis method and
l2,1 regularization are used to identify the valuable features.Nonnegative discriminative feature selection (NDFS) [29]
select discriminative features by learning the cluster labels
and FS matrix. The NDFS uses a nonnegative constraint on
the class indicator to understand cluster labels and adopts an
l2,1 limitation on the redundant features. IVFS [16] select
useful features by preserving the pairwise distances, as well
as topological patterns, of the complete data.

Parametric models select the appropriate features based
on neural networks. For example, Autoencoder Feature Se-
lector (AEFS) [30] combines reconstruction loss and l2,1regularization loss to obtain a subset of useful features on
the weights of the encoder. The agnostic feature selection
(AgnoS) [31] combines AE with different auxiliary tasks
to design a range of FS methods. Such as AgnoS-W: the
l2,1 norm on the weights of the first layer of AE, AgnoS-
G: l2,1 norm on the gradient of the encoder, and AgnoS-S:
l1 norm on the slack variables that constitute the first layer
of AE. Concrete Autoencoders (CAE) [17] replaces the first
hidden layer of AE with a concrete selector layer, which
is the relaxation of a discrete distribution called concrete
distribution [32]. Fractal Autoencoders (FAE) [18] extends
autoencoders by adding a one-to-one scoring layer. FAE
uses a small sub-neural network for FS in an unsupervised
fashion. Atashgahi et.al [33] introduce the strength of the
neuron in sparse neural networks as a criterion to measure
the feature importance and designs QuickSelection (QS).

We consider that it is a meaningful research direction for
designing FS methods based on neural networks. Training
FS models based on reconstruction loss cannot take into
account structure preservation & feature projection; thus,
it is meaningful to design novel structure-preserving loss
functions for both FS and FP tasks.
2.2. Feature Projection (FP)

In recent years, Numerous manifold-learning-based FP
methods have been proposed. Some of the FP methods are
based on the manifold assumption [34, 35], which states
that a pattern of interest in data is a lower-dimensional
manifold (or hyper-surface) residing in the high dimensional
data space. When the data contains multiple manifolds, the
geometric structure usually includes the local system of
neighboring points on each manifold and global relation-
ships among different manifolds.

FP methods can be divided into non-parametric and
parametric methods. In terms of non-parametric methods,
Isometric Mapping (ISOMAP) [36] and Locally Linear Em-
bedding (LLE) [37] are classic ones, among others. Later
developments include Hessian LLE (HLLE) [38], Modified
LLE (MLLE) [39]. The t-Distributed Stochastic Neighbor

Zelin Zang et al.: Preprint submitted to Elsevier Page 2 of 14



Unified Dimensional Reduction Neural Network

Embedding (t-SNE) [40] and Uniform Manifold Approxi-
mation and Projection (UMAP) [41] are two popular meth-
ods for manifold learning-based Nonlinear dimensionality
reduction (NLDR), widely used for NLDR and visualization.
The t-SNE improves the previous work of SNE [42] by using
a long-tailed t-distribution for the embedding layer [40]. The
UMAP further introduces a global term added to the local
neighborhood-based t-SNE to preserve the global structure.

In terms of parametric methods, the Deep Isometric
Manifold Learning (DIMAL) [43] combines a deep learning
framework with a multi-dimensional scaling (MDS) objec-
tive, which can be seen as a neural network version of
MDS. DIMAL learns distance-preserving mapping to gen-
erate low-dimensional embeddings for a particular class of
manifolds with sparse geodesic sampling. Topological Au-
toencoder (TAE) [44] imposes topological constraints [45]
on top of the autoencoder architecture to preserve the topo-
logical structure of data. Sainburg et.al [46] extend the
embedding step of UMAP [41] to a parametric optimization
over neural network weights, learning a parametric relation-
ship between data and embedding. DLME [47] is a gener-
alizable neural network with manifold flatness assumption
which can handle biological and image data well.
2.3. FS and FP (FS&FP) Piplines

Some pipeline methods are designed to combine feature
selection and feature projection in fields such as bioinformat-
ics (in single-cell analysis [48, 9, 10, 11], genomics [49, 12],
and proteomics [50, 13]). The pipeline method includes an
FS method, which discovers the significant features, and
an FP method, which analyzes the effects of these features
on phenotype. Since no corresponding end-to-end FS and
FP analysis methods can be found, such tasks are often
performed using a pipeline approach. For example, different
FS and FP methods are used in series to complete the
analysis task [51, 52, 53].

As demonstrated above, the pipeline approachmay cause
corruption of helpful information due to the non-uniform
loss functions and interrupted information flow of FS and
FP. Therefore, we innovatively propose UDRN based on a
neural network, which accomplishes feature selection and
projection through an end-to-end network framework.

3. Problem Defenition and Preliminaries
3.1. Problem Definition

We use bold uppercase characters for matrices (e.g., A),
bold lowercase characters for vectors (e.g., a), and regular
lowercase characters for scalars (e.g., a). Also, we represent
the i-th element of vector a as ai, the i-th row of matrixA as
Ai∗, the j-th column of matrixA asA∗j , the (i, j)-th entry of
matrixA asAij , the transpose ofA asAT . We introduce our
proposed concept on the attributed graph [54] to precisely
describe our data augmentation and loss function and adapt
it to a broader range of situations.
Definition 3.1 (Attributed Graph). Let graph ( ,, )
be an attributed graph (network). It consists of - (1)  , the

set of nodes, n = | |, where n is the number of the nodes.
(2) , the set of edges, e = ||, where e is the number of the
edges. and (3) = [x1,x2,… ,xn], the set of node attributes(features), where xi ∈ ,  is the dimensional number of
attribute.

With the definition of the attributed graph, we now define
the FS&FP problem as follows.
Definition 3.2 (FS&FPTask onAttributedGraph). Given
an attributed network ( ,, ), the FS&FP task on at-
tributed graph aims to (a) select a subset of d features from
the original -dimensional feature space, and d ≪  and
then (b) map the data with selected features  s to a latent
space . We expect that the selected feature subsets and
the generated embedding representations imply as much
information as possible as the original data. It may manifest
itself in as high an accuracy as possible in downstream
tasks, neighborhood structure maintenance, and consistent
visualization output.

The adjacency of nodes is described by the edges of the
attribute graph, which contains critical a priori knowledge.
In the unsupervised context, k-NN is used to build the edge
structure.

 = {(vi, vj)|vj ∈  k(vi), vi ∈ } (1)
where  k(vi) is set of k-NN neighborhood of node vi,
k is the hyperparameter of k-NN. UDRN can be eas-
ily compatible with the supervised situation because the
methods and problems are based on attribute graphs. When
additional supervised information or structural information
is accessible, we only need to redefine the edges.

 = {(vi, vj)|vj ∈  k(vi) ∩ Y (vi), vi ∈ } (2)
where Y (vi) is the set of nodes with the same label as vi.
3.2. AE-based Feature Selection

AE-based FS methods add a superficial one-to-one layer
between the input and hidden layers, which can weigh the
importance of each feature [30, 17, 18]. The parameters of
the one-to-one layer are trained byL1 regularization loss andreconstruction loss, thus thesemethods highlight the features
which friendly to reconstruction. The loss function of AE-
based FS is,

Lfp = min
 ,f ,g

‖x − g (f (x))‖2F + �1L1(w) (3)

where  is a trainable parameter matrix with values only
on the diagonal.  = Diag(w) ∈ ×, and the wj is
the importance of feature j, w =

{

wj|j ∈ {1, 2,… ,}
}

∈
 (check Eq. (3) in [55] for more details). The ‖⋅‖F is the
Frobenius norm [56].

AE-based FS methods include encoder f (⋅) and decoder
g(⋅). The encoder f (⋅) embeds the input datax into a latent
space, and the decoder g(⋅) maps the latent space data back
to the original space and calculates the reconstruction loss.
TheL1 loss leads to a decrease inw. The reconstruction loss
increases the feature importance of important features, and
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the two losses act synergistically to guide important features
to have higher scores.

Most current FSmethods involve an offline feature selec-
tion strategy. It includes two steps: (1) all features are scored
for importance using various objective functions; (2) the top-
k essential features are selected. The above offline scheme
poses an obstacle to the unified FS&FP task, for two reasons.
(D1) Leakage of unimportant feature information. Dur-
ing training, the forward propagation of unimportant features
is not interrupted. However, the unimportant features are not
accessible during inference. The above bias causes a large
variance between inference results and training results. (D2)
Difficult to preserve the structure well in the latent space.
The feature-level reconstruction is focused on (possibly in-
cluding redundant and noisy features) without considering
the neighborhood structure of the data.
3.3. Data Augmentation on Attributed Network

Data augmentation is a commonly used NN training
method for image classification and signal processing [57].
It acts as a regularizer and helps to reduce overfitting. We
find that typical image data augmentation schemes cannot
directly apply to FS. The reason is that FS requires the
meaning of individual features is not destroyed by data
augmentation. To this end, the data augmentation schemes
which do not change the meaning of the feature are adapted
in the FS&FP task.
Definition 3.3 (Data Augmentation, w.r.t �). Given an
attributed network ( ,, ), data augmentation generates
a corresponding augmented graph ′( ′,′, ′) and for
detail,

 ′ = {v1,… , vn, v1′,… , vn′}

′ = { + ̃
′
+ ̃′′}

 ′ = {x1,… ,xn, �(x1),… , �(xn)}

(4)

The augmented graph ′’s node  ′ contains: (1) origi-
nal nodes v1,… , vn, and (2) augmented nodes v1′,… , vn′,which corresponds to the original node one by one. The
edges ′ contains: (1) original edges , which edges be-
tween the original nodes, (2) the inter-augmented edges:
̃′ = {(v1, v1′),… , (vn, vn′)}, and (3) intra-augmented
edges ̃′′, which between the augmented nodes ̃′′ =
(vi, vj) → (vi′, vj ′). Three kinds of edges are qualitativelydifferent and should be modeled separately. However, we
focus on the nearest neighbor relationship depicted by the
edge structure and model the three edge structures as homo-
geneous graphs for modeling convenience.

The data augmentation operator generates new data by
fusing the local structure information and random distribu-
tion. Several data augmentations are as follows.

(i) Uniform-type data augmentation (w.r.t �U ) gen-erates augmented data by linear combination. The linear
combination parameter ru is sampled from the uniform dis-
tribution U (0, pU ), and pU is the hyperparameter.

�U (x) = (1 − ru) ⋅ x + ru ⋅ x̃,
x̃ ∼  k(x), ru ∼ U (0, pU )

(5)

where x̃ is sampled from the attributes set of data x’s k-NN
neighborhood  k(x).

(ii) Bernoulli-type data augmentation (w.r.t �B) gen-erates the augmented data by directly replacing the original
features with the features at the corresponding positions
of the adjacent data. The probability of replacement bj is
sampled from the Bernoulli distribution B(pB), and pB is
the success probability of the Bernoulli distribution.

�B(x) = x◦b + x̃◦(1 − b), x̃ ∼  k(x),
b = {bj|bj ∼ B(pB), j ∈ {1,… ,}}

(6)

where ◦ is the Hadamard product.
(iii) Normal-type data augmentation (w.r.t �N ) gener-

ates augmented data by adding some noise, noise parameters
bj is sampled from the normal distributionN(0, pN ), and pNis the standard deviation. The distance between neighboring
sample features as a scaling factor to avoid destroying a
single feature.

�N (x) = x + (x − x̃)◦b, x̃ ∼  k(v),
b = {bj|rj ∼ N(0, pN ), j ∈ {1,… ,}

(7)

During network training, the data augmentation oper-
ators are applied online, thus providing more randomness
of the data and guaranteeing that the feature meaning does
not change. We also discuss the effect of different data
augmentation on Table. 7.
3.4. Node Similarly and vanilla DR method

Node Similarly (NS) [58, 59] is used to describe the
relationship of nodes on the graph.
Definition 2.3 (Node Similarly, NS, w.r.t. ). Given an
attributed network ( ,, ), and a kernel function � (⋅, ⋅),
the node similarly between two node vi and vj is,


ij = �

(

vi, vj
)

, (8)
The kernel function transforms the distance relationship
between nodes into the similarity relationship and thus con-
structs the structure-preserving loss function. The typical
kernel functions include Gaussian kernel [60],

�Ga
(

vi, vj , �
)

= 1
√

2��
exp

⎛

⎜

⎜

⎝

−d2vi,vj
2�2

⎞

⎟

⎟

⎠

,

dvi,vj =
‖

‖

‖

xi − xj
‖

‖

‖2
,

(9)

where � is a scaling factor. Another typical kernel function
is t-kernel [40],

�t
(

vi, vj , �
)

= 1
√

� ⋅ B (0.5, 0.5�)

⎛

⎜

⎜

⎝

1 +
d2vi,vj
�

⎞

⎟

⎟

⎠

−0.5(�+1)

(10)

where � is the freedom degree of t-distribution and where
B(⋅) is the Beta function.

The vanilla DR (FP) loss function first normalizes the
pairwise distance of the input data and then optimizes the
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Figure 1: The framework of UDRN. The proposed UDRN consists of (a) data augmentation operation �, (b) feature selection (FS)
network & feature projection (FP) network, (c) structure preservation loss function Ltp. The � generates new augmented graph
′( ′,′, ′) by Eq. (4). The FS network filter out unimportant features and map the data with selected features to high-dim
embedding graph h( ′,′,h); FP network map the h low-dim embedding graph l( ′,′,l). The Ltp train FS and FP
network with an end-to-end loss function.

latent space based on the normalized pairwise distance. Here
we discuss t-SNE [61] as a typical example. The t-SNE, as
well as UMAP [60], calculates the scaling factor �∗i for everysingle node i by binary search.

�∗i = argmin
�i

‖

‖

‖

‖

‖

‖

−
∑

j
pj∣i log2 pj∣i − log2(p)

‖

‖

‖

‖

‖

‖

,

pj∣i =
�Ga

(

dinputvi,vj , �
)

∑

k≠i �Ga
(

dinputvi,vk , �
)

(11)

where the hyper-parameter ‘perplexity’ p controls the above
cost function, dinputvi,vj is the distance if i and j in the input
space, pj∣i is the conditional probability. Next, t-SNE mini-
mizes the difference between the input and latent space using
Kullback Leibler divergence [62].

LFP =
∑

i≠j
S*
ij log

S lij
S*
ij
,S*

ij = �Ga
(

dinputvi,vj , �
∗
i

)

(12)

where S*
ij is normalized pairwise similarity in input data,

and dinputvi,vj is the distance of i and j in input space. The S lij is
the similarity in the latent space. In t-SNE, S lij is calculatedfrom the t-distribution. After completing the optimization,
the points in latent space are output as visualization results.

4. Methods
The network framework of UDRN, the new manifold

assumption and the proposed loss function are described in
detail in this section. Moreover, the reasons for the perfor-
mance improvement it brings are further analyzed.

4.1. UDRN Framework
As discussed in sec 3.2 to sec 3.4, current FS and FP

methods are unable to meet the requirements of FS&FP task.
Therefore, we propose a novel neural network framework to
solve the FS&FP task. The framework of UDRN is shown in
Fig. 1. The proposedUDRN contains a feature selection (FS)
network g�w,�(⋅) and a feature projection (FP) network f�(⋅),each oriented to separate aim. The g�w,�(⋅) learn the sparse
feature subset online and then map the data with selected
features into high dimensional embedding ℎ, and then
f�(⋅) further maps ℎ to low dimensional embedding l.

The forward propagation of feature selection (FS) net-
work g�w,�(⋅) is,

ℎ = g�w,�(
′) = m�

(GL�w
(

 ′)) , (13)
where the FS network includes a backbone network m� (⋅)and a gate layer GL�w (⋅). The � is the network parameters of
m� (⋅). The gate layer GL�w (⋅) processes the augmented data
 ′ by a gate operation.

GL�w( ′) =
{

wj
′
j if wj > �, j ∈ {1, 2,… ,}

0 otherwise (14)

where thew ∈ R is gate parameters, indicating the impor-
tance of the features. The � is a hyperparameter threshold,
and the g�w,�( ′) is a gate layer to ensure the features with
low importance scores are not leakage to the latter network
layer.

In this way, important features (wj > �) can be passed
through the gate layer and scaled by the gate parameters.
And unimportant features will be blocked by the gate layer.
The w is initialized to a constant value and is optimized
according to the loss function of the network. Once wj < �,the corresponding feature j is discarded by the gate layer.
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The forward propagation of the feature propagation (FP)
network is,

l = f�(
ℎ). (15)

The FP network f�(⋅) maps the h-dim embedding ℎ to
the l in l-dim for visulazation or other downstreem tasks.
Finally, the outputs of UDRN are two graphs, which include
the high dimensional embedding graph ℎ( ′,′,h) and
low dimensional embedding graph l( ′,′,l).
4.2. Manifold Connectivity Assumptions Under

Augmented Data
Typical FS and FP methods are based on manifold as-

sumptions [20, 63, 60, 64], which only focus on finite data
in the dataset. These methods ignore estimating the intrinsic
manifold from the finite and augmented data. It is a good
choice to learn information about the intrinsic manifold by
neural networks and to perform FS and FP based on the
learned network parameters containing the information of
the manifold.

To realize the above plan, the current manifold assump-
tion has to be extended as it is not compatible with aug-
mented data. As shown in Fig. 2, the typical DR loss does
not take into account the augmented data, so the embedding
of the latent space can only be learned based on the finite
data. The ‘push’ and ‘pull’ are the figurative representation
of the action of the loss function on the nodes of the latent
space. Current typical methods cannot accommodate data
augmentation. When additional augmented data is gener-
ated, the loss function of the current typical method causes
an increase in computational complexity (because of the
need to compute �∗ for each augmented data) and model
collapse (because of the inconsistency of the gradient caused
by the data augmentation).

Figure 2: Manifold connectivity assumptions in data augmen-
tation contexts. (a) High dimensional data used for training
model. (b) Typical DR loss by ‘pushing and pulling’ the true
sample to optimize the latent space. (c) The proposed DR
method based on data augmentation generates new samples
online and trains the model by ‘pushing and pulling’ augmented
samples to learn the intrinsic manifold more precisely.

To this end, we propose a more stringent assumption,
named manifold connectivity assumptions under augmented
data. It assumes that the augmented data x′ = �(x) is
connected to the original data x on the manifold. Based on
this, the typical DR loss can be effectively expanded (as
shown in Fig. 2). Instead of relying on the finite data in the

dataset to optimize the neural network parameters, the pro-
posed loss is combined with the augmented data to train the
model. A sufficient prior embedded in the data augmentation
allows the model to be trained without computing �∗, which
also avoids additional computational consumption. Also, the
proposed assumptions can better avoid collapse and achieve
more refined modeling.
4.3. Data Augmentation Compatible Loss

Functions
Next, a novel loss function is designed to implement

the assumptions proposed in Sec 4.2. The proposed loss
function matches the network framework (in Sec 4.1) and
data augmentation (Sec 3.3).

The proposed loss function first ensures the preservation
of local information in the dimensionality reduction process
by manifold exaggeration and then measures the difference
between the latent space and the target with the fuzzy set
cross entropy (in Fig. 3).

Figure 3: Framework of calculating Ltp. (1) abstract structure
′. (2) use ′ to exaggerate the high-dimensional NS h. (3)
calculate Ltp by appling fuzzy set cross-entropy to ̃h and  l.

The DR requires mapping high-dimensional data to
a lower-dimensional space, which naturally brings about
‘crowding problem’. To alleviate the above ‘crowding prob-
lem’, pulling in neighboring nodes and pushing away non-
neighboring nodes are good strategies. Because the above
strategies can effectively avoid the manifold overlapping
in the lower dimensional space. Thus we design manifold
exaggeration,

S̃ℎij = E(Sℎij ,
′)

=

{

Sℎij exp(1 − �) if (vi, vj
)

∈ ′

Sℎij exp(1 + �) otherwise
(16)

where the neighborhood relationship of augmented data ′

is defined in Eq. (4). The Sℎij is the node similarity, which is
calculated from the nodes similarity in a high dimensional
graph h( ′,′,h). Sℎij = �Ga

(

‖

‖

‖

zℎi − z
ℎ
j
‖

‖

‖

2

2
, � = 1

)

.
The manifold exaggeration transforms the goal of network
learning with neighbor relationship prior knowledge ′, that
is, increasing the goal similarity of neighboring nodes and
decreasing the goal similarity of non-neighboring nodes.
Thereby, the objective of pulling in neighbor nodes and
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pushing away non-neighbor nodes can be achieved. The
hyperparameter � > 0 controls the strength of exaggeration.

The loss function is designed as the form of fuzzy sets
cross entropy [60] (two-way divergency in [65]),

Ltp =
1
B2

∑

i,j∈
S̃ℎij logS

l
ij + (1 − S̃ℎij) log(1 − S

l
ij) (17)

where nodes similarity in a high dimensional graph is cal-
culated as S lij = �t

(

‖

‖

‖

zli − z
l
j
‖

‖

‖

2

2
, �
)

, � is a hyperparameter.
The  = {1, 2,… , B}, B is the number of node in a batch.
The loss function trains the neural network to output a low-
dimensional embedding zl such that S lij approximates the
exaggerated S̃ℎij .The designed loss function is based on the manifold
connectivity assumption of augmented data and is well-
compatiblewith data augmentation. As described in Sec. 4.3,
it is assumed that the augmented data are neighbors of
the original data in the real manifold. Therefore, instead
of pulling in similar nodes in the dataset, the proposed
loss function pulls in the augmented nodes. The online
generation of augmented data during training allows the
proposed method to depict the structure of the manifold
in a more refined way, ultimately leading to performance
improvements.

The designed loss function is consistent for FS and FP.
We implement the selection of important features and the
discarding of unimportant features in the forward propaga-
tion of the network with the help of the gate layer. And
the whole selection process is embedded in the training of
the neural network. The FS and FP are based on the same
object, which is to better preserve the structure of neighbors
in higher dimensional spaces in a lower dimensional space.

Finally, the loss function of unsupervised UDRN is:
min
w,�,�

Ltp + �Lr, Lr = ‖w‖1, (18)
where � is hyperparameter. To select a specific feature num-
ber, we give � a small initial value, and then slowly increase
� until the feature number satisfies the requirements.
4.4. Pseudocode

Algorithm. 1 shows how to train our model and how to
obtain the selected features.

5. Experiments
5.1. Details of Dataset and Compared Methods

Details of Dataset.Weused four image datasets (COIL20,
Mnist, KMnist, EMnist) and four biological datasets (Ac-
tivity, HCL, Gast, and MCA). The details of the dataset are
shown in Table 1. Unlike CAE [17] and FAE [18], we do not
downsample the dataset because of the computational time.
We consider performance on large datasets as an essential
evaluation metric.

Compared Methods. To demonstrate the advantages
of UDRN, we compare it with the FS methods, the FP

Algorithm 1 The UDRN algorithm
Input: Data: all( ,, ), Learning rate: �, Epochs: E,
Batch size: B, Network: g�w,� , f� , loss weights: �,
Output: Selected Features: ℎ. FS&FP Embedding: lall.

1: Let t = 0.
2: while i = 0; i < E; i++ do
3: while b = 0; b < [||∕B]; b++ do
4: ( ,, )← Sampling(all( ,, ), b);

# Sample a batch data
5: ′( ′,′, ′)← Augment(( ,, )) by Eq. (4);

# Data augmentation
6: ℎ = m( ′) by Eq. (13);

# Select the features
7: h( ′,′,h)← g(′( ′,′,ℎ)) by Eq. (13);

# Map to high dimension space
8: l( ′,′,l) ← f (h( ′,′,h)) by Eq. (15);

# Map to low dimension space
9: Sℎij ←S(h( ′,′,h)); # Cal high dim similarity

10: S lij ← S(l( ′,′,l)); # Cal low dim similarity
11: S̃ℎij ← E(Sℎij ,

′); # Manifold exaggeration
12: tp←Ltp(S̃ℎij ,S lij) by Eq. (17); # Cal. the structuralpreservation loss
13: 1←L1(w) by Eq. (18); # Cal. the L1 loss
14: �,←�−�

)tp
)� ,�←�−�

)tp
)� ,w←w−�(

)tp
)w + )1

)w )
# Update the parameters

15: end while
16: end while
17: ℎ ← m(all( ,, )); # Select the features
18: lall( ′

all,
′
all,

l
all) ← f (g(all( ,, )));

# Cal. the embedding result

methods, and the pipeline methods of FS and FP. The
compared methods are divided into non-parameters methods
and parameters methods. The non-parameters FS methods
include LS [25], MCFS [66], NDFS [67], and IVFS [16].
The compared parameters FS methods include AEFS [30],
CAE [17], FAE [55], and QS [33]. The compared non-
parameters FP methods include tSNE [68], UMAP [41].
The compared parameters FP methods include GRAE [69],
IVIS [70] and Parametric UMAP (PUMAP) [71].

The grid search is used to determine the optimal param-
eters for all the baseline methods. The search space of each
method is shown in Table. 2.
5.2. Experimental Setup

We initialize the weights of the FS layer to w = 0.2
and initialize the other NN with the Kaiming initializer. We
adopt the AdamW optimizer [72] with a learning rate of
0.001. All experiments use a fixed MLP network structure,
g�w: [-1, 500, 300, 80], f�: [80, 500, 2], where -1 is the
features number of the dataset, the first layer of g�w is the gate
layer. To make UDRN select a specified number of features,
we set an adaptive �. At the beginning of 300 epochs, the
� = 0 model, and then � = Lr∕0.1‖w‖1 and grow by 0.5%
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Table 1
Statistics of datasets.

Dataset #Sample #Feature #Class Link

Image Data

Coil20 1440 16384 20 https://www.cs.columbia.edu/CAVE/
software/softlib/coil-20.php

KMnist 60,000 784 10 https://pytorch.org/vision/stable/index.html
Mnist 60,000 784 10 https://pytorch.org/vision/stable/index.html
EMnist 731,668 784 10 https://pytorch.org/vision/stable/index.html

Biological Data

Activity 5,744 561 6 https://www.kaggle.com/uciml/human-activity-
recognition-with-smartphones

GAST 10,629 1457 12 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643992/
MCA 30,000 9119 52 http://bis.zju.edu.cn/MCA/

HCL 280,000 3037 93 https://figshare.com/articles/dataset/
HCL_DGE_Data/7235471

Table 2
Details of grid search.

Methods Search Space Note

LS C ∈ [5, 10, 15, 20, 25, 30, 35, 40, 45, 50] C → cluster range
MCFS C ∈ [5, 10, 15, 20, 25, 30, 35, 40, 45, 50] C → cluster range
NDFS A ∈ [1, 1.5, 2],BETA ∈ [0.5, 1, 2],C ∈ [5, 15, 25] A → �, C → cluster range
IVFS T ∈ [D∕∕10, D∕∕20, D∕∕50, D∕∕80] T → tilde sample range, D → data shape
AEFS A ∈ [0.1, 0.2, 0.5], E ∈ [500, 1000, 2000] A → �, E → epoch
CAE B ∈ [256, 512], LR ∈ [0.01, 0.1, 1], DR ∈ [0, 0.5, 0.8] B → batch, LR→ learning rate, DR→ dropout
FAE B ∈ [128, 256, 512],E ∈ [500, 1000, 2000] B → batch, E → epoch
QS EP ∈ [2, 5, 10, 13, 20, 25],Z ∈ [0.1, 0.2, 0.3, 0.4, 0.5] EP → �, Z → �

until the number of features meet the requirements. For all
experiments � = 0.01. For the experiments in Table 3 to
Table 6, we used Bernoulli-type FMH augmentation and set
pN = 0.3. For a fair comparison, the training set (80% data)
is used for the model training and feature selection; the val-
idation set (10%) is used to select the best hyperparameters
with grid search; the performance on the test set (10%) is
reported in this paper.
5.3. Case Study

The Mnist dataset is selected to illustrate how UDRN
works (Fig. 4). The FS processing. At the beginning of
training, we setw = 0.2. The gate layer passes all features in
the dataset. With the training going on, the Lr loss reduces
w and Ltp loss increases w. Eventually, only features that
are important for structure preservation can pass the gate
layer. The unimportant features are discarded (as shown in
Fig. 4 (a) and Fig. 4 (b)).

FS & structure-preservation. We expect the FS of
UDRN to affect the local and global structure of the data
as little as possible, which is the original intention of using
the unified loss function for both FS and FP tasks. We find
that humans can easily recognize numbers in images based
on selected features, indicating that our FS does not destroy
the discriminative nature of the images (in Fig. 4(c)). To
further confirm this, UMAP is used to process the pre-FS
data and post-FS data. The results (in Fig. 4(c)) show that the

clustering relationship of the data is found not to be changed
by FS.
5.4. Comparison with FS methods

This sub-section compares the performance with the
unsupervised FS methods. The performance comparison in-
cludes discriminative performance and structure-preservation
performance.

Discriminative performance. The discriminative per-
formance shows the ability of the features selected by the FS
method in the classification task. Following CAE [17] and
FAE [55], the discriminative performance is measured by
passing the selected features to a downstream classifier (Ex-
tremely Randomized Trees classifier, a variant of Random
Forest) as a viable means to benchmark the quality of the
selected subset of features.

For all methods, we select 64 features as benchmarks.
The means and standard deviations of the accuracy are
shown in Table. 3 and Table. 4. For a more extensive
comparison, we compare the cases of selecting [16, 32, 64,
128, 256, 512] features. The comparison results are shown
in Fig. 5.

Analysis. The conclusions are as follows. (a) In general,
parametric methods are superior to other methods. Among
the parametric methods, UDRN has the best results. UDRN
has an advantage in all nine datasets. In addition, UDRN
outperformed the second-best method by 1% in six datasets.
(b) UDRN has more advantages in data with more features;
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Table 3
Discriminative performance (classification accuracy) comparison with FS methods in image datasets; best result are shown in
blod; results with clear advantage are shown in underline.

LS MCFS NDFS IVFS AEFS CAE FAE QS UDRN

Coil20 21.0±0.6 34.0±1.3 8.1±1.5 98.6±0.7 99.3±0.2 97.7±0.7 84.1±0.2 98.0±0.5 99.4±0.2(↑0.1)
MNIST 17.0±0.1 76.0±0.4 90.4±0.6 42.4±0.1 86.4±0.3 92.1±0.2 70.5±0.4 93.2±0.2 94.3±0.3(↑1.1)
KMNIST 20.1±0.2 64.0±0.5 83.9±0.3 82.4±0.5 85.6±0.4 88.0±0.3 77.6±0.2 85.9±0.3 90.7±0.4(↑2.7)
EMNIST 7.9±0.1 43.6±0.9 64.3±0.6 42.5±0.3 65.6±0.4 63.9±0.3 52.0±0.3 68.0±0.3 71.1±0.5(↑3.1)

Average 16.5±0.2 54.4±0.6 61.7±0.8 66.5±0.5 84.2±0.3 85.4±0.4 64.8±0.3 86.2±0.3 88.9±0.4(↑2.7)

Table 4
Discriminative performance (classification accuracy) comparison with FS methods in biology datasets, best result are shown in
blod; results with clear advantage are shown in underline.

LS MCFS NDFS IVFS AEFS CAE FAE QS UDRN

Activity 92.3±0.3 42.4±1.8 48.5±3.8 95.8±0.3 96.9±0.2 98.0±0.1 74.8±0.8 97.4±0.2 98.6±0.3(↑0.6)
HCL 23.6±0.2 7.2 ±0.5 09.2±0.2 21.8±0.2 24.7±0.2 28.5±0.1 33.0±0.2 56.7±0.3 58.9±0.2(↑2.2)
Gast 68.9±0.5 42.1±3.6 44.4±1.6 73.9±0.6 73.6±0.6 89.1±0.3 81.0±0.3 86.8±0.6 90.0±0.4(↑0.9)
MCA 19.5±0.2 24.5±0.1 56.8±0.6 27.0±0.1 28.6±0.2 66.8±0.2 32.8±0.2 64.3±0.4 77.8±0.4(↑11.0)

Average 42.4±0.3 31.9±1.2 44.6±1.4 52.2±0.3 57.8±0.3 69.2±0.2 54.3±0.4 74.6±0.3 81.3±0.3(↑6.7)

for example, in data sets with more than 1000 features (in
Table. 4), UDRN has more obvious advantages.

Structure-preservation performance. The structure-
preservation performance tests whether the FS methods
preserve the neighborhood relationship of the original data.
The structure matching degree (SMD), a sampling-based
structure metric, is chosen as an evaluation metric.

SMD = 1
k||

∑

i∈ ,j∈ k(i)

|

|

|

ri,j − r
ℎ
i,j
|

|

|

(19)

where the ri,j and r
s

i,j are the neighborhood ranking of vj in
vi in the input and latent space. The results of the datasets
are shown in Table 5.

Analysis. The conclusions are as follows. (a) Parametric
methods, except UDRN, concentrate on reconstructing all
the input features and do not preserve the structure of the
selected features well. (b) Many non-parametric methods
design objective functions based on structure retention and
achieve suboptimal performance. (c) UDRN achieves the
best score, which is attributed to the fact that the data

Figure 4: Case Study. (a) Variation plot of feature importance during training. Curves show the change in feature importance.
colored curves (final selected features); gray curves (final discarded features). (b) Variation plot of the number of essential features
(wf > �) and loss function weights � during training. (c) UMAP Visualization of all features and the selected features. The color
of the points in the scatter plot marks the true label of the data.
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Figure 5: Classification accuracy with the number of selected features. The horizontal coordinate represents the number of selected
features, and the vertical coordinate is the ACC of classification.

Table 5
Structure-preserving performance (SMD) comparison, best
results are shown in blod.

LS IVFS AEFS CAE FAE UDRN

Coil20 12.0 83.2 52.5 41.5 67.8 86.3
Mnist 17.0 86.9 59.6 42.7 46.8 89.9
KMnist 27.6 86.9 63.2 61.4 49.5 88.3
EMnist 31.8 69.1 71.2 75.9 65.5 79.8

Activity 43.1 81.9 50.5 44.7 53.5 99.9
HCL 11.9 22.1 11.5 10.4 13.6 27.8
Gast 35.2 39.0 27.0 15.8 31.2 48.2
MCA 16.5 21.0 16.7 13.7 16.6 26.9

augmentation of UDRN and the accompanying loss function
learn a finer manifold structure.
5.5. Comparison with FP methods

This sub-section compares the performance with the
baseline FP methods.

For a fair comparison with FP methods, we disable the
gate layer by setting � = 0, these means that all the features
can pass the gate layer. Similar to sec. 5.4, we evaluate the
discriminative performance by the accuracy of the ET tree
classifier. The other settings are the same as sec. 5.4. The
comparison results are shown in Table 6.

Analysis. The conclusions are as follows. (a) Except for
UDRN, the performance of parametric methods is inferior to
that of non-parametric methods. UDRN is not only optimal
among all parametric methods but also superior to non-
parametric methods. The results are consistent with those
in [14]. (b) The parametric FP methods are challenging to
train because the network parameters need to be optimized

Table 6
Discriminative performance comparison with FP methods, best
results are shown in blod.

tSNE UMAP GRAE IVIS PUMAP UDRN

Coil20 78.1 79.6 79.9 58.9 68.9 89.8
MNIST 95.9 94.5 77.2 68.3 94.2 95.9
KMNIST 64.3 93.8 85.4 72.8 91.5 94.7
EMNIST 72.2 74.7 72.4 36.7 77.5 73.5

Activity 92.0 91.9 88.9 82.1 90.0 92.6
HCL 58.4 44.9 53.1 53.3 51.4 91.7
Gast 69.5 62.7 90.1 76.4 64.5 94.8
MCA 51.5 41.3 83.6 66.7 46.6 90.9

rather than the low-dimensional representations. Interest-
ingly, UDRN can solve the training problem of FP networks
through data augmentation and novel loss functions.
5.6. Visualization Comparison with FS&FP

Pipeline
In application areas such as biology, many articles re-

quire a combination of FP and FS methods for data analysis
because of the high data dimensionality and excessive noise
features [73, 19]. We have discussed the dilemma of these
methods in sec 2. Since the concept of unifying FP&FS is
first proposed by us, these pipeline methods are compared
in this article. In Fig. (6), the advantages of UDRN are
demonstrated by visualization. The FP method (UMAP) and
FS methods (IVFS, CAE, and QS), which performed best
in sec.5.4 and sec.5.5, are selected as the elements of the
pipeline.

Analysis. The conclusions are as follows. (a) When
using all features, UMAP and UDRN can clearly show the
structure, although different in detail. (b) When selecting
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Figure 6: Visualization comparison with FS&FP pipeline. Each row corresponds to a dataset. In the row names, D represents
the number of features in the dataset. Each column corresponds to a combination of FS and FP methods. In the column names,
the first occurrence of the feature selection method, the number of selected features is in parentheses, and the second occurrence
is the feature mapping method. To align with the baseline nomenclature, our UDRNs are divided into UDRN-FS and UDRN-FP.
The parentheses after UDRN-FS are used to indicate the number of selected features.

fewer features, the compared methods can not guarantee the
stability of the data’s structure. For example, the embedding
of features selected by IVFS differs from the embedding of
the original features. (c) UDRN is very good at producing
stable embeddings with only a small number of features
due to the uniform loss function and data augmentation.
The UDRN performs significantly better than the pipeline
method from the visualization point of view.
5.7. Parameter Analysis

In this sub-section, the effect of hyperparameters of data
augmentation is analyzed and the stability of the hyperpa-
rameters is discussed. We follow the sec. 5.4’s setup and
tested on the Mnist, EMnist, KMnist, HCL, MCA, and Gast
datasets. The average ACC is shown in Table. 7.

Analysis. The conclusions are as follows. (1) FMH aug-
mentation significantly enhances UDRN. Using any data
augmentations can dramatically improve the method’s per-
formance. (2) The parameters of data augmentation have
a relatively small impact on the algorithm, and in short,
Normal-type FMH has a relative advantage. In general, the
parameters of the FMH augmentation are very stable.
5.8. Ablation Study

In this sub-section, the effect of innovations of UDRN is
analyzed by ablation experiments. We follow the sec. 5.4’s
setup and tested on the Mnist, KMnist, EMnist, HCL,

and MCA datasets. The discriminative and the structure-
preserving performance is shown in Table 8 and Table 9.
Ablation 1 (w/o �). First, the data augmentation � is re-
moved. The model is trained directly using the original data
( ,, ).Ablation 2 (w/oLtp). Second, the proposed lossfunction Ltp is removed and replaced with LFP. Ablation
3 (w/o �&Ltp). Finally, both data augmentation � and the
proposed loss function Ltp are removed.

Analysis. The conclusions are as follows. (1) Both of
the innovations presented in this paper lead to performance
improvements. And both canworkwith each other to achieve
better performance. (2) Directly using the reconstructed loss
function LFP instead of the proposed loss function reduces
the performance of the model. It includes both discrimina-
tive and structure-preserving performance. Among them, the
impact on the structure preservation performance is more
significant.
5.9. Supervised UDRN (S-UDRN)

UDRN is well compatible with both supervised and
unsupervised cases and only needs to consider whether
supervised information is available when constructing the
graph structure (in Eq. (1) and Eq. (2)). We chose a gut flora
dataset to test UDRN under supervised scenarios. Since the
gut flora dataset has few features associated with the labels,
UDRN is needed to select highly relevant features from all
the labels and complete the FP (in Fig. 7).
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Table 7
Ablation study. The discriminative performance comparison on
the training set with different data augmentation hyperparam-
eters. 0.0 means without the data augmentation.

Uniform-type Data Aaugmentation, �U (⋅)

pU 0.0 0.03 0.05 0.08 0.10 0.30 0.50

Mnist 91.5 92.0 93.3 93.0 92.8 93.5 93.0
KMnist 84.2 88.1 87.9 89.5 87.6 88.6 85.7
EMnist 64.7 67.5 69.8 69.5 70.6 69.7 69.4
HCL 45.2 58.8 60.1 57.1 61.0 57.8 63.0
MCA 45.5 70.8 70.3 61.5 60.5 50.4 60.0
Gast 72.0 88.4 87.6 90.3 89.3 90.0 89.4

AVE 68.1 78.0 78.2 77.2 77.3 75.3 77.6

Bernoulli-type Data Aaugmentation, �B(⋅)

pB 0.0 0.03 0.05 0.08 0.10 0.30 0.50
Mnist 91.5 93.6 94.6 94.2 94.1 94.0 94.0
KMnist 84.2 89.7 89.7 89.7 89.9 89.7 89.9
EMnist 64.7 71.3 71.0 71.4 70.9 70.4 70.2
HCL 44.2 63.0 62.8 62.6 63.3 62.4 59.8
MCA 45.5 52.4 59.6 56.8 53.6 51.4 61.7
Gast 72.0 89.4 89.9 89.6 89.1 89.2 88.2

AVE 68.1 77.4 77.8 78.4 77.9 77.0 78.0

Normal-type Data Aaugmentation, �N (⋅)

pN 0.0 0.03 0.05 0.08 0.10 0.30 0.50

Mnist 91.5 93.8 94.1 93.8 94.6 94.3 94.2
KMnist 84.2 85.6 89.7 90.3 89.9 90.7 90.0
EMnist 64.5 65.9 69.8 69.6 70.5 71.4 71.4
HCL 47.1 56.3 56.9 57.7 59.8 58.9 59.4
MCA 45.5 71.5 72.2 75.3 74.9 73.3 73.4
Gast 72.0 86.7 86.9 87.4 88.5 90.0 89.8

AVE 68.1 77.9 78.2 78.4 79.7 80.1 79.4

Table 8
Ablation study of UDRN. The discriminative performance
comparison under different ablation settings.

Mnist KMnist EMnist HCL MCA

UDRN 94.3 90.7 71.1 58.9 77.8
w/o � 91.5 84.2 64.7 44.2 45.5
w/o Ltp 87.3 85.2 63.3 35.8 56.2

w/o �&Ltp 82.5 82.3 61.8 31.6 42.1

Analysis. (a) The dataset contains many useless features
such that the unsupervised scheme is unable to distinguish
classes. (b) Our UDRN approach can learn to distinguish
labeled features based on a modified graph structure (based
on labels), while at the same time, the intra-class manifold
structure embedding does not receive influence.

6. Conclusion
We developed an integrated method for feature selection

(FS) and feature projection (FP) with the help of neural

Table 9
Ablation study of UDRN. The structure-preserving perfor-
mance comparison under different ablation settings.

Mnist KMnist EMnist HCL MCA

UDRN 89.9 88.3 79.8 27.8 26.9
w/o � 85.3 86.2 74.3 25.5 22.7
w/o Ltp 35.3 39.2 25.8 15.5 17.5

w/o �&Ltp 36.2 34.8 26.4 17.4 12.1

Unsupervised

UDRN

S-UDRN Train

Epoch=200

S-UDRN Train

Epoch=300

S-UDRN Train

Epoch=400

S-UDRN Train

Epoch=500

S-UDRN

Test

Figure 7: Visualization of unsupervised UDRN (UDRN) and
supervised UDRN (S-UDRN). The proposed UDRN method is
also compatible with the supervised case and performs FS&FP
based on data labels or other prior knowledge.

networks named Unified Dimensional Reduction Neural-
networks (UDRN). UDRN handles FS and FP tasks end-to-
end with a unified loss function. UDRN is compatible with
both supervised and unsupervised settings. We demonstrate
the effectiveness and sophistication of UDRN by working
with state-of-the-art FS, FP, and FS&FP pipeline methods.
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