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Distributed linear solutions of the EEG source localisation problem are

used routinely. In contrast to discrete dipole equivalent models,

distributed linear solutions do not assume a fixed number of active

sources and rest on a discretised fully 3D representation of the

electrical activity of the brain. The ensuing inverse problem is

underdetermined and constraints or priors are required to ensure

the uniqueness of the solution. In a Bayesian framework, the condi-

tional expectation of the source distribution, given the data, is attained

by carefully balancing the minimisation of the residuals induced by

noise and the improbability of the estimates as determined by their

priors. This balance is specified by hyperparameters that control the

relative importance of fitting and conforming to various constraints.

Here we formulate the conventional bWeighted Minimum NormQ
(WMN) solution in terms of hierarchical linear models. An

bExpectation-MaximisationQ (EM) algorithm is used to obtain a

bRestricted Maximum LikelihoodQ (ReML) estimate of the hyper-

parameters, before estimating the bMaximum a PosterioriQ solution

itself. This procedure can be considered a generalisation of previous

work that encompasses multiple constraints. Our approach was

compared with the bclassicQ WMN and Maximum Smoothness

solutions, using a simplified 2D source model with synthetic noisy

data. The ReML solution was assessed with four types of source

location priors: no priors, accurate priors, inaccurate priors, and both

accurate and inaccurate priors. The ReML approach proved useful as:

(1) The regularisation (or influence of the a priori source covariance)

increased as the noise level increased. (2) The localisation error (LE)

was negligible when accurate location priors were used. (3) When

accurate and inaccurate location priors were used simultaneously, the

solution was not influenced by the inaccurate priors. The ReML

solution was then applied to real somatosensory-evoked responses to

illustrate the application in an empirical setting.
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Introduction

The problem of recovering volume current sources from

superficial electromagnetic measurement is intrinsically ill-posed

(von Helmholtz and Hermann, 1853) and the spatial configuration

of neuronal activity cannot be determined uniquely, based on EEG

and/or MEG recordings alone (Nunez, 1981). To resolve the

nonuniqueness of this inverse problem, assumptions about the

solution must be made to obtain a unique and boptimalQ solution
according to the criteria employed.

Two approaches are generally used to solve this inverse

problem: bEquivalent Current DipoleQ (ECD) approaches, where

the EEG/MEG signals are assumed to be generated by a relatively

small number of focal sources (Aine et al., 2000; Miltner et al.,

1994; Scherg and Ebersole, 1994; Scherg et al., 1999), and the

bDistributed LinearQ (DL) approach, where ballQ possible source

locations are considered simultaneously (Backus and Gilbert,

1970; Grave de Peralta Menendez and Gonzalez Andino, 1999;

Hämäläinen and Ilmoniemi, 1994; Pascual-Marqui, 1999; Sarvas,

1987; Uutela et al., 1999).

In Phillips et al. (2002a), we introduced a solution based on the

bWeighted Minimum L2-NormQ (WMN) solution where the source

space was modelled by spatially bInformed Basis FunctionsQ (IBF):
The activity over the sources is defined in terms of a linear

combination of orthogonal basis functions. This approach can be

seen as a compromise between the DL solution where all the

dipoles are independent, and the ECD solution where only a

limited set of sources can be active. Indeed, the ECD approach can

be understood as using spatial IBF, where the spatial support of the

basis functions is limited to a single point.

Having specified a suitable basis set, further constraints on the

sources can be introduced in a probabilistic (Bayesian) sense. The

major problem here is the introduction of multiple constraints and

their appropriate weighting, while accounting for observation noise

(Gonzalez Andino et al., 2001). In Phillips et al. (2002b), we

introduced a simple bRestricted Maximum LikelihoodQ (ReML)

procedure to estimate a single hyperparameter, i.e., balance between

fitting the data and conforming to the priors. Here we reformulate the
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WMN solution in terms of a hierarchical linear model. With this

approach, any number of constraints (or priors) on the source or

noise covariance matrices can be introduced. An bExpectation-
MaximisationQ (EM) algorithm is used to obtain a ReML estimate of

the hyperparameters associated with each constraint. This enables

the bMaximum a posterioriQ solution to be calculated.

This paper is divided into two subsequent sections. In the first

section (bTheoryQ), the theoretical background and operational

details of our approach are described. The first part (bWeighted

minimum norm and Bayesian solutionsQ) introduces the WMN

solution in a Bayesian framework, while the second (bHierarchical
parametric empirical Bayes approachQ and bRestricted maximum

likelihood solutionQ) introduces the hierarchical bParametric

Empirical BayesQ (PEB) and ReML approach. bSpatial constraints
and priorsQ section is a brief synopsis of the technique presented in

full in Phillips et al. (2002b) defining the constraints used. In the

last section (bApplicationsQ), we use a simplified model and

simulated signal (with added noise) to explore the behaviour of our

approach over a range of variables and noise levels (bSimulations

with a simplified modelQ). To assess the construct validity of our

method, we compare it with two established approaches to the

source localisation problem: simple WMN and Maximum Smooth-

ness (MS, LORETA-like) solutions. Finally, in bReal source

reconstructionQ our approach is applied to real somatosensory

ERP data, with a realistic head model based on the anatomy of the

subject.

In the rest of this paper, a, Ya, a and A will represent,

respectively, a scalar, a vector of size 3 � 1, a vector of any size

Na � 1 and a matrix; At will designate the transpose of A.
Theory

The instantaneous source localisation problem in EEG can be

summarised by the following equation:

v ¼ F Yr;Yj Þ þ e
�

ð1Þ

where v, a vector of size Ne � 1, is the potential at the Ne

electrodes; Yr and Yj are the source location and moment; e is the

additive noise; and F is the function linking the source (Yr;Yj ) and

the potential v. The function F is the solution of the forward

problem and depends only on the head model adopted (con-

ductivity and spatial configuration).

For Nd sources defined by Yri and Yji (with i = 1,. . .,Nd), the

source localisation problem (1) is rewritten, thanks to the super-

position theorem, as:

v ¼
XNd

i¼1
F Yri;Yji Þ þ e
�

ð2Þ

In this paper, the sources of the EEG signal are modelled by a

fixed three-dimensional grid of current dipoles throughout the

brain volume, conforming to the bDistributed Linear SolutionQ
approach where Nd is much larger than Ne. Because the location

Yri
of each current source is now fixed, Eq. (1) becomes an

underdetermined but linear problem:

v ¼ Ljþ e ð3Þ

where j is a vector representing the current dipoles at all the Nd

locations simultaneously, and L is the lead field matrix linking the

source amplitudes j to the electrical potential v. If the source
orientation is left free, then j ¼ ½Yj t

1
Yj

t

2 NYjNd
�t , where Yji ¼ ½ jx;i

jy;i jz;i�
t
encodes both orientation and amplitude of the ith current

dipole. Otherwise, for orientated sources, j = [ j1 j2 . . . jNd
]t, where

each ji specifies only the amplitude of the ith current dipole.

For discrete data time series with Nt time bins, Eq. (3) can be

expressed as a multivariate linear model:

V ¼ L Jþ e ð4Þ

with V = [v1 v2. . .vNt
], J= [ j1 j2. . .jNt

] and e = [e1e2. . .eNt
] where

vl, jl and el are the potential, current dipoles and additive noise at

the lth time instant.

bWeighted minimum normQ and Bayesian solutions

As stated in the Introduction, the source localisation problem is

intrinsically ill-posed. With the DL approach, we face the linear but

largely under-determined problem expressed in Eqs. (3) or (4). One

common approach to solve this problem is the bWeighted

Minimum NormQ (WMN) solution or Tikhonov regularisation

method (Tikhonov and Arsenin, 1977), where the a priori

constraints can be interpreted in a Bayesian sense.

The WMN solution constrains the reconstructed source distri-

bution byminimising a linear mixture of someweighted normtHjt
of the source amplitudes j and the residuals of the fit. Assuming the

noise component e is Gaussian e � N 0;Ceð Þ with a known

covariance matrix Ce, the regularised problem is expressed as:

ĵj ¼ argmin
j

tC	1=2e Lj	 vð Þt2 þ ktHjt2
n o

ð5aÞ

or

ĵj ¼ argmin
j

Lj	 vð ÞtC	1e Lj	 vð Þ þ kjt HtHð Þj
� �

ð5bÞ

where the hyperparameter k expresses the balance between fitting

the model tCe
	1/2 (Lj 	 v)t and minimising the a priori constraint

tHjt.
The solution of Eqs. (5a) and (5b) for a given k is:

ĵj ¼ Tv ð6Þ

where

T ¼ LtC	1e Lþ k HtHð Þ
� �	1

LtC	1e ð7aÞ

T ¼ HtHð Þ	1Lt L HtHð Þ	1Lt þ kCe

h i	1
ð7bÞ

using the matrix inversion Lemma.

The important and useful connection with Bayesian estimates

of the sources rests on Gaussian assumptions, when the condi-

tional expectation or posterior mean of the source amplitudes j is

given by:

E jjvð Þ ¼ LtC	1e Lþ C	1j

h i	1
LtC	1e v ð8aÞ

E jjvð Þ ¼ CjL
t LCjL

t þ Ce
� �	1

v ð8bÞ
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where Cj is the prior covariance of the sources. Comparing Eqs.

(8a) and (8b) with Eqs. (7a) and (7b) provides the motivation for

choosing forms of H, where

k HtHð Þ ¼ C	1j ð9Þ

Solutions (7a) (7b) (8a) (8b) rely on the precise knowledge of

Ce and Cj and, for the case where Cj
	1 tends to zero (flat priors),

they represent the bMaximum Likelihood solutionQ; see Appendix

A.1.

In Eqs. (5a) and (5b), a single constraint H was employed. One

could generalise this approach to include a whole series of

constraints or priors H1, H2,. . ., leading to the bgeneralised
(weighted) minimum normQ (gWMN):

ĵj ¼ argminftC	1=2e Lj	 vð Þt2 þ k1tH1jt
2

þ k2tH2jt
2 þ k3tH3jt

2 þ N g ð10aÞ

or

ĵj ¼ argminf Lj	 vð ÞtC	1e Lj	 vð Þ

þ jt k1R1 þ k2R2 þ k3R3 þ Nð Þjg ð10bÞ

with Rk = Hk
tHk. As in Eq. (9), we also assume that the source

amplitudes j follow a Gaussian distribution with zero mean:

j / N O;Cj

� �
ð11Þ

where the precision matrix Cj
	1 (precision is the inverse of

variance) is expressed in terms of a linear basis set, specified by Ri:

C	1j ¼ k1R1 þ k2R2 þ k3R3 þ N ð12Þ

With the gWMN approach, the precision of the source distribution

j can thus be modelled via a set of a priori defined basis precisions.

By increasing the precision at some locations, the corresponding

sources are forced to be closer to zero. In some instances, the priors

can be so precise that they preclude the solution from spanning

certain subspaces of the solution space, i.e., if Cj was 0 somewhere

along its leading diagonal, the regularisation or penalty would be

infinite at that location and the conditional estimate (8a) and (8b)

would be zero. For example, the prior variance of source activity in

white matter can be set to 0. In these situations, it is computation-

ally more efficient to remove these bimpossibleQ subspaces before
computing the WMN solution.

The WMN solution (6) depends on the hyperparameter k. The
hyperparameter k balances the relative contribution of fitting the

model Ce
	1/2 (Lj 	 v) (or likelihood of the data) and the constraint

on the solution Hj (or a priori on the data). As k varies, the

regularised solution ĵk changes in a way that depends on k.
Therefore, the choice of k is crucial. As a general rule, the degree of

regularisation (expressed by k) should increase with the level of

noise in the data, i.e., the importance of the priors should increase as

the model fit decreases, but this rule is not sufficient to estimate k.
A heuristic way to display and understand the properties of ĵk is

to plot the (weighted) norm of the regularised solution tHĵkt
2,

versus the norm of the residual vector tCe
	1/2 (Lĵk 	 v)t2 for

different values of k. The curve obtained usually has an L shape (in

ordinary or double logarithmic scale), hence its name bL-curveQ. A
satisfactory k would lie close to the inflection of the L-curve

(Hansen, 1992). A major disadvantage of the L-curve approach is

that the solution must be calculated for a large number of values of
k to find an appropriate regularisation level. Moreover, this L-

curve approach cannot be extended to estimate multiple hyper-

parameters such as in Eqs. (10a), (10b) and (12). This would

require an extensive search in the hyperparameter space to

determine the inflection in a hyperplane (Brooks et al., 1999).

In Phillips et al. (2002b), we introduced an iterative procedure to

estimate k while calculating ĵ for the simple case of one hyper-

parameter. In the following section, we extend this approach to solve

the generalised WMN problems (10a) and (10b) with multiple

hyperparameters thereby allowing noise to be accommodated by

balancing the likelihood and priors of the data, and determining the

relative contribution of different priors on the data.

Hierarchical parametric empirical Bayes approach

The source localisation problems (3) or (4) can be expressed in

the context of a two-level hierarchical bParametric Empirical

BayesQ (PEB) model, by

v ¼ Lj þ e1
j ¼ 0 þ e2

�
ð13Þ

where both e1 and e2 follow a Gaussian distribution with zero

mean:

e1 / N 0;Ceð Þ ð14aÞ

e2 / N 0;Cj

� �
ð14bÞ

Within this framework, the covariance matrices Ce and Cj, which

are equivalent to those in Eqs. (5a) (5b) (6) (7a) (7b) (8a) (8b) (9)

(10a) (10b) (11) (12), can be modelled as a linear combination of

covariance components:

Ce ¼ l1Ce1;1 þ l2Ce1;2 þ N ð15aÞ

Cj ¼ m1Ce2;1 þ m2Ce2;2 þ N ð15bÞ

and using an bExpectation MaximisationQ (EM) algorithm, the

hyperparameters li and mi can be estimated jointly, as shown in

Appendix B (Friston et al., 2002). Having identified Ce and Cj, j

can be calculated easily with Eqs. (8a) and (8b).

With the 2-level approach, the unknown parameters j are

assumed to be Gaussian variables with zero mean (shrinkage

priors), as in Eq. (11). Regional variance can now be increased to

render some locations more likely to be active. Indeed, a source

with a larger variance is less constrained, thus more likely to be

different from zero. Note that in Eqs. (15a) and (15b), we have a

linear expansion of the covariance Cj as opposed to the precision

Cj
	1 (cf. Eq. (12)). Both formulations can be accommodated by

EM. We will use Eqs. (15a) and (15b), noting that the prior

covariance components Ce2
,i can be constructed to preclude

unlikely sources.

Eq. (15b) allows a more accurate approximation of the source

covariance matrix Cj when its exact form is not known a priori. A

variety of source constraints can be introduced simultaneously but,

more importantly, the relative weight of each constraint is not fixed.

This feature is particularly interesting when spatial coherence

constraints and explicit location priors are used together. For

example, a few sources can be specified as a priori more active:

this can be donemanually (from prior knowledge or past experience)

or derived from haemodynamic measures of brain activity, such as

thresholded statistical maps obtained from fMRI data. In this case, a
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set of activated regions can be identified. Because of the slowness of

the haemodynamic response, these location priors carry no (or very

little) temporal information (i.e., whether they have been simulta-

neously or successively active). With Eq. (15b), each location prior

can be introduced separately with its own hyperparameter mi.
Similarly, the noise covariance matrix Ce can be modelled more

accurately by Eq. (15a). For example, independent and uniform

noise over the electrodes can be introduced by defining Ce1
,1 as the

identity matrix. Covariance between close or distant electrodes can

be introduced in Ce1
,2; this can generally be estimated from the

data (e.g., within the pre-stimulus interval of the ERP). If a subset

of electrodes picked up more noise than the others, this can also be

modelled in Ce1
,3. The different noise covariance components are

then balanced through the hyperparameters li.

By carefully selecting the EEG (or ERP) episode for which the

hyperparameters are assumed stationary and the sources calculated,

the EM algorithm should favour the relevant priors by increasing

their hyperparameter and ignore the others by rendering their

hyperparameters very small.

Restricted maximum likelihood solution

In practise, the system of Eqs. (13) (14a) (14b) (15a) (15b) is

solved by minimising the bRestricted Maximum LikelihoodQ
(ReML) objective function (see Appendix A.2). The two-level

model of Eq. (13) can be collapsed into a single equation (see

Appendix B.2):

v ¼ L e2 þ e1 ð16Þ

similar to Eq. (3). Then, from Eqs. (14a) and (14b), we can

establish the relationship between the covariance matrices of the

data, sources and noise:

E vvtf g ¼ Cv ¼ L CjL
t þ Ce ð17Þ

where Cv is the covariance matrix1 of the data v.

With the linear expansion of the matrices Ce and Cj, as defined

in Eqs. (15a) and (15b), Eq. (17) becomes:

Cv ¼
X

miðL Ce2 ;i L
tÞ þ

X
li Ce1;i ð18Þ

where only the hyperparameters li and mi are unknown. The

problem can be solved iteratively using the algorithm described in

Appendix B.3. To get a very precise estimate of the hyper-

parameters li and mi, one can use multiple observations of EEG

activity to calculate the covariance matrix of the data, Cv c vvt.

This sample covariance can be based on successive time bins

assuming that the noise and prior covariances are locally stationary.

Although not pursued in this paper, it is also possible to use

instantaneous estimates of Cv sampled from the same time bin of

multiple trials.

Spatial constraints and priors

Anatomical and physiological information derived from other

imaging modalities are generally used to constrain the solution
1 We refer to Cv as a bcovariance matrixQ but, strictly speaking, it is just
a second order matrix. Covariance matrices are second-order matrices of

mean centered variables, whereas our variables were only baseline

corrected (set to 0) at the beginning of the time series.
in the spatial domain. A two step approach was presented in

Phillips et al. (2002a): First, the source distribution is modelled

by a set of spatial basis function (bhardQ constraints specified

with infinite precision), then further bsoftQ constraints are

introduced through H as in Eq. (9) for the classic WMN

formulation, or through Ce2,i
as in Eq. (15b) for the hierarchical

PEB approach. The sources priors, expressed as (co)variance

matrices, are thus employed in two different ways: the anatomical

priors are used to define spatial basis functions, while other priors

enter in a probabilistic way. The orientation and location of the

dipoles are embodied in the lead field matrix L.

Spatially informed basis functions

The grey matter density at each dipole location can be

represented by a diagonal matrix G (Nd � Nd) encoding the prior

variance in signal at different points in space. A convolution matrix

D (Nd � Nd) is defined to impose spatial coherence among the

dipoles. With these matrices G and D a set of bspatially Informed

Basis FunctionsQ (sIBF) B can be constructed from a prior

covariance matrix C, where

C ¼ Gt=2DtDG1=2 ð19Þ
Informed basis functions B are then obtained as the eigenvec-

tors of C or, equivalently, by using the singular value decom-

position of C1/2 = DG1/2:

USWt ¼ svd DG1=2

 �

ð20Þ

Columns of W corresponding to normalised (by their mean)

eigenvalues S2 greater than unity are retained to form the basis set

B. Selecting these eigenvectors ensures a high mutual information

between the signal before and after projection onto the basis set

(under prior assumptions). In terms of the Bayesian formulation,

this is equivalent to setting the prior variance of spatial modes

(corresponding to the bminorQ eigenvectors) to zero.

With B the source distribution j can be expressed as:

Btj ¼ k) j̃j ¼ Bk ð21Þ

where k is a vector of size Nk � 1 with Nk b Nd. In fact j̃ is the

source distribution restricted to the subspace spanned by the

columns of B, i.e., the sIBF. By considering j̃ as a spatially

constrained source distribution, and substituting Eq. (21) into Eqs.

(10a), (10b) or (13), the unknowns become k and the size of the

solution space is reduced from Nd to Nk.

The linear problem (3) (and Eq. (4)) can be rewritten in terms of

k (and K) instead of j (and J):

v ¼ LB k þ e ð22aÞ

V ¼ LB K þ e ð22bÞ

where LB= LB. With this change of variables from j to k, the

covariance matrix of the sources Cj has to be projected by B to

obtain the covariance matrix Ck:

Ck ¼ BtCjB ð23Þ

and Eq. (18) becomes

Cv ¼
X

mi LBCBe2 ;iL
t
B

� �
þ

X
liCe1 ;i ð24Þ

where CBe2,i
= BtCe2

,iB.
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Soft spatial constraints

The probabilistic constraints enter as the matrices Ce2
,i as in Eq.

(15b). Here we will consider three types.

First, the major modes, retained to form the basis set Ck, are

entered into Eq. (15b) by putting their associated eigenvalues on

the main diagonal of Ce2
,1. These constraints imply that the basis

function with the highest mode (i.e., with the lowest spatial

frequencies) is more likely to represent the source activity, ensuring

a smooth solution.

To ensure that sources are likely to influence the electrical

potential equally at the electrodes irrespective of their depth (Grave

de Peralta Menendez and Gonzalez Andino, 1998; Ioannides et al.,

1990; Pascual-Marqui, 1999), deeper sources are given a larger a

priori variance than superficial sources. The depth is indexed by

the norm of the lead field for each source: the covariance

component Ce 2
,2 of Cj is defined by the diagonal matrix

(diag(LtL))	1.

Finally, location priors can be introduced on leading diagonal

matrices Ce2
,i (where i N 2) with elements that reflect the prior

probability of whether the source is active or not. Here we only

allow values of 0, the variance is to be left unchanged, or 1, the

variance is increased according to the value of the corresponding

hyperparameter mi.
Applications

In this section, the solution introduced in the previous section is

assessed. We first use a simplified model with synthetic data to

evaluate the solution proposed in comparison with more bclassicQ
solutions. Afterwards, the method is applied to a real data set: ERP

data recorded from a normal subject and a realistic head model

based on a structural MRI scan.

The solution combining the ReML estimation of the hyper-

parameters and constraining the solution space with bspatially
Informed Basis FunctionsQ (sIBF) will be denoted bEM-IBF

solutionQ.

Comparison methods

The EM-IBF approach was compared with two other com-

monly employed approaches: a Weighted Minimum Norm (WMN)

solution and a Maximum Smoothness (MS) solution. For both

cases, we use an EM scheme to estimate the hyperparameters;

therefore, they will be named bEM-WMNQ and bEM-MSQ.
The EM-WMN approach is similar to the EM-IBF solution,

except that the solution space was not constrained a priori by the

sIBF. The solution is obtained with Eqs. (8a) and (8b), after the

noise and source covariance matrices have been estimated with the

ReML procedure. The depth weighting constraints and the location

priors were the same for EM-IBF and EM-WMN, but the spatial

coherence constraint was defined with a convolution matrix, the

same one used to calculate the sIBF (see bSpatially informed basis

functionsQ section) for EM-WMN.

The MS solution is simply a particular case of Eqs. (5a) and

(5b), (7a) and (7b). The solution space is not constrained a priori by

the sIBF and the weighting matrix H is defined as a weighted

three-dimensional Laplacian, H = MW. W is a leading diagonal

matrix defined by (diag(LtL))1/2, which is the inverse of the square

root of the depth weighting used for the EM-IBF and EM-WMN

solutions. The Laplacian matrix M is a regularised discrete three-
dimensional second-order derivative operator defined as in

Pascual-Marqui (1999). Thus, Cj is modelled by a single term

Ce2
,1 = (HtH)	1 = (WtMtMW)	1, and only one mi is estimated

with EM-MS. In the bclassicQ implementation of the MS solution,

there is no means to include priors other than the maximum

smoothness constraint; therefore, no location priors were used in

this assessment. In the literature (Pascual-Marqui, 1999; Pascual-

Marqui et al., 1994), the MS solution is usually implemented in the

LORETA software (Pascual-Marqui, 1998) for the ideal noise-free

case, using Eqs. (7a) and (7b) with k Y 0 (although Pascual-

Marqui, 1995 has suggested employing noise regularisation by

taking k p 0). We reproduced this k = 0 analysis in our simulations

and refer to it as bMS with no regularisationQ.
The main objective of these simulations was to establish the

face and construct validity of the ReML hyperparameter estimates.

We hoped to show that the ReML estimators were sensitive to

different levels of noise variance and behaved adaptively and

appropriately. Furthermore, we wanted to establish this face

validity using a series of qualitatively different priors.

Simulations with a simplified model

For a thorough comparison of the various methods introduced

in this paper, we use a simplified head model with synthetic data.

With this model and data, we are able to simulate different level of

noise as well as different types of locations priors (accurate vs.

inaccurate).

Simplified model and synthetic data

The source model consisted of 1716 dipoles distributed

uniformly on an horizontal grid (with a maximum of 24 sources

along a radius), within a three-sphere shell model. Twenty-seven

electrodes were placed on the upper hemisphere according to a

pseudo 10–20 electrode setup; see Fig. 1. The orientations of

each source were fixed and the lead-field L for all the sources

calculated analytically (Ary et al., 1981). The density of grey

matter was assumed to vary over the dipole location as shown in

Fig. 1.

In the simulations presented below, the spatial coherence

between the sources was modelled by the matrix D (from

bSpatially informed basis functionsQ section) by using a Gaussian

function, with r = 2� bgrid sizeQ. With this spatial coherence, the

solution space was reduced from 1716 independent sources to 207

orthogonal sIBF.

A set of 200 locations were selected randomly to assess the

efficiency of the methods presented in bHierarchical parametric

empirical Bayes approachQ and bComparison methodsQ sections. At
each of these locations, an instantaneous distributed source set jo
was generated as a set of connected dipoles within a 1.5 grid-size

radius of a bcentralQ dipole. On average, each source comprises 8.7

dipoles; see Fig. 2. Simulated location priors centered as a disk of 4

grid-size radius, i.e., on average 45 sources. Selected sources were

defined as being a priori active. In the simulations presented below,

we used three kinds of location priors: (1) accurate priors, centred

on the active source set, (2) close, inaccurate priors, located

between 6 and 16 grid-size from the truly activated source, and (3)

distant, inaccurate priors, between 24 and 48 grid-size from the

truly activated source; see Fig. 2. The prior covariance components

on the sources Ce2
,i were normalised such that the Frobenius norm

of each matrix, projected onto the subspace spanned by the sIBF,

was unity.



Fig. 1. Simplified head model: 1716 dipoles within a three-sphere shell model with 27 electrodes (left), and bgrey matterQ density over the source locations

(right).
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Each source vector jo was modulated over time to generate a

time series Jo. The time course of the resulting EEG is shown in

Fig. 3. Data with different signal-to-noise-ratio (SNR) were

obtained by adding scaled white noise e to the noise free data V =

LJo + e. Three levels of noise were used by adopting a SNR of 4,

12 and 100. The SNR is defined here as the ratio between the norm

of the signal (at its maximum) and the norm of the added noise

component. With an SNR at 100, data are almost noise free, still

the noise variance is not zero and should be estimable. The

electrical potential at the electrodes, over time, with these three

SNRs is shown in Fig. 3.

Assessment criteria

Two criteria were used to compare the performance of the

different methods (EM-IBF, EM-WMN and EM-MS):

bLocalisation ErrorQ (LE) and bRoot Mean Square ErrorQ (RMSE)

(see also Phillips et al., 2002a,b). The LE is defined as the distance

between the location Yrr of the maximum (absolute value) of the
Fig. 2. Example of a source used in the simulations (top left) with the

corresponding accurate location priors (top right), as well as inaccurate

location priors (close, bottom left, and distant, bottom right).
reconstructed source amplitudes jr and the location Yro of the

original source set jo. To obtain a single value of LE for the

estimated and actual distributed source (Jo, Jr) over time, the

following procedure was adopted: nine time points around the

maximum of the original data were considered. For this subset of

reconstructions jr,i, the LEi was calculated. The largest value of LEi

was retained as the bworst case LEQ for (Jo, Jr).
The RMSE is defined as the Frobenius norm of the difference

of the scaled distributions:

RMSE ¼ tJr4	 Jo4tFro ð25Þ

where Jr* = Jr / jr,max and Jo* = Jo / jo,max where jo,max represents

the amplitude of the largest (absolute value) dipole in Jo. This

ensures that the Root Mean Square Error measures the discrepancy

between the original and reconstructed source distributions without

any global scaling effect.

The bLocalisation ErrorQ (LE) provides a measure of the

localisation accuracy of the reconstruction method, a small value of

LE indicates that the location of the original source was recovered

well. The bRoot Mean Square ErrorQ (RMSE) measures the

bgoodness of fitQ of the reconstruction. A small value of RMSE

indicates a small discrepancy between the original and recon-

structed source distributions. The RMSE is only useful to further

compare two solutions that have approximately the same LE. If

both solutions have almost the same LE, the one with the smaller

RMSE would be preferred as the reconstructed source is then more

focal. A very focal reconstructed source with a large LE may have

a smaller RMSE than a blurred reconstructed source with a small

LE, but the latter solution, although over-smoothed, provides at

least some location information.

Each simulation condition (SNR, location prior) was assessed

for 200 different source configurations, a bLE boundQ (maxLE)

was calculated from the LE of all the 200 reconstructions, such that

80% of the sources were recovered within this bound. The RMSE

from the 200 sources was summarised by its mean.

Simulations

In this subsection, we present the results of the reconstructions

for the three SNRs and for the four different location priors:

without any location priors, with accurate location priors, with

inaccurate location priors, and with both accurate and inaccurate

location priors. Figs. 4–6 show exemplar reconstructions using the

EM-IBF, EM-WMN and EM-MS solutions, respectively. The

source set and location priors used correspond to those shown in



Fig. 3. Synthetic data: original data without noise (top left). Same data with added noise at different SNRs: 4 (top right), 12 (bottom left), 100 (bottom right).

Fig. 4. Reconstructed sources with the EM-IBF method (SNR = 12): no location priors (top left), with accurate location priors (bottom left), with inaccurate

close priors (top middle), with inaccurate distant priors (bottom middle), with both accurate and close inaccurate priors (top right), and with both accurate and

distant inaccurate priors (bottom right).
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Fig. 5. Reconstructed sources with the EM-WMN method (SNR = 12): no location priors (top left), with accurate location priors (bottom left), with inaccurate

close priors (top middle), with inaccurate distant priors (bottom middle), with both accurate and close inaccurate priors (top right), and with both accurate and

distant inaccurate priors (bottom right).
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Fig. 2. The solutions were applied to the EEG data shown in Fig. 3,

with the intermediate SNR (SNR = 12).

LE and RMSE

Tables 1 and 2 summarise the 80% LE bound and mean RMSE

for the three solutions (EM-IBF, EM-WMN and EM-MS), the three

SNRs and the four location priors.

It is clear that, in general, the EM-IBF solution is better than the

EM-WMN. The EM-MS gives slightly better results than the EM-

IBF solution without accurate location priors but, if the data are

assumed to be noise-free, i.e., without the noise component in Eq.

(17), the MS solution simply does not work.

The introduction of accurate priors dramatically reduces the LE

and RMSE for both EM-IBF and EM-WMN but the EM-WMN

solution is still outperformed by the EM-IBF solution. If only

inaccurate priors are introduced, then the solutions are inappropri-

ately biased towards those inaccurate priors, giving meaningless

results. On the contrary, the combination of accurate and inaccurate

location priors leads to a precise reconstruction, as the inaccurate

location priors are effectively discarded in the ReML procedure.

The performance of all methods increases with the SNR.
Fig. 6. Reconstructed sources with the MS method (SNR = 12): with EM

regularisation (left), assuming the data are noise-free (right).
Hyperparameters estimates

The estimation of the first hyperparameter representing the

estimated noise variance [corresponding to l1 in Eqs. (15a) and

(15b)] was relatively stable throughout all the simulations, as seen

in Table 3. These estimated values reflected accurately the actual

variance of white noise added for the simulations, i.e., 2.3 (low

SNR), 0.26 (medium SNR) and 0.0037 (high SNR). Note that it is

difficult to interpret the value of the hyperparameters as their

babsoluteQ values depends on the nature and scaling of the

covariance components, sIBF and lead field matrix. Therefore,

only their relative values are useful.

Although the estimated noise variance is, on average, accurate,

the standard deviation of its estimate is much smaller (at least one

order) when accurate location priors are used. The inclusion of

accurate location priors seems to help the partioning of signal

variance into its components, namely source activity and additive

noise. For some sources, the noise variance was greatly over-

estimated.

Tables 4 and 5 summarise the mean value and standard

deviation of the hyperparameters relative to the source covariance

for the EM-IBF and EM-WMN solution. The values of the

hyperparameter relative to the source variance in the EM-MS

method are 0.52 F 0.065, 0.56 F 0.26 and 0.6 F 0.46 for the low,

medium and high SNR, respectively.

Some hyperparameters are negative. This simply means that the

corresponding covariance component was used to reduce the (co-)

variance of the sources. The combination of all the covariance

components should always lead to a positive definite (co-)variance

matrix estimate. In general, the hyperparameter means decrease as

the SNR increases, except when inaccurate location priors are used

in isolation. The use of accurate location priors has a large

influence on the other priors: Indeed, the hyperparameter corre-

sponding to the accurate location priors is several orders larger than

any other hyperparameter (corresponding to the spatial coherence,

depth or inaccurate location priors).



Table 1

Localisation error (maxLE) for the three methods, the three SNRs and the four location priors used (none, accurate, inaccurate, and both accurate and

inaccurate)

SNR EM-IBF EM-WMN EM-MS

Low Medium High Low Medium High Low Medium High

No priors 7 5 3 6 4 10 4 3 2

42 42 29

Accurate priors 2 2 1 4 4 4 – – –

Inaccurate priors 13 12 10 12 15 13 – – –

31 28 28 34 32 32

Accurate and inaccurate priors 2 2 1 4 4 4 – – –

2 2 1 4 4 4

The LE is expressed as the maximum LE required to recover at least 80% of the sources within this bound. Units are in grid element size. The second line of

maxLE for the MS solution corresponds to the case where no noise regularisation was applied, i.e., the data were considered noise-free. When inaccurate priors

are used, the first (resp. second) line of maxLE corresponds to close (resp. distant) inaccurate priors.
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Apart from the hyperparameter corresponding to the accurate

location priors, all the other hyperparameters vary over a relatively

large range and can have positive or negative values depending on

the source, the noise and priors used. Nevertheless, with some

exceptions, the standard deviation of the hyperparameter estimates

decreases as the SNR increases.

Real source reconstruction

The method described in the previous sections was applied to a

set of somatosensory-evoked response data. EEG data were

acquired from a healthy subject (male, right-handed). Fifty-nine

electrodes were placed on the scalp according to the extended 10–

20 system and recorded with respect to a cephalic reference. All

channels were re-referenced to an average cephalic reference. Extra

channels were used to record the electro-occulogram (horizontal

and vertical), allowing trials contaminated by EOG artefact to be

rejected. One thousand five hundred electrical stimulations were

applied to the right median nerve. The stimulus onset asynchrony

(SOA) was selected randomly (uniform distribution) between 400

and 500 ms. The sampling rate was 1000 Hz and the data were

filtered between 0.05 and 40 Hz. The continuous EEG data were

epoched from 100 ms pre-stimulus to 156 ms afterwards. Epochs

exhibiting EOG or other artefact were rejected manually. ERP data

were obtained by averaging the remaining epochs; see Fig. 7.

Electrode locations were recorded using a three-dimensional

digitiser (Polhemus Fastrak, 2003) and the structural MRI (sMRI)

of the subject was used to build the head and source model. The

grey-white matter interface was extracted from the sMRI with the

bAnatomistQ software (Rivière and Papadopoulos-Orfanos, 2003;
Table 2

Mean RMSE for the three methods, the three SNRs and the four location priors

SNR EM-IBF E

Low Medium High L

No priors 35.6 29.5 24.1 4

Accurate priors 12.4 11.7 9.2 1

Inaccurate priors 24.0 22.9 19.9 2

29.3 28.1 24.9 3

Accurate and inaccurate priors 12.6 11.8 9.3 1

12.4 11.7 9.3 1

The second line of maxLE for the MS solution corresponds to the case where no

When inaccurate priors are used, the first (resp. second) line of maxLE correspon
Rivière et al., 2000) and 15,991 sources were uniformally

distributed on this surface. The forward problem was then solved

using an approach described by Spinelli et al. (2000): The head and

source model were mapped to a spherical system (three sphere

shell model) by defining warping operations that transformed the

head model to a best-fitting sphere. The forward solution was then

calculated for each dipole using an analytical solution (Cuffin and

Cohen, 1979). Spatially informed basis functions (sIBF) were

calculated as described in bSpatially informed basis functionQ: the
prior covariance matrix G was the identity matrix and the

convolution matrix D was based on a Gaussian function (with a

kernel of 10 mm, effectively defining the minimum radius of an

activated cortical patch) of the distance between dipoles on the

cortical surface. The 15,991 independent sources were modelled by

669 sIBF. To account for possible error in source orientation, each

source comprised one dipole perpendicular to the surface, plus two

orthogonal dipoles oriented tangentially to the local surface. This is

equivalent to the case where source orientation is left free (see

bTheoryQ section): j ¼ ½Yj t
1
Yj t
2 NYj t

Nd
�t , where Yji ¼ jx;i jy;i jz;i�

t
h

but

here each source Yji i is rotated such that Yji ¼ j8;i j==1;i j==2;i�
t

h
.

For the source reconstruction, we focused on the N20 wave

because its source has been previously shown to be located in the

primary sensory cortex (Desmedt and Cheron, 1981). We used a

time window extending from 20 to 25 ms around the N20 peak (at

23 ms). Fig. 8 shows the N20 potential distribution over the actual

scalp surface of the volunteer, as estimated with a spherical spline

interpolation (Perrin et al., 1989).

For the reconstruction, the noise was modelled by two

covariance components: Ce1
,1 was an estimate of the noise

covariance based on the averaged pre-stimulus ERP signal
used (none, accurate, inaccurate, and both accurate and inaccurate)

M-WMN EM-MS

ow Medium High Low Medium High

0.3 33.9 29.3 50.0 39.1 29.5

35.5 35.4 35.0

4.0 13.7 11.6 – – –

4.5 23.5 21.1 – – –

3.0 31.6 27.7

3.9 13.2 11.7 – – –

4.0 13.6 11.6

noise regularisation was applied, i.e., the data were considered noise-free.

ds to close (resp. distant) inaccurate priors.



Table 3

Mean value and standard deviation of the hyperparameters relative to the noise component

SNR Without accurate location priors With accurate location priors

Low Medium High Low Medium High

EM-IBF 2.3 F 0.14 0.26 F 0.038 0.0059 F 0.018 2.3 F 0.04 0.26 F 0.0065 0.0037 F 0.00011

EM-WMN 2.3 F 0.15 0.26 F 0.038 0.0082 F 0.047 2.3 F 0.04 0.26 F 0.0065 0.0037 F 0.00012

EM-MS 2.3 F 0.14 0.26 F 0.026 0.0042 F 0.0032 – – –

The values obtained were similar to the actual variance of the added noise component, i.e., 2.3 (low SNR), 0.26 (medium SNR) and 0.0037 (high SNR). The

precision of this estimate depended mainly on the presence or absence of accurate location priors. Therefore, the simulations without any location priors and

with inaccurate location priors are collapsed together in the category bsolutions without accurate location priorsQ. Similarly, results obtained bwith accurate

location priorsQ consider the two simulations with accurate location priors, with and without inaccurate location priors.
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(effectively the covariance of the pre-stimulus ERP data), and Ce1
,2

was an identity matrix. For the source covariance constraints Ce2
,i,

we used the same constraints as in bSoft spatial constaintsQ section,
namely spatial coherence and depth constraints. The Ce1

,i and

Ce2
,i, projected on the sIBF subspace, were normalised to unit

Frobenius norm. To constrain the reconstructed sources to be

approximately orthogonal to the cortical surface, the variance of

the tangential dipoles was reduced by a factor of 0.2588

[corresponding to sin (158)] relative to the dipole orthogonal to

the cortical surface. This means the source orientation is allowed to

vary slightly around the estimated optimal direction, i.e., perpen-

dicular to the extracted cortical surface.

The reconstruction was first performed without any other

location priors. Fig. 9 shows the norm of the reconstructed activity

at each location, thresholded at 2/3 of its maximum. As expected,

activity is found in the left hemisphere, contralateral to the

stimulus. The maximum of activity was found on the posterior

bank of the central sulcus but there is also some apparently

spurious reconstructed activity in the occipital lobe. The value of

the hyperparameters corresponding to the two noise components

(prestimulus covariance and identity matrices) were 9.738 and

0.104, respectively. The values of the source covariance compo-

nents (spatial coherence and depth) were 107.1 and 99.76,

respectively.

A location prior was then introduced to further constrain the

reconstruction. The region around the central sulcus, in both

hemispheres, was selected and extracted with the electronic

stereotactic brain atlas bWFU PickatlasQ (Maldjian et al., 2003)

(see Fig. 10). The diagonal elements of the third prior covariance

constraint, corresponding to dipoles within the highlighted area

were set to 1, and the others to 10-6. The a priori variance of these
Table 4

Mean value and standard deviation of the hyperparameters pertaining to the sour

SNR Spatial coherence, S2

No priors Low 	0.65 F 1.6

Medium 	0.43 F 1.3

High 	0.16 F 1.1

Accurate priors Low 0.015 F 0.038

Medium 0.0042 F 0.0068

High 0.00014 F 0.00026

Inaccurate priors Low 	0.57 F 1.5

Medium 	0.41 F 1.2

High 	0.17 F 0.96

Accurate and inaccurate priors Low 0.016 F 0.045

Medium 0.0046 F 0.0096

High 0.00014 F 0.00033

The values of the single hyperparameters in the EM-MS method are 0.52 F 0

respectively.
selected sources could thus be increased through the corresponding

hyperparameter [m3 in Eq. (24)]. Note that this constraint will only

be used if the data support it and give a suitably large ReML

estimate of m3.
With this extra source constraint, the reconstructed activity

showed a single maximum on the posterior side of the central

gyrus. Fig. 11 shows the norm of the reconstructed activity at

each location, thresholded at 2/3 of its maximum. The source

with maximal amplitude is represented by the yellow arrow

highlighting its location and orientation. The activity of the

source with maximum norm is mostly determined by its

orthogonal dipole. The two tangential dipoles are still useful as

they allow the source to deviate by 1.458 from the orthogonality

to the cortical surface. The value of the hyperparameter

corresponding to the location prior was 46.74 and the other

hyperparameters were approximately the same as without location

priors.

Discussion

The hierarchical PEB and ReML (EM) solutions presented here

seem a good approach to EEG source localisation. The simulation

with synthetic data and a simplified model showed that:

! In all cases, the noise variance estimate was accurate on

average;

! The localisation error (LE) and Root Mean Square error

(RMSE) were greatly reduced by the introduction of an

accurate location prior.

! Inaccurate location priors could mislead the solution but if

accurate and inaccurate location priors were used simultane-
ce variance for the EM-IBF solution

Depth constraint Accurate location Inaccurate location

2.5 F 3.7 – –

1.9 F 3.0 – –

1.2 F 2.2 – –

	0.058 F 0.087 4.5 F 1.1 –

	0.015 F 0.017 2.6 F 0.59 –

	.00054 F 0.00073 1.8 F 0.61 –

2.2 F 3.5 – 1.2 F 4.7

1.7 F 2.7 – 4.6 F 16

1.1 F 2.0 – 13 F 41

	0.06 F 0.11 4.6 F 1.1 	0.037 F 0.093

	0.016 F 0.025 2.7 F 0.61 	0.02 F 0.038

	0.00054 F 0.00095 1.8 F 0.59 	0.00061 F 0.0031

.065, 0.56 F 0.26 and 0.6 F 0.46 for the low, medium and high SNR,



Table 5

Mean value and standard deviation of the hyperparameters pertaining to the source variance for the EM-WMN solution

SNR Spatial coherence Depth constraint Accurate location Inaccurate location

No priors Low 	0.5 F 1.9 6.8 F 14.0 – –

Medium 	0.35 F 1.7 5.6 F 12.0 – –

High 	0.058 F 1.3 3.1 F 8.8 – –

Accurate priors Low 0.016 F 0.043 	0.2 F 0.32 16 F 4.1 –

Medium 0.0073 F 0.0097 	.072 F 0.076 9.1 F 1.9 –

High 0.00016 F 0.00032 	0.0016 F 0.0026 6.9 F 1.6 –

Inaccurate priors Low 	0.39 F 1.7 5.6 F 13 – 4.7 F 19

Medium 	0.41 F 1.5 5.5 F 11 – 18 F 72

High 	0.093 F 1.2 2.9 F 7.9 – 70 F 300

Accurate and inaccurate priors Low 0.021 F 0.064 	0.23 F 0.49 16 F 4.4 	0.15 F 0.36

Medium 0.0088 F 0.014 	0.082 F 0.11 9.4 F 2.1 	0.076 F 0.14

High 0.00017 F 0.00034 	0.0016 F 0.0029 6.9 F 1.6 	0.0021 F 0.013

The values of the single hyperparameters in the EM-MS method are 0.52F 0.065, 0.56F 0.26 and 0.6F 0.46 for the low, medium and high SNR, respectively.
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ously, the inaccurate location prior had no effect on the source

reconstruction.

The results obtained in the previous section show that the method

can be used with real data. The orientation constraint is also very

important. Indeed, with a realistic head model and the extracted

cortical surface, the location and orientation of the sources could be

fixed with respect to the estimated surface. Error committed on the

location of a source will not have much influence on the solution of

the inverse problem: the lead fields of two parallel dipoles, placed

close together, are very similar (because of the physical spatial

blurring of the signal on the scalp). On the contrary, error on the

orientation of the source, i.e., the local curvature of the estimated

cortical surface, can have a substantial impact on the inverse

problem: the leadfields of two dipoles at the same location but with

different orientations can be very different (orientation-free sources

are actually modelled by three orthogonal dipoles at the same

location).

In our case, if the sources were constrained to be perfectly or-

thogonal to the extracted cortical surface, the source reconstruction

without the location prior was less accurate and presented more

spurious sources in the parietal and occipital lobe (results not

shown). Bymodelling each source with three orthogonal dipoles and
Fig. 7. Somatosensory ERP data from the 59 channels. At time 0 ms, the

artefact generated by the stimulator is clearly visible. The N20 wave

reaches its maximum 23 ms after the stimulus.
constraining the variance of the two tangential dipoles relative to the

perpendicular one (with respect to the cortical surface), the source is

constrained to be almost orthogonal to the cortical surface but has

freedom to accommodate errors on the curvature of the cortical

surface.
Conclusions

Combining data obtained from different techniques within the

same mathematical framework is a way to overcome the intrinsic

limitations (on temporal or spatial resolution) of individual brain

imaging modalities. Such integration should provide an optimal

solution that harnesses the strengths of each technique. In this

paper, we have outlined a way in which structural and functional

data can be used as priors in the estimation of EEG sources.

Crucially, we have illustrated the role of ReML hyperparameter

estimates in modelling the relative contributions of EEG residuals

and MRI-based priors to the estimation.

The approach adopted in this work does not follow strictly the

scheme of a distributed linear reconstruction. The spatial IBF,

obtained from the anatomical information, allow constraints on the

source localisation to enter in two separable steps. First, the

dimensionality of the problem is reduced by projecting the solution
Fig. 8. N20 potential distribution over the over the scalp surface of the

volunteer. Electrode locations are shown with the black markers .



Fig. 9. Source reconstruction (norm of the sources thresholded at 2/3 of its

maximum and normalised between 0 and 1) without any prior location

constraints.

Fig. 11. Source reconstruction (norm of the sources thresholded at 2/3 of the

maximum and normalised between 0 and 1) with the location prior

constraints showed in Fig. 10. The yellow arrow shows more clearly the

location and orientation of the source reconstruction maximum.
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space onto a subspace spanned by the spatial IBF (sIBF). Secondly,

the subspace problem is solved using a regularised or Bayesian

estimator. In the EM-IBF solution, the sIBF act like a low-pass

spatial filter: They impose the minimum smoothness the solution

should have. Any high spatial frequency activity is treated as noise.

Classical approaches to noise regularisation for distributed linear

solutions are usually empirical and proceed on a trial-and-error

basis: The level of regularisation is adapted manually such that the

ensuing solution and assumed noise component seem reasonable. In

contrast, the ReML procedure was successfully applied to control

the noise regularisation by systematically estimating a regularisation

hyperparameters. With noise regularisation, the IBF, MS and WMN

solutions behaved almost as they did with noise-free data. With no

noise regularisation, the MS solution was affected strongly by noise

and was unable to provide any proper localisation, even for a high

SNR. The maximum smoothing constraint alone is thus not enough

to discount the effect of the noise.

Even at constant SNR, the values of the hyperparameters vary

over a wide range. As the noise component e was similar

throughout the simulations (simple white noise), the value of the

hyperparameters depends on the source configuration and the

distribution of potentials it generates over the scalp. Therefore, any

fixed value of the hyperparameters can lead to suboptimal

solutions. This is an important point and a fundamental motivation
Fig. 10. Location prior used to constrain the source reconstruction. Note

that the prior is encompasses the whole area around the post-central gyrus,

on both hemispheres.
for the adaptive ReML estimates proposed here. For example,

some sources may arise in cortical regions where priors can be

specified very precisely leading to high values of mi. In other

regions, priors may be less informative rendering a smaller value mi
more appropriate . The flexibility afforded by parametrising the

priors in terms of hyperparameters lies in being able to specify the

components of the covariances (Ce and Cj) without fixing their

relative contributions. These contributions are scaled by the

hyperparameters that we estimated by ReML. The advantage of

this approach is that the relative importance of the likelihood of,

and priors on, the solution can be determined empirically. This

affords the prior constraints the latitude to shape themselves in

relation to observation error and each other. One must still be

aware that one cannot assess the intrinsic quality of the priors used

from the solution obtained, i.e., if only inaccurate or incomplete

priors (of any kind) are used, the solution can be inaccurate.

With a realistic head model and an extracted cortical surface

based on the subject’s structural MRI, errors still arise when

estimating the lead field even though the model is anatomically

more accurate. One source of error is the constraint imposed on the

source orientation. If not perfectly accurate, the extracted cortical

surface should be used as an approximation of the real source

orientation. The approach adopted in this paper is an appropriate

compromise between orientation-free and orientation-fixed sources.
Appendix A. A Restricted maximum likelihood solution

A.1. Maximum likelihood solution

Consider a linear stochastic model of the form

y ¼ Axþ r ð26Þ

where A, the model or design matrix, is of size m � n; x, the un-

known vector, is of size n�1; y, the data vector, and r, the residual or
error vector, are of size m � 1 and C, the covariance matrix of

r¼N 0;Cð Þ, is of size m�m. The normal equations of this model

are:

AtC	1A
� �

x ¼ AtC	1y ð27Þ

By solving the normal equations, the bBest Linear Unbiased

EstimateQ (BLUE) is obtained:
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x̂x ¼ AtC	1A
� �	

AtC	1y ð28Þ

where, for any matrix B, B	 denotes an arbitrary generalised

inverse of B, i.e., any solution to BB	B = B. This is equivalent to

maximising the following objective likelihood function (Patterson

and Thompson, 1971):

p yjxð Þ / jCj	1=2e	1
2
y	Axð ÞtC	1 y	Axð Þ ð29Þ

which is equivalent to maximising the function

F y; xð Þ ¼ log p yjxð Þð Þ ¼ 	 1

2
logjCj

	 1

2
y	 Axð ÞtC	1 y	 Axð Þ

þ const ð30Þ

The variance–covariance matrix C is necessary to weight the

observations y according to their variance and to account for their

covariance. There may be a model for this matrix, depending on

hyperparameters h = [h1 h2. . .], but its exact value is not

necessarily known a priori and needs to be estimated as well as x.

A.2. Restricted maximum likelihood (ReML) solution

Assume that the (co-)variance matrix C is a function of the

unknown hyperparameters hi, C = C(q) and h= [h1 h2. . .]. There is
a scheme that allows the simultaneous estimation of x and C(q)
that properly takes into account the loss of degrees of freedom in

the model incurred from estimating x (Harville, 1977) when C(q)
is calculated.

Starting estimates are initially assigned to h. With the current

estimate q̂ , x̂ is estimated by maximising the first likelihood

function (29). Then, an updated estimate of q is calculated from the

current value x̂. The procedure is repeated until convergence of

both x̂ and Q̂.

Harville (1974) showed that this iterative procedure maximises

the following function that has subsequently been named the

bRestricted Maximum LikelihoodQ (ReML) objective function:

p yjx; hð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jAtAj
2pð Þm	njC hð Þj jAtC hð Þ	1Aj

s
e	

1
2
y	Axð ÞtC hð Þ	1 y	Axð Þ

ð31Þ

Maximising Eq. (31) is equivalent to maximising:

F y; x; hð Þ ¼ log p yjx; hð Þð Þ ¼ 	 1

2
logjAtC hð Þ	1Aj 	 1

2
logjC hð Þj

	 1

2
y	 Axð ÞtC hð Þ	1 y	 Axð Þ

þ const ð32Þ

There exists a general iterative approach for estimating x and q
with a linear parameterisation of C, i.e., C(q) =

P
hiGi, where Gi

are n � n symmetric matrices whose elements are known. This

leads to a simple and computationally expedient approach (Har-

ville, 1977), which is formally identical to bexpectation max-

imisationQ (Friston et al., 2002).
Appendix B. Expectation–maximisation algorithm

This second appendix is a summary of the treatment presented

in Friston et al. (2002).

B.1. General EM algorithm

The objective of an Expectation–Maximisation (EM) algorithm

is to maximise the likelihood p( yjh) of the observed data y,

conditional on some hyperparameters y, in the presence of

unobserved variables x:

p yjhð Þ ¼
Z
x

p x; yjhð Þdx ð33Þ

A distribution Q(x) is introduced to approximate p(xjy,h). The
EM algorithm then maximises a lower bound on p( yjh). The

objective function to maximise becomes (the free energy)

F Q; hð Þ:

log p yjhð Þz FðQ; hÞ ¼ log p yjhð Þ

	
Z
x

Q xð Þlog Q xð Þ
p xjy; hð Þ

�
dx

�
ð34aÞ

¼
Z
x

Q xð Þp xjy; hð Þdx	
Z
x

Q xð ÞlogQ xð Þdx

ð34bÞ

The EM algorithm maximises F Q; hð Þ by alternating the bE-
stepQ and the bM-stepQ:

! E-step: maximise F Q; hð Þ with respect to Q(x), while keeping

h constant.

! M-step: maximise F Q; hð Þ with respect to h, while keeping

Q(x) constant.

The maximum in the E-step is obtained when actually Q(x) =

p(xjy, h), at which point, Eqs. (34a) and (34b) becomes an equality.

The M-step finds the bMaximum LikelihoodQ (ML) estimate of the

hyperparameters, i.e., the values of h that maximise p( yjh)
integrating p(x, yjh) over the parameters using the current estimate

of their conditional distribution.

B.2. EM and hierarchical model

In the case of a 2-level hierarchical model, like the source

localisation problem expressed by Eq. (13) in bHierarchical
parametric empirical Bayes approachQ.

y ¼ A 1ð Þx 1ð Þ þ e 1ð Þ ð35aÞ

x 1ð Þ ¼ A 2ð Þx 2ð Þ þ e 2ð Þ ð35bÞ

under Gaussian assumptions about the errors e ið Þ~N 0;C ið Þ
e

� �
,

where each covariance matrix Ce
(1) is defined as a function of some

hyper parameters h = [h1 h2. . .hn]
t. By substituting Eq. (35b) into

Eq. (35a), only the final level parameters are left in addition to
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random effects :

y ¼ e 1ð Þ þ A 1ð Þe 2ð Þ þ A 1ð ÞA 2ð Þx2 ð36Þ
The covariance partitioning implied by Eq. (36) is

Efyytg ¼ C 1ð Þ
e|{z}

error

þ A 1ð ÞCe 2ð ÞA 1ð Þt|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
random effect

þ A 1ð ÞA 2ð Þx 2ð Þx 2ð ÞtA 2ð ÞtA 1ð Þt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fixed effect

ð37Þ
In this hierarchical model, the E-step consists in taking the

conditional (or posterior) mean and covariance of the unknown

parameters:

Cxjŷ ¼
P
A
t
C	1e

P
A


 �	1
ð38aÞ

gxjŷ ¼ Cxjŷ
P
A
t
C	1e

Py

 �

ð38bÞ

where y	 ¼
y

0

�
2ð Þ
x

3
5;A	 ¼ A 1ð Þ A 1ð ÞA 2ð Þ

I 0

0 I

3
5

2
4

2
4

and Ce ¼
C 1ð Þ

e 0 0

0 C 2ð Þ
e 0

0 0 C 2ð Þ
x

3
5

2
4

as expressed in Friston et al. (2002, Section 2.3).

The covariance matrix Ce is a linear combination of variance

components such that Ce ¼
P

hiQi. Note that Eqs. (38a) and

(38b) corresponds formally to Eqs. (8a) and (8b). In our

application, gx
(2) = 0 and Cx

(2) = l, such that Cx
(2)	1gx

(2) = 0.

For the M-step, only the hyperparameters q of the errors

covariances Ce
(i) need to be estimated. Specifically, we seek the

hyperparameters that maximise the first term in the expression

(34b) for F Q; hð Þ. Given the assumptions made in expressions

(35a) and (35b), F is expressed by

F ¼ 1

2
logjC	1e j 	

1

2
rtC	1e r

	 1

2
trace Cxjy

P
A
t
C	1e

P
A

n o
þ 1

2
logjCxjy j þ const ð39Þ

where the residuals r = yP 	 A
P gxjŷ . The derivatives of F with

respect to the hyperparameters ui can be calculated and the maxi-

mum found (Dempster et al., 1981; Friston et al., 2002, Appendix 1).

B.3. Relationship to ReML

Under the present assumptions ReML is formally identical to

EM. One can regard ReML as embedding the E-step into the M-

step to provide a single log-likelihood objective function:

substituting the conditional covariance Cxjŷ from Eq. (38a) into

Eq. (39) gives the ReML objective function. Operationally, the

derivatives of F with respect to the hyperparameters ui can be

rearranged to give a ReML scheme by removing any explicit

reference to the conditional covariance (Harville, 1977; Friston et

al., 2002, Appendix 2).

h hþH	1g ð40aÞ

gi ¼ 	
1

2
trace PQif g þ 1

2
trace PPyytPtQ1f g ð40bÞ
Hij ¼
1

2
trace PQiPQj

� �
ð40cÞ

P ¼ C	1e 	 C	1e
P
A

P
A
t
C	1e

P
A
�	1P

A
t
C	1e ð40dÞ

The particular form of Eqs. (40a) (40b) (40c) (40d) has a very

useful application when y is a multivariate data matrix and the

hyperparameters are the same for all columns, i.e., in the case of

EEG source reconstruction, over a window of time. The time-wide

hyperparameters can thus be obtained efficiently by iterating Eqs.

(40a) (40b) (40c) (40d) using the sample covariance matrixCy = yy
t.

This algorithm is used in the current version of the SPM software

(Wellcome Department of Cognitive Neurology, 2002 http://www.

fil.ion.ucl.ac.uk/spm).
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