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Brain deformations induced by space-occupying lesions may result in

unpredictable position and shape of functionally important brain

structures. The aim of this study is to propose a method for

segmentation of brain structures by deformation of a segmented brain

atlas in presence of a space-occupying lesion. Our approach is based on

an a priori model of lesion growth (MLG) that assumes radial

expansion from a seeding point and involves three steps: first, an

affine registration bringing the atlas and the patient into global

correspondence; then, the seeding of a synthetic tumor into the brain

atlas providing a template for the lesion; finally, the deformation of the

seeded atlas, combining a method derived from optical flow principles

and a model of lesion growth. The method was applied on two

meningiomas inducing a pure displacement of the underlying brain

structures, and segmentation accuracy of ventricles and basal ganglia

was assessed. Results show that the segmented structures were

consistent with the patient’s anatomy and that the deformation

accuracy of surrounding brain structures was highly dependent on

the accurate placement of the tumor seeding point. Further improve-

ments of the method will optimize the segmentation accuracy. Visual-

ization of brain structures provides useful information for therapeutic

consideration of space-occupying lesions, including surgical, radio-

surgical, and radiotherapeutic planning, in order to increase treatment

efficiency and prevent neurological damage.
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Introduction

Precise segmentation of functionally important brain anatomical

structures and/or areas is of major interest in the minimal invasive

approaches to brain space-occupying lesions, including tumors and
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vascular malformations. It aims to reduce the morbidity or

mortality and to improve the outcome of surgical, radiosurgical,

or radiotherapeutic management of such lesions. Multimodal

investigations such as functional MRI, PET, and SPECT scans

have certainly contributed to a more accurate localization of

structures of interest but may be limited by their low anatomical

resolution. Despite the spatial information and higher anatomical

resolution provided by MRI and three-dimensional (3D) recon-

structions performed by image-guided systems, precise visual

segmentation may be inaccurate when anatomic structures are

shifted and deformed.

Atlas-based MR segmentation algorithms have already shown

to be reliable when performed on nonshifted brain structures (Bach

Cuadra et al., 2001; Dawant et al., 1999a) but are still of limited

use when a space-occupying lesion induces brain deformations that

are yet not clearly predictable.

We report our preliminary experience of brain structures

segmentation in the presence of a space-occupying lesion based

on a brain atlas deformation. The mathematical and biophysical

concepts of our deformable model are explained. Its advantages

and limits are discussed in the field of future applications in

neurosurgery, radiotherapy, and radiosurgery.
Materials and methods

Dataset

The MR datasets of two patients with meningiomas were

selected for this study. In each case, a 3D T1-weighted magnet-

ization-prepared rapid acquisition gradient echo (MPRAGE) MR

sequence with gadolinium was performed (Magneton 1.5 T,

Siemens, Erlangen, Germany) with the following parameters:

128 sagittal slices of 1.25 mm. Field of view 280 * 280 mm;

matrix size 256 * 256; voxel size 1.09375 � 1.09375 � 1.25 mm.

The digitized brain atlas used in this study was kindly provided

by the Surgical Planning Laboratory (SPL) of the Harvard Medical

School (Kikinis et al., 1996).



Fig. 1. Scheme of the ATM SVC algorithm.
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Data processing

An affine transformation was applied to the atlas in order to reach

a global matching with the patient’s brain without consideration of

the brain deformation induced by the lesion. The tumor was then

automatically segmented from the patient MRI. A seeding point

representing the supposed seed of the tumor was then identified and

placed on the atlas, and a nonrigid deformation algorithm using our

model of tumor growth was applied until reaching the previously

segmented limits of the tumor, with an a priori radial growth

assumption. A registration algorithm based on the demons method

was applied outside the limits of the tumor for the brain deformation.

Affine transformation

As proposed by Cuisenaire et al. (1996), the global trans-

formation from the patient image to the atlas is modeled as a three-

dimensional affine transform, that is, y = Ax + b with A as a 3 � 3

matrix and b as a 3D vector. The 12 parameters of this transform are

optimized in order to minimize the distance between the patient and

atlas cortical surfaces, both segmented using mathematical mor-

phology operators. This distance between surfaces is defined as the

mean square value, over all points of moving surface, of the distance

to the nearest point from the reference surface. These are efficiently

precomputed using a fast Euclidean distance transform algorithm.

Lesion segmentation

The patient’s lesion needs to be segmented in order to specify

the volume in which the model of tumor growth will be applied. To

this purpose, we use a variant of the Adaptive Template Moderated

Spatially Varying Statistical Classification (ATM SVC) algorithm
Fig. 2. Third step of the A
proposed by Warfield et al. (2000). This algorithm uses both image

and anatomical information, embedding them in a high dimension-

ality space in which a k-Nearest Neighbors (k-NN) classification is

performed. One dimension of this feature space is the image

intensity. The other dimensions are the distances to the structures

from a brain atlas warped onto the corresponding structures

classified from the patient image. The algorithm is implemented

in a hierarchical way, so that the dimensionality of the feature

space and the number of classified structures increase progres-

sively at each level:

! Level 1: The intensity feature is used for the classification into

the brain and the background classes.

! Level 2: The intensity and distance to the brain surface are used

to classify the ventricles, brain, and background.

! Level 3: Intensity, distance to the brain, and distance to the

ventricles are used for the classification into lesion, ventricles,

brain, and background.

! Level 4: Intensity, distance to de brain, distance to the ventricles,

and distance to the lesion contour are used for the final

classification into lesion, ventricles, brain, and background.

In the first level, the classification is done by simply

binarization of the image. In the levels 2, 3, and 4, the process

represented in Fig. 1 is applied. We use the demons algorithm

(Thirion, 1998) as elastic matching instead of the one used in

studies of Kaus et al. (1999) and Warfield et al. (2000). Note that

the distance to the brain surface and to the ventricles is computed

from the registered atlas, while the distance to the lesion is

computed from the classified patient (see the Level 3 in Fig. 2).
TM SVC algorithm.
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Moreover, the k-NN classifier is trained by manually choosing

on MR images 100 prototypes per class (lesion, ventricle, and brain

classes).

Atlas seeding

After the affine transformation, the atlas and patient volumes

are globally in correspondence except in regions that have been

drastically deformed by the tumor. We proceed to the atlas seeding

by manually selecting the point of origin of the tumor growth in the

affine-registered brain atlas.

Both our previous work (Bach Cuadra et al., 2002) and that of

other groups, namely, Dawant et al. (1999b) group, use an

extended seed in order to drive the tumor deformation. It makes

the positioning of the seed a relatively easy task but unfortunately

masks atlas structures under the seed. In this paper, the single-

voxel seed induces no masking, but—as will be discussed—the

selection of the correct seed location requires anatomical and

biological knowledge of tumor growth.

Nonrigid deformation using a model of lesion growth (MLG

algorithm)

At this point, the affine registration ensures that the small

displacement assumption is respected in the region of the brain that

is far from the tumor. Meanwhile, the segmentation of the tumor

volume and the manual selection of the tumor seed provide an

adequate model for the tumor and its influence on immediately

surrounding tissues. The nonrigid deformation method we propose

distinguishes between those two areas fixed from the lesion

segmentation: outside the lesion, where the demons algorithm is

applied, and inside the lesion, where a simple model of lesion

growth is applied.

Demons algorithm. This algorithm approaches the problem of

image matching as a diffusion process, in which object boundaries

in the reference image F are viewed as semipermeable membranes.

The other (so-called floating) imageG is considered as a deformable

grid and diffuses through these interfaces driven by the action of

effectors situated within the membranes. These effectors are also

called demons by analogy with Maxwell’s demons.

In this paper, the instantaneous force (velocity) for each demon

point pY, at the iteration i + 1 is

v
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where F(.) and G(.) are the image intensities and D
Y i is the current

displacement field. Thus, there is a displacement in the direction of

the reference image gradient, provided there is both a difference in

image intensities and a reference image gradient different from zero.

The deformation field is then computed from the instantaneous

velocity by assuming that the two images to match are two frames

separated by a unit of time:

d
Y iþ1 ¼ D

Y i þ v
Y iþ1

dDt; ð2Þ

where Dt = 1.

Note that Eq. (1) is asymmetrical; that is, it gives different

results depending on which image is chosen as the reference and

which is chosen to be floating. In (Thirion, 1995), a solution to
provide bijectivity to the demons algorithm is presented and

therefore to provide a way of finding the inverse transformation.

This is done by computing at each iteration both the direct

deformation field d
Y

direct, from Eqs. (1) and (2) and the inverse

deformation field, d
Y
inverse, also from Eqs. (1) and (2) but replacing F

instead of G and vice versa. Then, a residual vector field R ¼
d
Y

direct þ d
Y

inverse is equally distributed onto the two deformation

fields:
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In this approach, global smoothness of the total displacement

field is implicitly enforced. Locally similar displacements for

nearby voxels are imposed by smoothing both direct and

inverse displacement fields with a Gaussian filter, that is,

D
Y

a ¼ D
Y

a
Tiþ1BG rð Þ, where D

Y T is the deformation field at the

current iteration, a refers to direct and inverse, G(r) is the

Gaussian filter with standard deviation r, and D
Y

is the

regularized deformation field that will be used in Eq. (1) the

next iteration. The choice of the smoothing parameter r of the filter

is a critical issue that has been studied in Thirion (1995). We apply

the nonrigid registration as an elastic process, and therefore, we

also call r the elasticity parameter.

Model of lesion growth algorithm. Inside the lesion, the tumor

growth model assumes a radial growth of the tumor from the

tumor seed, that is,

v
Y

lesion
iþ1

�
p
Y
�
¼ DM
Y

Nit

; ð4Þ

where v
Y
lesion is the instantaneous velocity inside the lesion area,

DM
Y

is the distance from the corresponding point pY to the seed, and

N it is the number of iterations of the deformation algorithm that

have to be performed. Then, the deformation field d
Y
lesion
iþ1

is

computed similarly as in Eq. (1). The bijectivity inside the lesion

area is ensured by forcing vYdirect ¼ � vYinverse:
This model allows the points inside the tumor to converge

towards the seed voxel, while remaining simple and allowing any

number of iterations to take place outside the tumor volume.

The displacement vector computed at every voxel using either

the demons force (1) or the lesion growth model (4) is regularized

by an adaptive Gaussian filter to avoid possible discontinuities.

Three areas are arbitrarily considered: (a) inside the lesion area, (b)

close to the lesion (within 10 mm of the tumor) where large

deformations occur, and (c) the rest of the brain. In (a),

regularization of the deformation vector field is not necessary

because the vector field induced by (2) is highly regular and the

continuity is ensured, explaining why r = 0 inside this area. In (b)

(including the tumor contour), the largest deformations are found

due to the tumor growth. Then, it is necessary to allow large

elasticity; that is, r should have a small value, typically 0.5 mm. In

(c), deformations are smaller, due primarily to interpatient

anatomical variability. A larger r proves to be more accurate

(0.8 mm), as it simulates a more rigid transformation.

Notice that the algorithm is implemented in a multiscale way:

The number of iterations is arbitrarily fixed to 256 + 128 + 32 + 16
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from low to high resolution scale. A first match is made with

down-sampled images, and the resulting transformation is up-

sampled to initialize the next match with finer image resolution.

Control of the deformation accuracy

After registering the atlas and patient MRIs, the same

deformation is applied to the labeled structures of the atlas

including ventricles, thalamus, and striatum and the patient’s

MRI. Once deformed, the labeled structures were projected on the

patient’s MRI.

For each case, one coronal and one sagittal slices crossing the

center of the tumor as well as one axial slice located in the vicinity of

the tumor and showing the structures of interest were selected after

each deformation and compared to the corresponding structures

visible on the patient’s MRI. The accuracy of brain deformation and

projected deformed labeled structures of the atlas was assessed by

two investigators (one neurosurgeon and one engineer).

To evaluate the influence of the seeding point position, we

created a synthetic atlas from the patient’s MRI by mirroring the

patient’s healthy hemisphere. This synthetic atlas is as similar as

possible to the patient’s MRI in terms of interpatient variability, so

that the remaining deformation between this synthetic atlas and the

patient should only compensate for the tumor growth. MLG

registration between the synthetic patient-atlas and the patient was

applied for six different initial positions of the seed voxel chosen.
Results

Deformed atlas images and deformation field

The MLG algorithm has been run using the parameters

described previously. In Fig. 3(left), the one-voxel seeded atlas is

shown. Fig. 3(middle) represents one deformed atlas image after

reaching the limits of the tumor, and Fig. 3(right) shows the

deformation field.

Seeding point position

Seed position is a critical point of the MLG since it simulates

where the tumor has begun to grow, and different choices of position

may lead to very different results. The resulting deformation for

each seed position is shown in Fig. 4. In each simulation, the
Fig. 3. (Left) Placement of the seed (red circle) on the atlas after affine transform

(Right) Field of deformation vectors.
original patient and the resulting deformed synthetic atlas-patient

are displayed. The seed position is represented by a little sphere.

The areas where the MLG method has resulted in accurate

deformations have been marked using green arrows, while

inaccurate deformed areas are shown with red arrows. From a

biological point of view, the most probable tumor seed takes place

in the middle of area representing the dural attachment of the

tumor. Even if this seed position seems to result in accurate

displacement of the underlying brain tissue, it has also led to

increased deformation of the midsagittal region. When starting

with other seed positions, more accurate deformations have been

obtained for the parasagittal region, whereas underlying gyri have

not correctly been displaced.

When comparing deformation results for structures located far

from the tumor (ventricles, basal ganglia, thalamus), little

variability has been detected related to the seed position (Fig. 5).

Global segmentation results

Fig. 6 shows the final coregistration with the patient’s MRI with

the following labeled structures of the deformed brain atlas

projected to the patient’s image: the tumor (in red), the ventricles

(in green), the thalamus (in yellow), and the striatum (in dark blue).

A global best accuracy was obtained in patient 1 when the seed

was placed near the superior sagittal sinus. In patient 2, the best

seed position was found in the parasellar region.
Discussion

Several approaches can be proposed for the treatment of brain

space-occupying lesions, including surgery, radiotherapy, and

radiosurgery, alone or in combination. Successful treatment of

brain lesions like tumors and vascular malformation is mainly

determined by the extent of removal and preservation of function-

ally important brain structures. Therefore, neurosurgical, radio-

surgical, as well as radiotherapeutical planning of brain lesions

should be performed in respect with these two objectives.

Visualization of important brain structures on medical images is

essential to increase the extent of lesion removal and avoid

neurological complications resulting from brain damage induced

by either direct surgical aggression and/or radionecrosis. Thus, the

reliability of automatic segmentation of brain structures is of major

importance to provide useful information for treatment consid-
ation. (Middle) Deformation of the brain after MLG algorithm application.



Fig. 4. Accuracy of deformation (right side) related to seeding point (circles) position compared to the patient MR images (left side).
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erations. Several limitations have to be discussed in the highlight of

potential clinical applications.

Patient selection

Both cases included in this study were meningiomas. Meningi-

omas typically exhibit a purely extracerebral growth with generally

no associated cerebral edema and therefore induce a pure shift and

deformation of the underlying brain structures, while intracerebral

tumors may infiltrate the brain tissue and/or are often associated

with brain edema. Our method does not yet apply for intracerebral

space-occupying lesions that may require different models of tumor

growth. Furthermore, due to their slow growth, meningiomas may

reach significant volumes and induce significant displacements of

the underlying brain structures before patients experience symp-

toms. The deformation algorithm accuracy could not yet be tested
on such cases. Regarding therapeutic considerations, meningiomas

of large volume are generally treated with surgery. However,

radiosurgery or stereotactic radiotherapy may be indicated as a

primary treatment or after an incomplete surgical removal in cases

where tumor size does not exceed a maximal diameter of 25–30

mm. Therefore, these case selection may be regarded as representa-

tive samples when radiosurgical treatment is considered.

Hypothesis of radial growth

The main hypothesis of the proposed method is that the lesion

expands radially. Even if the vectors of growth of space-occupying

lesions are not precisely known, it seems reasonable to assume

from biological point of view that homogeneous intracerebral

tumors (totally solid or totally cystic) have a radial growth. This is

confirmed radiologically in cases where follow-up of such lesions



Fig. 5. Segmentation accuracy of basal ganglia and ventricles related to the

seeding points shown in Fig. 4.
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is performed. Regarding meningiomas, growth may be considered

spatially homogeneous at least into directions where they are not

restrained by anatomical structures like bone, cerebral falx, or

tentorium. Actually, a large majority of meningiomas have a dural

attachment, and dura, except the falx and tentorium, is adherent to

bone. As bone is rigid, it is reasonable to consider that there is no

growth into the bone direction, even if bone may be invaded in rare

cases. It is then realistic to assume from a biological point of view

that growth of meningiomas is radial and starts from the center of

the surface of their dural attachment, defined as the seeding point.

Importance of the seeding point position

The deformation between atlas and patient compensates both

for the tumor growth and for the interpatient variability, while the
Fig. 6. Global segmentation results of the tumor (red), ventricles (green), thalamus

sagittal (right) image. Top: patient 1. Bottom: patient 2.
location of the seed is supposed to affect only the tumor growth

model. Thus, the accuracy of brain deformation induced by the

lesion growth is correlated with the position of the seeding point.

This observation is not surprising considering the hypothesis of

radial growth discussed earlier. As a result, the best deformation

accuracy is not necessarily obtained when seeding point is, from a

biological point of view, logically placed in the center of the

surface of dural attachment. Indeed, no shift of either the falx or the

bony sellar region is observed despite the presence of the

meningioma, while the corresponding deformed images by the

MLG method have deformed these structures. Actually, falx and

tentorium, although less rigid than bone, have significantly higher

resistances against tumor growth than brain and should be

considered almost nondeformable structures until the tumor

reaches a significant size. Consequently, in a future work, the

algorithm should be modified in order to prevent too much

deformability of these structures. Thus, a more adapted model of

deformability could render the algorithm less dependent of finding

the precise seed position.

Control of the elasticity (adaptive Gaussian filter)

In order to approximate the progressive decreasing deforma-

tion within the brain tissue as we move away from the tumor site,

an adaptive Gaussian filter was applied to the deformation

algorithm. As extensively explained previously, the values of

sigma were fixed experimentally. r = 0 mm inside the tumor

area, where no regularization of the deformation field is needed,

r = 0.5 mm close to the tumor, allowing a maximal deformation

in the surrounding brain structures, whereas r = 0.8 mm away

from the tumor in order to avoid large brain deformations distant

from the tumor site. The choice of the r values was based on

previous studies (Bach Cuadra, 2003), suggesting that a typical r
for matching healthy brains ranges between 0.5 and 1 mm. More
(blue), and striatum (yellow) shown on an axial (left), coronal (center), and
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accurate results may be obtained if sigma values could be adapted

locally as proposed in other models of brain deformation (Ferrant

et al., 2001).

Control of the deformation accuracy

Qualitative control of the deformation accuracy was relatively

easy to perform for those segmented structures located away from

the tumor site (ventricles, basal ganglia, thalamus), and segmenta-

tion accuracy of the basal ganglia and ventricles was consistent

with patient visible MRI structure. However, it was more difficult

to assess the accuracy of the deformation for structures surrounding

the tumor, that is, the underlying brain gyri and sulci in cases of

meningiomas. The displacement of reference points placed on the

surrounding brain of the atlas or the contralateral hemisphere of the

studied patients before deformation was studied, but it is almost

impossible to give a precise interpretation on the position of these

points after deformation when compared with the corresponding

patient’s images where these structures are already largely

deformed. Moreover, interindividual (between patients) as well

as intraindividual (between the two hemispheres of the same

patient) variation of cortex anatomy may result in misinter-

pretations of the results.
Conclusions

We propose a new approach for brain deformation in presence

of space-occupying tumors, based on a method for atlas-driven

segmentation that uses a model of lesion growth that assumes, from

a biological point of view, a radial expansion from a manual

seeding point. It provides a minimal loss of information due to the

minimal voxel size seeding and takes in consideration the

progressive decreasing brain deformation as we move away from

the tumor site. The preliminary results show that the segmented

structures were consistent with the patient’s anatomy when the

deformation algorithm was implemented on extracerebral lesions

inducing a pure displacement of the underlying brain structures. In

this algorithm, deformation accuracy of surrounding brain struc-

tures was highly dependent on the accurate placement of the tumor

seeding point. The validation and robustness of this method should

be further assessed on a larger number of cases, including larger

tumors as well as intracerebral tumors and lesions with cerebral

edema.

Further improvements of the method should be obtained

according to the biological and mechanical behavior of brain
tumors and deforming brain structures that should be better

understood by a multidisciplinary collaboration to improve the

surgical, radiotherapeutical, and radiosurgical planning and treat-

ment of space occupying brain lesions.
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