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FMRI modelling requires flexible haemodynamic response function

(HRF) modelling, with the HRF being allowed to vary spatially and

between subjects. To achieve this flexibility, voxelwise parameterised

HRFs have been proposed; however, inference on such models is very

slow. An alternative approach is to use basis functions allowing

inference to proceed in the more manageable General Linear Model

(GLM) framework. However, a large amount of the subspace spanned

by the basis functions produces nonsensical HRF shapes. In this work

we propose a technique for choosing a basis set, and then the means to

constrain the subspace spanned by the basis set to only include sensible

HRF shapes. Penny et al. [NeuroImage (2003)] showed how Variational

Bayes can be used to infer on the GLM for FMRI. Here we extend the

work of Penny et al. to give inference on the GLM with constrained

HRF basis functions and with spatial Markov Random Fields on the

autoregressive noise parameters. Constraining the subspace spanned

by the basis set allows for far superior separation of activating voxels

from nonactivating voxels in FMRI data. We use spatial mixture

modelling to produce final probabilities of activation and demonstrate

increased sensitivity on an FMRI dataset.
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Introduction

An important issue for detecting areas of brain activity in FMRI

is the forward modelling of the temporal BOLD response. This

forward model predicts what the BOLD response would be if we

knew the underlying neural activity.

To allow modelling of BOLD responses to general stimulation

types, Friston et al. (1994) introduced the use of convolution

models, which assume a linear time invariant system. Boynton et
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al. (1996), Cohen (1997), Dale and Buckner (1997), and provide

some evidence that the BOLD response possesses linear character-

istics with respect to the stimulation. However, nonlinearities are

predominant when there are short separations (less than approxi-

mately 3 s) between stimuli (Friston et al., 1998b). An additional

assumption is that the stimulus represents the underlying neural

activity. The stimulus (or neural activity) is then convolved with an

assumed or modelled impulse response function, known as hae-

modynamic response function (HRF), to give the assumed BOLD

response (Friston et al., 1994).

Genovese (in press) and Gössl et al. (2001) have previously

used a Bayesian framework to model the voxelwise BOLD

response to a sustained period of stimulation. The advantage of a

Bayesian approach is most obvious in the use of prior experience to

justify the prior distributions used for these haemodynamic re-

sponse parameters. However, the work of Genovese (in press) and

Gössl et al. (2001) was restricted to just modelling the response to

an epoch of fixed size. Woolrich et al. (in press) generalised this to

general stimulations via parametric modelling of the HRF assum-

ing a linear time-invariant system. However, the problem with

parametric modelling of the HRF is that the model is difficult to

infer upon without slow techniques such as Markov Chain Monte

Carlo (MCMC).

Friston et al. (1995) and Josephs et al. (1997) consider voxel-

wise linear time-invariant system HRF models within the frame-

work of the General Linear Model (GLM). Flexibility to model the

HRF is introduced via basis sets. However, a large amount of the

subspace spanned by the basis functions produces nonsensical

HRF shapes [see Fig. 4(a)]. This is because the conventional

GLM will indiscriminately allow all possible linear combinations

of the basis set.

In this work we propose a technique for using soft constraints to

weight the subspace spanned by the basis set to only include

sensible HRF shapes within a linear time-invariant system. The

choice of the basis set can be driven by a standard parametric HRF,

or a physiologically informed model such as the Balloon Model

(Buxton et al., 1998). Using the GLM in a Bayesian framework,

we can then use priors on the basis function regression parameters

to constrain the linear combinations of HRFs to sensible HRF

shapes. Penny et al. (2003) showed how Variational Bayes can be

used to infer on the GLM for FMRI. Here we extend this work to
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give inference on the GLM with the constrained HRF basis

functions. We also extend the work of Penny et al. (2003) to

spatially regularise the autoregressive noise parameters using a

Markov Random Field (MRF). We demonstrate that the con-

strained basis function approach allows for far superior sensitivity,

when compared with traditional unconstrained basis function

approaches.

Overview

We start in the ‘‘Model’’ section by describing how the GLM in

a fully Bayesian framework allows us to introduce soft constraints

on linear combinations within the GLM. We then discuss how we

choose a sensible basis set, and determine the required basis set

constraints. In the ‘‘Inference’’ section we describe how we

perform approximate Variational Bayesian inference on the model.

In the ‘‘Artificial null data’’ section we use the model on artificial

null data to demonstrate the effect of the HRF constraints. Then in

the ‘‘Spatial mixture modelling’’ section we describe how we can

use spatial mixture modelling to produce probabilities of activa-

tion, which takes advantage of the extra sensitivity produced from

the HRF constraints. Finally, in the ‘‘FMRI data’’ section we

demonstrate this increased sensitivity on an audiovisual dataset.
Model

Here we describe the GLM in the fully Bayesian framework.

It will be via the priors on the regression parameters that we

propose to constrain the possible linear combinations that are

allowed.

Consider that the preprocessed FMRI data at voxel i and at scan

t is yit (i = 1 . . . N, t = 1 . . . T), the tth 1 � K row of the design

matrix, x, is xt, and bi is a K � 1 vector of parameter estimates. The

preprocessed FMRI data, y, is taken to have been motion corrected

and high-pass filtered. The standard general linear model (GLM) is

then:

yit ¼ xtbi þ git ð1Þ

We model the error, git, as a voxelwise temporal autoregressive

process of order P (AR(P)). We can represent this as:

git ¼
XP
p¼1

apigiðt�pÞ þ eit ð2Þ

eitfNð0;/�1
ei
Þ

where api is the pth AR coefficient ( p = 1, . . ., P).

Bayesian framework

In this work we use a Bayesian framework. Eqs. (1) and (2)

form our likelihood. The distribution we are interested in is the full

posterior distribution over the model parameters, and depends upon

this likelihood and the priors over the unknown parameters in our

model via Bayes rule:

pðb; a;/eAyÞ~
Y

pðyiAbi; ai;/ei
Þpðb; a;/eÞ ð3Þ
i

We now need to consider the specification of priors over the

parameters in our model. A priori we assume independence

between the parameters:

pðb; a;/eÞ ¼ pðbÞpðaÞpð/eÞ ð4Þ

As we shall see, using independent priors allows us to use

conjugate priors, which in turn makes the model tractable when

using Variational Bayes. However, assuming that we have inde-

pendence between priors for different parameters does not mean

that the parameters will be independent in the posterior. Any

dependence between parameters inferred from the data and the

likelihood will still be reflected in the joint posterior. For the

precision we assume a voxelwise noninformative Gamma prior:

pð/eÞ ¼
Y
i

pð/ei
Þ ð5Þ

/ei
fGaðbe0 ; ce0Þ ð6Þ

Autoregressive parameters spatial prior

In Penny et al. (2003) nonspatial noninformative priors were

used on the autoregressive parameters. Previous work has shown

that neighbouring voxels have similar temporal autocorrelation

(Woolrich et al., 2001; Worsley et al., 2002). Therefore, we want

to model the assumption that a priori we expect neighbouring

voxels to have similar temporal autocorrelation. To do this we use a

Gaussian conditionally specified autoregressive (CAR) or contin-

uous Markov Random Field (MRF) prior (Cressie, 1993) on each

of the P autoregressive parameter maps; that is, pðaÞ ¼
QP

p¼1 pðapÞ
with:

pðap j /ap
ÞfMVNð0;/�1

ap
D�1Þ ð7Þ

where MVN denotes a multivariate Normal distribution, D is an N

� N matrix whose (i,j)th element is dij, and /ap
is the MRF control

parameter that controls the amount of spatial regularisation. We set

dii = 1, dij = �1 / Nij if i and j are spatial neighbours and dij = 0

otherwise (where Nij is the geometric mean of the number of

neighbours for voxels i and j). We also require a hyperprior on /ap
,

for which we use a standard noninformative conjugate Gamma

prior:

/ap
fGaðba0 ; ca0Þ ð8Þ

Before we specify the prior for the regression parameters b, we
consider how we can use basis functions within this frame-

work.

Basis functions

In this work we model the different HRF shapes for different

underlying conditions at different voxels using basis functions and

assuming a linear time-invariant system (Josephs et al., 1997). If

we have e = 1 . . . Ne underlying conditions, and for each condition

we have b = 1 . . . Nb basis functions to model the HRF for that

condition for voxel i, we can rewrite Eq. (1) as:

yit ¼
XNe

e¼1

XNb

b¼1

fxebtbiebg þ git ð9Þ
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where bieb is the regression parameter for the bth basis function of

the eth underlying condition at voxel i and:

xebs ¼ gbs 
 ses ð10Þ

where 
 represents convolution, gbs is the bth basis function and

ses is the eth stimulus function. Note that s is an index at higher

temporal resolution than t, to capture all of the HRF shape (i.e., for

a resolution of 1/q of a TR, s = 1 . . . qT). We obtain xebt from xebs
by sampling every qth xebs.

Constraining basis function linear combinations

Here we are going to describe how we constrain the basis

function linear combinations. To do this we need to reparameterise

the regression parameters, bieb, into parameters that describe the

shape of the HRF, and parameters that scale these HRF shape

parameters, to give the actual fit in the GLM.

Firstly, we specify bie as the Nb � 1 vector of the regression

parameters for the Nb basis functions for the eth underlying

condition at voxel i. Then, we reparameterise bie as being:

bie ¼ D̄ie

DieffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
b

D2
ieb=Nb

 !vuut
ð11Þ

where Die is an Nb � 1 vector of parameters describing the HRF for

underlying condition e, and D̄ie is the scalar value representing the

scaling of that HRF. We want the scalar D̄ie to contain all of our

size information. However, left unchecked, there is an arbitrary

scale factor on vector Die. We have removed this arbitrary scale

factor by normalising the vector using its root mean square. Hence,

we now have a normalised vector, Die=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

b Dieb
2 =Nb

p
, representing

the shape of the HRF, and a scalar, D̄ie, representing the size of the

HRF.

For the scaling parameters, we assume a noninformative prior:

pðD̄Þ ¼
Y
ie

pðD̄ieÞ

D̄iefNð0;/�1
D̄0
Þ ð12Þ

where the precision, /D̄0
, is fixed to be very small (1e�6) for all

voxels. It is via the prior on Die that we can constrain the possible

linear combinations of basis functions to represent the HRF for an

underlying condition. We specify the prior on Die as:

pðDÞ ¼
Y
ie

pðDieÞ

DiefMVNðm;C�1Þ ð13Þ

where m and C will contain the information constraining the

possible linear combinations of the basis functions (see ‘‘Deter-

mining basis set constraints’’ for how we set m and C).

Choosing a basis set

Basis sets used previously range from a single canonical HRF

plus its temporal derivative to a set of Gamma functions (Friston et
al., 1998a). These basis functions are then separately convolved

with the known stimulus to give the same number of regressors as

there are basis functions for use in the linear model.

Hossein-Zadeh and Ardekani (2002) and Friman et al. (2003)

have previously shown how we can generate a basis set using

singular value decomposition (SVD). This produces a basis set

from samples of the HRF or regressors resulting from a parametric

forward model of the haemodynamics. This is the approach we

take in this paper.

In this paper we base the basis set on a parameterised model of

the HRF. The HRF is parameterised by four half-cosines, requiring

six parameters, as illustrated in Fig. 1.

To complete the HRF parameterised model, we need to specify

probabilities for the parameter values in the HRF model from

which we generate physiologically plausible HRF shapes. With

this information, we can then draw HRF samples. Fig. 2 shows 20

HRF samples drawn from the half-cosine parameterisation using

the HRF parameter value probabilities:

h1fUniformð0s; 2sÞ

h2fUniformð2s; 6sÞ

h3fUniformð2s; 6sÞ

h4fUniformð2s; 8sÞ

f1 ¼ 0

f2fUniformð0; 0:5Þ ð14Þ

We strongly emphasise that this is one of many possible choices of

obtaining HRF samples. An alternative, attractive approach would

be to use a physiologically based model, such as the Balloon model

(Friston et al., 2000), with physiologically meaningful parameters

that can be given sensible ranges.

Using a probabilistic model of choice, one can obtain a set of

samples of the HRF, which represents the space of HRFs expected.

The NH HRF samples, each of length NT = qT, can be placed into a

NT � NH matrix, W. To obtain a basis set that spans this space of

HRFs, we perform a Singular Value Decomposition (SVD) on this

matrix. This gives us NH eigen-HRFs (of length NT) and NH

corresponding eigenvalues (describing the power each correspond-

ing eigen-HRF explains).

Fig. 3 shows the four eigen-HRFs (and their corresponding

eigenvalues) with the largest eigenvalues obtained from an SVD on

NH = 1000 HRF samples of length NT = 512 (resolution of 0:5 s)

from the half-cosine parameterisation. It is worth noting that the

first three eigen-HRFs/basis functions look remarkably like the

commonly used canonical, delay (temporal) derivative and width

(dispersion) derivative of a Gamma/Gaussian parameterised HRF

(in that order).

To form our basis set, we need to decide how many of the

largest eigen-HRFs we want to include. For the rest of this paper

we use the Nb = 3 largest eigen-HRFs as our basis set.

Determining basis set constraints

In the previous section we determined a basis set to use. In this

section we describe how we can apply constraints on the linear

combinations of the basis set. In a previous work, Friman et al.



Fig. 2. Twenty HRF samples drawn from the half-cosine parameterisation.

Fig. 1. Parameterisation of the HRF into four half-period cosines. There are

six parameters.
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(2003) also looked to constrain the possible linear combinations of

the basis set, but within the canonical correlation analysis frame-

work. However, they only looked to constrain the linear combina-

tion coefficients to be positive. In this work we look to apply a

more complete constraint by fitting a multivariate Normal distri-

bution to describe the desired constrained space probabilistically

within the GLM framework.

To date, basis sets are used by convolving the constituent

basis functions with the known stimulus to give the same

number of regressors as there are basis functions stimuli. The

resulting regressors are then used in the linear model. This

approach corresponds to the model we have described earlier

but with m = 0 and C = I in Eq. (13). Fig. 4(a) shows example

HRF shapes randomly drawn from this basis set when the linear

combinations are unconstrained (i.e., with m = 0 and C = I). If

we compare these HRFs with those in Fig. 2, it is clear that

unconstrained linear combinations of our basis set allows for

nonsensical HRF shapes.

To provide constraints on the possible linear combinations, we

regress the HRF samples we used to obtain our basis set back onto

the basis set:

W ¼ GRþ e ð15Þ

where W is the NT � NH matrix containing our NH HRF samples, G

is the NT � Nb matrix of our Nb basis functions and e f N(0, r2I).
We can perform standard Ordinary Least Squares (OLS) to obtain

an estimate of the Nb � NH matrix, R:

R̂ ¼ ðGTGÞ�1
GTW ð16Þ

We then fit an Nb-dimensional multivariate Normal distribution,

MVN(m̃, C̃), to the matrix R̂. The parameters of this multivariate

Normal distribution are used to set the parameters in Eq. (13) (i.e.,

m = m̃ and C = C̃).

Using the HRF parameter value probabilities in Eq. (14) for our

half-cosine HRF parameterisation, 1000 resulting HRF samples,
and the resulting top three eigen-HRFs, we obtain the multivariate

Normal distribution parameters:

m̃ ¼ ½0:86; 0:09; 0:01�T

C̃ ¼

0:018 0:028 �0:015

0:028 0:185 �0:009

�0:015 �0:009 0:030

2
66664

3
77775 ð17Þ

Fig. 4(b) shows example HRF shapes obtained randomly drawn

from this basis set when the linear combinations are constrained

with these m = m̃ and C = C̃. We can see that compared with Fig.

4(a), this is a much more faithful representation of the sensible

HRF shapes in Fig. 2.

It is important to point out that constraining the linear

combinations by using a multivariate Normal distribution is

an approximation. This is because a multivariate Normal will

not capture all of the detail of the distribution in the Nb

parameter space. As Fig. 4(b) shows, while we are producing

much more sensible shapes than the unconstrained case, there

are still some undesirable HRF shapes. The alternative is a fully

parametric HRF approach (Woolrich et al., in press), which is

very slow to infer upon, or a different distribution to a

multivariate Normal that can capture the required detail in the

Nb parameter space. However, we choose to use a multivariate

Normal as it will make inference much easier to handle within

the Variational Bayesian framework, and it does capture most of

the required structure.
Inference

The distribution we are interested in inferring upon is the

posterior distribution p(hjy) (Eq. (3)), where h is the set of

parameters {b,a,/e}. It is not possible to solve for this distribution

analytically. Hence we use the framework introduced to FMRI by



Fig. 3. Four eigen-HRFs (and their corresponding eigenvalues) with the largest eigenvalues from NH = 1000 HRF samples of lengthNT = 512 (resolution of 0.5 s)

from the half-cosine parameterisation.

Fig. 4. Samples from the basis set: (a) unconstrained with m = 0 and C = I;

(b) constrained with m = m̃ and C = C̃.

Fig. 5. (a) Histogram of pseudo-z-statistics obtained for the two different

models with and without HRF constraints. (b) Log probability– log

probability plots. These show plots of (nominal/theoretical) frequentist

FPR against that obtained empirically. The HRF constraints reduce the

power in those voxels where the linear combinations of the basis functions

do not give sensible HRF shapes; this produces a shift in the null

distribution histogram.
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Fig. 6. Null distribution of pseudo-z-statistics resulting from the constrained

HRF analysis on the artificial null data. This is the same histogram as that

shown in red in Fig. 5(a). Also shown is the fit to this histogram of a flipped

and shifted Gamma distribution.

Fig. 8. Histogram of the voxelwise difference in pseudo-z-statistics between

the model with nonspatial noninformative AR priors and the model with

adaptive spatial MRF AR priors for the single-event pain dataset.
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Penny et al. (2003) of Variational Bayes. For a general introduction

to Variational Methods, see Jordan (1999). Using this approach we

can approximate a posterior distribution p(hjy) with q(hjy) by

minimising the KL-divergence, or equivalently by maximising

the variational free energy, F, between them:

F ¼
Z

qðh j yÞlog pðy; hÞ
qðh j yÞ dh ð18Þ

To maximise this function, we need to ensure that the resulting

integrals are tractable. A standard way to help achieve this is

to use conjugate priors and to factorise the approximate

posterior.

In the modelling section, we parameterised the model in terms

of parameters a, /e, D and D̄, and wherever possible specified
Fig. 7. Posterior means of parameters from an autoregressive model of order 4 from

1 to 4. We show this for two different priors on the AR parameters: (top) noninf
conjugate priors on them. However, using these parameters and

factorising the posterior into

qðD; D̄; a;/a;/eAyÞ

¼
Y
p

fqðapAyÞpð/ap
AyÞg

Y
i

fqðDiAyÞqðD̄iAyÞqð/ei
AyÞg ð19Þ

is not tractable to Variational Bayes as we cannot derive the update

equations for q(Diejy) and q(D̄iejy). To overcome this problem,

instead of using the two parameters Die and D̄ie, we reparameterise

to use bie and b̄ie by rewriting Eq. (11) as:

bie ¼ b̄ieDie ð20Þ
the single-event pain dataset. From left to right, we have increasing p from

ormative nonspatial, and (bottom) spatial MRF.



Fig. 9. Histogram of pseudo-z-statistics obtained for two different models

(with and without HRF constraints) on (a) the visual boxcar dataset and (b)

the pain single-event dataset.

Fig. 10. Visual condition. Results of applying the spatial mixture modelling on th

Probability of being in the activation class. (right) Mixture model fit to histogram
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where

b̄ie ¼
D̄ieffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

b

D2
ieb=Nb

 !vuut
: ð21Þ

Recall from Eq. (11) that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

b D
2
ieb=Nb

q
is the normalisation on the

HRF shape vector, Die, and the scalar, D̄ie, represents the size of the

HRF. We now have the following prior on bie:

bie j b̄iefMVNðb̄iem; b̄
2
ieC

�1Þ ð22Þ

and a noninformative prior on bie:

b̄iefNð0;/�1

b̄0
Þ ð23Þ

where the precision, /b¯0, is fixed to be very small (1e�6) for all

voxels. We now assume the following factorised form for the

approximate posterior:

qðb; b̄; a;/e j yÞ

¼
Y
p

fqðap j yÞpð/ap
j yÞg

Y
i

fqðbi; b̄i j yÞqð/ei
j yÞg ð24Þ

where

qðBi j yÞ ¼ MVNðlBi
;KBi

Þ

qðap j yÞ ¼ Nðlap
;KapÞ

qð/ap
j yÞ ¼ Gaðbap ; capÞ

qð/ei
j yÞ ¼ Gaðbei ; ceiÞ ð25Þ

where Bi = (bi,b̄i), where bi is the (NeNb) � 1 vector [bi1 . . . bie . . .
biNe

]T and b̄i is the Ne � 1 vector [b̄i1, . . . b̄ie . . . b̄iNe
]T. Note that we

do not fully factorise. We would not expect bi and b̄ i to be
e unconstrained HRF model. (top) Pseudo-z-statistic spatial maps. (bottom)

of pseudo-z-statistics.



Fig. 11. Pain single-event condition. Results of applying the spatial mixture modelling on the unconstrained HRF model. (top) Pseudo-z-statistic spatial maps.

(bottom) Probability of being in the activation class. (right) Mixture model fit to histogram of pseudo-z-statistics.
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independent a posteriori. Therefore, we maintain a combined

unfactorised posterior for the two parameters bi and b̄i. However,

we have factorised the noise parameter posteriors from the regres-

sion parameter posteriors. This assumption helps to make inference

tractable using Variational Bayes. Penny et al. (2003) discuss the

implications of doing this and show that the error induced by this

assumption is negligible for inferring on FMRI data. We also show

later (in ‘‘Artificial null data’’) that there is negligible error induced

when inferring on artificial data.

At this point, the inference is still not fully tractable to

Variational Bayes as we cannot derive the update equations for

q(Bijy). To overcome this we rewrite the prior in Eq. (22) as:

biefMVNðb̄iem;/
�1
b̄ie
C�1Þ ð26Þ

where the utility parameter, /b̄ie
, is updated as a point estimate

equal to 1 over the current expected value of b̄ie
2:

/b̄ie
¼ E½b̄�2

ie ��1 ¼ Riel
2
b̄ie

þ ðK�1
Bi
Þb̄ie

ð27Þ

where Rie is defined by the relationship b̄ie = RieBi, and (KBi
�1)b̄ie is

the current marginal covariance of b̄ie. The approximate posterior
Fig. 12. Visual condition. Results of applying the spatial mixture modelling on t

Probability of being in the activation class. (right) Mixture model fit to histogram

voxels with greater pseudo-z-statistics have higher probability of being active than

respectively).
distributions are now tractable to Variational Bayes. The update

rules for the approximate posterior distributions, which iteratively

maximises the free energy in Eq. (18), are given in Appendix B.

We can perform standard inference questions on the marginal

posterior over be, in the same way that we do for the standard use

of basis functions in the GLM (i.e., using f-contrasts; see ‘‘f-

contrasts’’ section). We test the accuracy of the posterior approx-

imations presented in this section using null artificial data in the

‘‘Artificial null data’’ section.

The Variational Bayes inference requires approximately 10

iterations and takes approximately 15 min (for a whole brain: in-

plane resolution 4 mm, slice thickness 7 mm, and 180 volumes) on

a 2 GHz Intel PC.

Initialisation

We do not need to initialise the approximate distribution

parameters of q(bi, b̄ijy). This is because we can initialise the other

approximate distribution parameters and then update q(bi, b̄ijy) first.
To allow us to provide sensible initialisation of the other approx-

imate distributions, q(/eijY) and q(ap), we use the model with the

autoregression parameters set to zero (ap = 0) and with the HRF

constraints removed (m = 0 and C = I). This means we can use the
he constrained HRF model. (top) Pseudo-z-statistic spatial maps. (bottom)

of pseudo-z-statistics (‘A’ and ‘B’ mark the pseudo-z-statistics for which

nonactive for the constrained HRF model and unconstrained HRF model,



Fig. 13. Pain single-event condition. Results of applying the spatial mixture modelling on the constrained HRF model. (top) Pseudo-z-statistic spatial maps.

(bottom) Probability of being in the activation class. (right) Mixture model fit to histogram of pseudo-z-statistics (‘A’ and ‘B’ mark the pseudo-z-statistics for

which voxels with greater pseudo-z-statistics have higher probability of being active than nonactive for the constrained HRF model and unconstrained HRF

model, respectively).
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standard ordinary least squares (OLS) voxelwise frequentist solu-

tion to the GLM to get:

b̂i ¼ ðxTxÞ�1
xT yi ð28Þ

ĝit ¼ yit � xtb̂i

and

Si ¼
X
t

ðĝitÞ2 ð29Þ

The approximate distribution, q(/eijY), is set using frequentist

results. The mean is set to (T � K) = S and the variance to 2(T �
K) = S2. This mean and variance gives the approximate distribution

parameters bei and cei (see Appendix A for the conversion).
Fig. 14. Difference in voxel classification between the constrained HRF model a

(blue) voxels are active for just the unconstrained HRF model; and (yellow) vox

activating with probability of being in the activation class greater then 0.5. (top)
We initialise q(apjy) by using the frequentist solution to Eq. (2),

where gi is set to the residuals, ĝi. This gives:

lai ¼ ðg̃ig̃Ti Þ
�1g̃iĝ0 ð30Þ

Kai ¼ r2
eðg̃g̃T Þ�1

where ĝi = [ĝi1 . . . ĝiP], ĝip = [ĝi( p+1) . . .ĝiT]
T and where:

r2
ei
¼
X
t

ðgit � giðt�pÞlaiÞ2 ð31Þ

We also initialise bap = 1, cap = 1 and /b̄k = 1.
nd the unconstrained HRF model. (red) voxels are active for both models;

els are active for just the constrained HRF model. Voxels are classified as

Visual boxcar dataset. (bottom) Pain single-event dataset.
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f-contrasts

Variational Bayes gives us an approximation to the posterior

distribution, p(b, a, /ejy). From this we can obtain the approximate

marginal posterior distribution, q(b, b̄jY), as being a multivariate

Normal distribution (Eq. (25)). If we write this as:

bi

b̄i

2
4

3
5j yfMVN

lbi

lb̄i

2
4

3
5; Kbi

Kbib̄i

Kbib̄i
Kb̄i

2
4

3
5

0
@

1
A ð32Þ

We can marginalise to get the marginal distribution over the

regression parameters, q(bijY), as:

bi j yfMVNðlbi
;Kbi

Þ ð33Þ

We can now use the marginal distribution in Eq. (33) to perform

inference. In this paper we take the approach of using the f-contrast

M.W. Woolrich et al. / Neu
Fig. 15. Samples from the marginal posterior of the HRF at a single voxel,

which is not activating in the pain experiment. (a) Unconstrained with m = 0

and C = I (b) Constrained with m = m̃ and C = C̃.

Fig. 16. Samples from the marginal posterior of the HRF at a single voxel,

which is strongly activating in the pain experiment. (a) Unconstrained with

m = 0 and C = I (b) Constrained with m = m̃ and C = C̃.
framework traditionally used with basis functions in the frequentist

GLM framework (Josephs et al., 1997).

If c is a (NeNb) � J vector representing an f-contrast, we can use

the f-contrast framework to compute the normalised power

explained by the f-contrast:

f ¼ ðlT
bi
ÞcðcTKbi

cÞ�1
cTlbi

=J ð34Þ

with degrees of freedom J and l. As with the use of basis

functions in the frequentist GLM framework (Josephs et al.,

1997), we lose directionality when doing an f test. That is, we

only investigate the power explained by linear combinations of the

basis function parameters, regardless of the direction (i.e., whether

it is an activation or deactivation). This means that we only look at

the positive tail of the f-distribution to find both activations and

deactivations.

The alternative to doing a test on biwould be to ask ‘‘What is the

probability that D̄ie is greater than zero?’’ Recall from Eq. (11) that

D̄ie represents the HRF size (activation height). Can we recover the
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activation height, D̄ie, from the parameters we infer upon, bie and
bīe? To do this, we can rewrite Eqs. (20) and (21) to get:

D̄ie ¼ b̄ie

X
b

b2
ie

Nbb̄
2
ie

 !1=2

¼ signðb̄ieÞ
X

ðb2
ie=NbÞ

� �1=2
ð35Þ

Note that the term ð
P

ðb2
ie=NbÞÞ1=2 is the power we are testing when

we do the f test on bi. Eq. (35) tells us that we can use the sign of b
¯
ie

to give the sign of D̄ie, and therefore the direction of the activation.

We could look to derive the posterior probability of the

normalised power explained by the f-contrast in Eq. (34).

Instead, the approach we take in this paper is to convert them

to pseudo-z-statistics and then perform spatial mixture model-

ling on the spatial map of pseudo-z-statistics as described later.

The f-to-z transform is carried out by doing an f-to-p-to-z

transform (i.e., by ensuring that the probabilities in the tails

are equal under the f- and z-distributions for the f- and z-

statistics).

We refer to them as pseudo-z-statistics as they are not

necessarily Normally distributed with zero mean and standard

deviation of one under the null hypothesis. This is because they

have been obtained by performing Bayesian inference. Whether

or not Bayesian inference produces the same null distribution as

that in frequentist inference will depend on the form of prior

used. As we shall see in ‘‘Artificial null data’’ and as we would

expect (Penny et al., 2003), if we use noninformative priors we

do get approximate equivalence between frequentist and Bayesian

inference. However, when we use constrained HRF shape priors,

we get a different distribution under the null hypothesis. We will

see later how we can adjust to this different inference, and take

advantage of the extra sensitivity it offers, by using spatial

mixture modelling.
Artificial null data

Before we consider the use of spatial mixture modelling on the

pseudo-z-statistics representing the normalised power explained by

an f-contrast, we investigate the empirical null distributions pro-

duced from artificial data using the Variational Bayesian inference

previously described.

Methods

We use artificial null data generated from the model, with b =

0 and ap = 0. The stimulus is taken to be a square wave with

period of 60 s. We have T = 200 scans, a TR of 3 s and use an

HRF resolution of q = 6. Using these values we generate time

series for 10,000 voxels. We then fit the model with an autore-

gressive order of P = 4 and use a basis set of the top 3 eigen-

HRFs shown in Fig. 3. We use two different models, one with no

HRF constraints (m = 0 and C = I) and one with HRF constraints

[m = m̃ and C = C̃ as given in Eq. (17)]. We use an f-contrast of

[1, 0, 0; 0, 1, 0; 0, 0, 1].

Results

Fig. 5(a) shows the histogram of pseudo-z-statistics obtained for

the two different models with and without HRF constraints using

the Variational Bayesian inference. Fig. 5(b) shows the log
probability– log probability plots. These show plots of (nominal/

theoretical) frequentist FPR against that obtained empirically.

The nominal/theoretical FPR is only applicable to the uncon-

strained HRF model, as we then have noninformative priors and

we would expect the Bayesian inference to be equivalent to

frequentist inference. Accordingly, the log probability– log proba-

bility plot shows good correspondence between the empirically

obtained probabilities under the tail for a given z-statistic, and that

which we expect from frequentist theory, for the unconstrained

HRF model.

Recall that to make the inference tractable under Variational

Bayes, we introduced a utility parameter, /b¯ie, which we update

with point estimates an approximation that may have effected the

marginal posterior over bie. The fact that we obtain good

correspondence here between our inference and the (for this

model, known to be correct) frequentist results provides some

validation that the marginal posterior over be is not significantly

affected.

Unlike the unconstrained model, we would not expect the

constrained HRF model to give pseudo-z-statistics that conform

to frequentist theory. This is because we now have informative

HRF shape priors causing Bayesian inference to be different to

frequentist inference. The log probability– log probability plot

shows that we get probabilities under the tail for a given z-statistic

much smaller empirically than if the frequentist GLM solution held

true. The histogram in Fig. 5(a) shows that this is due to a large

shift in the histogram to lower pseudo-z-statistics (the mode is at

about z = �1). The HRF constraints reduce the power in those

voxels where the linear combinations of the basis functions do not

give sensible HRF shapes; this produces a shift in the null-

distribution histogram. When we have activating voxels with

HRF shapes, which are not penalised by the HRF prior constraints,

then the pseudo-z-statistics will not be reduced. We therefore have

extra sensitivity when we use Bayesian inference with informative

priors constraining the HRF shape.
Spatial mixture modelling

Using Variational Bayesian inference, we have produced a

spatial map of pseudo-z-statistics. Since the pseudo-z-statistics

for the constrained HRF model give smaller empirical null distri-

bution probabilities than the nominal FPR, we could use the

pseudo-z-statistics and infer on them using frequentist probabilities

without violating our nominal FPR. However, we would not be

taking full advantage of the extra sensitivity of the Bayesian

inference when we have informative priors constraining the HRF

shape.

Therefore, we look to infer on the spatial map of pseudo-z-

statistics using the technique of spatial mixture modelling. In

mixture modelling, we model the spatial map as being made up of

voxels that are classified as either activating or nonactivating

(Everitt and Bullmore, 1999). The activation and deactivation

classes have different distributions, which describe probabilistically

the pseudo-z-statistic values we expect in that class. Since we are

estimating the nonactivating distribution from the data, we can

adjust to the shifted nonactivation distribution demonstrated in

Fig. 5.

In spatial mixture modelling, we augment this histogram

information with spatial regularisation of the classification (Hartvig

and Jensen, 2000; Woolrich et al., submitted for publication). Note
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that this has nothing to do with the way in which we spatially

regularise the temporal autocorrelation coefficients in the ‘‘Autor-

egressive parameters spatial prior’’ section. Instead, we spatially

regularise the classification of activating or nonactivating voxels.

This has been implemented in Woolrich et al. (submitted for

publication), within a completely adaptive fully Bayesian frame-

work. Importantly, this approach adaptively determines the amount

the classification is spatially regularised.

Fig. 6 shows the null distribution of pseudo-z-statistics result-

ing from the constrained HRF analysis on the artificial null data

in the previous section. This distribution is not Normal; in

particular it is asymmetric. We therefore model the nonactivation

distribution in the mixture modelling as a flipped and shifted

Gamma distribution. Fig. 6 shows the fit of a flipped and shifted

Gamma distribution to the null distribution histogram. Recall that

with an f-contrast we only look at the positive tail of the

distribution to find both activations and deactivations. Therefore,

we model the activations and deactivations as a single class in

the spatial mixture modelling using a straightforward Gamma

distribution.
FMRI data

Methods

We use two different datasets. The first is a boxcar visual

experiment with a reversing checkerboard boxcar stimulus (30-s

on, 30-s off). The second is a single-event pain experiment, for

which the stimulus was a thermal noxious stimuli of 3 s duration

administered to the dorsum of the volunteer’s left hand using an

electrical resistor to generate heat with varying ISI (between 30 and

50 s).

For both experiments, echo planar images (EPI) were acquired

using a 3-T system with TR = 3 s, time to echo (TE) = 30 ms, in-

plane resolution 4 mm and slice thickness 7 mm. The first four scans

were removed and the data was motion corrected using MCFLIRT

(Jenkinson et al., 2002) and high-pass filtered as described in

Woolrich et al. (2001). The data is not spatially smoothed.

We use an HRF resolution of q = 6 (i.e., 0.5 s). We then fit the

model with an autoregressive order of P = 4 and use a basis set of

the top 3 eigen-HRFs shown in Fig. 3. We use two different

models, one with no HRF constraints (m = 0 and C = I) and one

with HRF constraints [m = m̃ and C = C̃ as given in Eq. (17)]. We

use an f-contrast to pick out the linear combinations of the basis

functions. The resulting f-statistics are f-to-z converted to produce

spatial maps of pseudo-z-statistics. The fully adaptive mixture

modelling described in the previous section is then used to provide

probabilities of a voxel being activated.

Results

Fig. 7 shows the posterior means of the AR parameters from the

single-event pain dataset for two different models: with nonspatial

and with spatial MRF AR parameter priors. For the model with

spatial MRF priors, the Variational Bayesian inference adaptively

determines the amount of spatial regularisation to impose for each

of the autoregressive parameter MRFs separately. The spatial maps

for p = 1 are very similar, but as we increase p the MRF spatial

regularisation increases. This shows how the adaptive determina-

tion of the amount of spatial regularisation automatically adjusts to
avoid overfitting of the high-order autoregressive parameters. In

terms of inference on the normalised power of the f-contrasts, Fig.

8(a) suggests that avoiding overfitting and spatially regularising the

AR parameters does make a significant difference to the pseudo-z-

statistics.

Fig. 9 shows the histogram of pseudo-z-statistics obtained for

the two different models with and without HRF constraints. For

both conditions, we can see how the right hand tail, i.e., those

voxels that are strongly activating, is relatively unaffected. Where-

as, the main body of the histogram, i.e., the background non-

activating voxels, is shifted to the left in the same way that it was

for the null artificial data.

Figs. 10 and 11 show the results of applying the spatial mixture

modelling on the unconstrained HRF model. Figs. 12 and 13 show

the results for the constrained HRF model. Fig. 14 shows the

difference in voxel classification between the constrained HRF

model and the unconstrained HRF model. This difference high-

lights the increased sensitivity. With the constrained HRF model,

smaller strength activating voxels have increased probability of

being in the activation class. This is because the nonactivating class

distribution is shifted to lower pseudo-z-statistics when we use the

constrained HRF model.

Figs. 15 and 16 show samples from the marginal posterior of

the HRF at a voxel that is not activating and a voxel that is strongly

activating, respectively, in the pain experiment. In particular, Fig.

15 highlights the difference between the unconstrained and con-

strained HRF models for a nonactivating voxel. Whereas, in Fig.

16, the HRF shape conforms to prior expectations; hence, there is

little difference between the unconstrained and constrained HRF

models for a strongly activating voxel.
Conclusions

We have proposed a technique for firstly choosing a basis set,

and then the means to constrain the subspace spanned by the basis

set to only include sensible HRF shapes within a GLM framework.

We can carry out inference using Variational Bayes, which also

performs adaptive spatial regularisation of temporal autocorrela-

tion. Constraining the subspace spanned by the basis set allows for

far superior separation of activating voxels from nonactivating

voxels in FMRI data. We used spatial mixture modelling to

produce final probabilities of activation, and demonstrated on

FMRI data the increased sensitivity produced.
Discussion

In a previous work Friman et al. (2003) also looked to constrain

the possible linear combinations of the basis set, but within the

canonical correlation analysis (CCA) framework. However, they

only looked to constrain the linear combination coefficients to be

positive. In this work we apply a more complete constraint by

fitting a multivariate Normal distribution to describe the desired

constrained space probabilistically. A big limitation of the work in

Friman et al. (2003) is that they did not address the issue of how to

threshold the resulting correlations of the CCA. In contrast, the

framework in this paper is the Variational Bayesian GLM frame-

work first used in FMRI by Penny et al. (2003). This framework

has the advantage that it takes into account important issues such

as temporal autocorrelation in FMRI and at the same time
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intrinsically produces approximate probability distributions from

which inference can take place.

The HRF modelling in this paper all assumes linearity of the

HRF. Friston et al. (1998b) produced compelling work addressing

the use of basis functions for nonlinear HRF modelling using

Volterra series. They model the first- and second-order kernels

using Gamma basis functions in a frequentist inferred GLM. In

Friston et al. (2000), they derive Volterra kernels from the balloon

model (Buxton et al., 1998) and fit them to empirically found

Volterra kernels from the frequentist inferred GLM of Friston et

al. (1998b). In Friston (2002), they infer on the balloon model

parameters directly from the FMRI data in a Bayesian framework.

Within the Bayesian framework they can incorporate priors on

the balloon model parameters deduced empirically in Friston et

al. (2000). This incorporation of the prior information from

previous empirical evidence will constrain the balloon model

parameters in the same way we constrain the HRF shape basis

function parameters in this work. One area of future work is to

extend the Variational Bayesian inference in this paper to deal

with second-order Volterra kernel basis functions and nonlinear-

ities in ways related to the work of Friston et al. (1998b).
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Appendix A. Gamma distribution

x has a two-parameter gamma distribution, denoted by Ga(b,c),

with parameters b and c, if its density is given by:

fGaðx; b; cÞ ¼
1

CðcÞ
xc�1

bce�x=b
ð36Þ

where C(c) is the Gamma function. Note that a gamma distribution

has mean = bc and variance = b2c.
Appendix B. Variational Bayes updates

We define

Bi ¼
bi

b̂i

2
4

3
5 ð37Þ

and

bi ¼ QBi ð38Þ

bie ¼ QieBi

b̄ie ¼ RieBi
B.1 . Regression coefficient updates

Here we give the update equation for the parameters of the

regression coefficient distribution q(bi; b̄ijy) = MVN(lBi
, KBi

):

lBi
¼ F�1

Bi
EBi

KBi
¼ F�1

Bi
ð39Þ

where

FBi
¼ cei

X
t

�
QTxTi xtQþ

X
p

lapi
ðQTxTt�pxt�pQ� 2QTxTt xt�pQÞ

�

þ
X
e

n
/ðiÞ

b̄e

ðQT
e CQe þ RT

e m
TCmRe � 2QT

e CmReÞ
o

EBi
¼ cei

X
t

(
QTxTt yit �

X
p

yiðt�pÞlapi

 !

þ
X
p

lapi
QTxTt�p yit �

X
p

yiðt�pÞlapi

 !)

cei ¼
CðbeiÞCðcei þ 1Þ

CðceiÞ
ð40Þ

B.2 . Autoregressive parameter updates

Here we give the update equation for the parameters of the

autoregressive parameter distribution q(apjy) = N(lap, Kap
):

lap
¼ F�1

ap
Eap

Kap ¼ F�1
ap

ð41Þ

where

Fap ¼
X
t

ðwT
tpSewtpÞ þ capD

Eap ¼
X
t

wT
tpSe yt �

X
qpp

wtqlaq
� xtQlB

 !
ð42Þ

where Se = Diag(cei) and wtp
= yt � p � xt � pQlB

B.3 . MRF precision updates

Here we give the update equation for the MRF precision

parameter distribution q(/ap
jy) = Ga(b/ap, c/ap):

1

bap
¼ 1

2
mT

ap
Dmap þ TraceðKapDÞ

� �
þ 1

ba0
ð43Þ

Cap ¼ N=2þ ca0 ð44Þ

we define cap as:

cap ¼
CðbapÞCðcap þ 1Þ

CðcapÞ
ð45Þ

Even though the matrix D is very sparse, the computation of

the Trace(Kap
D) term can be very expensive to compute. In

particular, this is because Kap
= Fap

�1 and Fap
is a N � N matrix

whose inverse would be very computationally expensive to
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compute. Therefore, instead of computing this inverse, we can

compute x in the linear equation:

Fapx ¼ D ð46Þ

Since D is a positive symmetric definite matrix, we can take

advantage of the conjugate gradient techniques described in Golub

and Van Loan (1996). At each iteration of the conjugate gradient

search for x, we only need to perform one matrix multiplication of

Fap
x. The conjugate gradient approach is far quicker than solving

for the inverse of Fap
and then multiplying by D.

The conjugate gradient technique takes in an initial guess of x.

Hence, as we iterate through the Variational Bayes updates of our

approximate posterior distributions, we can store the value of x

from the previous conjugate gradient solution from the previous

update of q(/ap
jy), and use it as the initialisation of the conjugate

gradient search for x at the next update of q(/ap
jy). After the first

Variational Bayes iteration, this makes subsequent conjugate

gradient searches very quick to converge.

B.4 . Noise precision updates

Here we give the update equation for the parameters of the

noise precision distribution q(/eijy) = Ga(bei, cei):

1

bei
¼ 1

2

X
t

yit � xtQlBi
�
X
p

ðyiðt�pÞ � xt�pQlBi
Þapi

 !2
0
@

þ Trace K�1
bi

X
t

xTt xt

 !
þ
X
p

ðK�1
ap
Þi
X
t

ðyiðt�pÞ

(

� xt�pQlBi
Þ2
)!

þ 1

be0

cei ¼ ðT � 1Þ=2þ ce0 ð47Þ

we define cei as:

cei ¼
CðbeiÞCðcei þ 1Þ

Cðc Þ ð48Þ

ei
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