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We propose Granger causality mapping (GCM) as an approach to

explore directed influences between neuronal populations (effective

connectivity) in fMRI data. The method does not rely on a priori

specification of a model that contains pre-selected regions and

connections between them. This distinguishes it from other fMRI

effective connectivity approaches that aim at testing or contrasting

specific hypotheses about neuronal interactions. Instead, GCM relies

on the concept of Granger causality to define the existence and

direction of influence from information in the data. Temporal

precedence information is exploited to compute Granger causality

maps that identify voxels that are sources or targets of directed

influence for any selected region-of-interest. We investigated the

method by simulations and by application to fMRI data of a

complex visuomotor task. The presented exploratory approach of

mapping influences between a region of interest and the rest of the

brain can form a useful complement to existing models of effective

connectivity.

D 2004 Elsevier Inc. All rights reserved.
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Introduction

Functional brain imaging has contributed substantial insights

into the neural correlates of human information processing and

cognitive operations. Most research with positron emission

tomography (PET) and functional magnetic resonance imaging

(fMRI) has focused on relevant information about where

information is processed in the human brain. To improve our

understanding of how the brain processes information, more

knowledge about the interactions of activated brain areas, that is,
* Corresponding author. Capaciteitsgroep Neurocognitie, Faculteit der

sychologie, Postbus 616, 6200 MD Maastricht, the Netherlands. Fax:

31 43 3884125.

E-mail address: a.roebroeck@psychology.unimaas.nl (A. Roebroeck).

Available online on ScienceDirect (www.sciencedirect.com.)
P

+

1053-8119/$ - see front matter D 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.neuroimage.2004.11.017
functional integration (Friston, 2002) is needed. The investigation

of functional integration with PET and fMRI data has been

pioneered by several researchers (Friston et al., 1993a,b; Horwitz,

1990; Horwitz et al., 1992; McIntosh et al., 1993). Their work

has lead to a rapid increase in investigations of functional

integration with PET and fMRI for various cognitive or

sensorimotor tasks. A model-free approach to study functional

integration is to investigate the correlation between measured time

courses of different brain areas, which has been referred to as

functional connectivity (Friston et al., 1993b). However, func-

tional connectivity is ambiguous with respect to underlying

directed interactions that generated the observed correlations.

Effective connectivity, defined as the influence one neuronal

system exerts over another (Friston, 1994; Friston et al., 1993a),

attempts to resolve this ambiguity by defining explicit statistical

models of directed neuronal interactions. Recently, significant

methodological advances in effective connectivity modeling have

been made, such as the application to neuroimaging data of

covariance structural equation modeling (Buchel and Friston,

1997; McIntosh and Gonzalez-Lima, 1994), nonlinear system

identification techniques (Friston and Buchel, 2000), and Baye-

sian estimation of deterministic state-space models (Friston et al.,

2003). However, effective connectivity methods proposed so far

all require preselection of the interacting regions and assumptions

about the existence and direction of influence between any two

regions. These pre-specified models are useful in specifying and

testing specific hypothesis concerning interactions between brain

systems. However, an implicit problem in this type of approach is

that misspecification of the models (e.g., by omission of an area

that mediates or initiates interactions) can lead to erroneous

conclusions.

Here, we present a framework to map effective connectivity

over the brain using vector autoregressive (VAR) modeling of

fMRI time series in the context of Granger causality (Granger,

1969, 1980). Assuming that x[n] and y[n] are the measured time

courses of two brain regions (or voxels), Granger causality

quantifies the usefulness of unique information in one of the time

series in predicting values of the other. Specifically, if incorporat-

ing past values of x improves the prediction of the current value

of y, we say that x Granger causes y. Thus, temporal precedence



A. Roebroeck et al. / NeuroImage 25 (2005) 230–242 231
is used to identify the direction of causality from information in

the data. In our framework, time-resolved fMRI measurements

provide topographical as well as temporal information about the

brain areas subserving a cognitive task. Temporal precedence

information is exploited to compute Granger causality maps

(GCMs) that identify voxels that are sources or targets of directed

influence for any selected region-of-interest. Thus, the method is

exploratory in nature and does not require the specification of a

directed graph model.

Granger causality analysis has been previously applied to

electrophysiological animal data, specifically Local Field Poten-

tials (LFPs) to detect influences at the neuronal population level

(Baccala and Sameshima, 2001; Bernasconi and Konig, 1999;

Bernasconi et al., 2000; Brovelli et al., 2004; Freiwald et al.,

1999). More recently, Granger causality and related frequency

domain measures have also been applied to human EEG data

(Hesse et al., 2003; Kaminski et al., 2001). Furthermore,

multivariate autoregressive models have recently also been

applied to human fMRI data to model effective connectivity

between preselected regions based on temporal order (Harrison et

al., 2003), thus making implicit use of the concept of Granger

causality. We have previously reported initial investigations of the

application of Granger causality to fMRI data (Goebel et al.,

2003, 2004). However, there are two potential obstacles for the

successful application of Granger causality to fMRI signals. First,

fMRI only provides indirect access to the neuronal responses and

information on dynamic interactions between neuronal popula-

tions may be irremediably lost or distorted by hemodynamic

blurring of the neuronal responses. Second, the applicability of

Granger causality may also be limited because of the relatively

low temporal resolution of data acquisition techniques conven-

tionally employed. In order to investigate the constraints posed by

hemodynamics and temporal sampling, we performed a series of

simulation studies. Our simulations show that it is possible to

recover directed neuronal influences from the fMRI signal if short

volume repetition times (TRs) are used. After describing the

simulation studies, we describe an application of Granger

causality mapping to fMRI data for a dynamic visuomotor

mapping task. To assess significance of the obtained GCMs, we

developed thresholding methods based on bootstrapping techni-

ques (Efron and Tibshirani, 1993) and the control of the false

discovery rate for voxelwise tests (Genovese et al., 2002). The

method identified directed interactions between inferotemporal,

parietal, and premotor areas that underlie the performance of a

complex visuomotor task.

Theory

The discrete zero-mean vector time-series x[n] = (x1[n], . . .,
xM[n])

T can be modeled as a vector autoregressive (VAR) process

of order p (e.g., Kay, 1988):

x n½ � ¼ �
Xp
i¼1

A i½ �x n� i½ � þ u n½ �

where u[n] is (multivariate) white noise. The matrices A[i] are

called the autoregression (AR) coefficients because they regress

x[n] onto its own past. The VAR model can be thought of as a

linear prediction model that predicts the current value of x[n] based

on a linear combination of the most recent past p values.

Consequently, the current value of a component xi[n] is predicted
based on a linear combination of its own past values and the past

values of the other components. This shows the value of the VAR

model in quantifying Granger causality between (groups of)

components.

Granger causality uses temporal precedence to identify the

direction of causality from information in the data. Thus, given two

time series x[n] and y[n], we can independently identify both

influence from x to y, and influence in the reverse direction with

suitable models. Geweke (1982) has proposed a measure of linear

dependence Fx ,y between x[n] and y[n] which implements Granger

causality in terms of vector autoregressive models (see Appendix A

for details). Fx,y is the sum of three components:

Fx;y ¼ FxYy þ FyYx þ Fx S y

the four measures take their values in the interval [0, l), that is,

they are by construction nonnegative. Fx,y is a measure of the

total linear dependence between the series x and y. If nothing of

the value at a given instant of one can be explained by a linear

model containing all the values (past, present, and future) of the

other, Fx ,y will evaluate to zero. FxYy is a measure of linear

directed influence from x to y. If past values of x improve the

prediction of the current value of y, then FxYy N 0. A similar

interpretation holds, of course, for FyYx. Thus, the two directed

components, FxYy and FyYx, use the arrow of time to decide on

the direction of influence. However, the total linear dependence

between x and y does not often consist fully of these directed

components. Much of the total linear dependence can be

contained in the undirected instantaneous influence Fxd y between

them. Essentially, Fxd y quantifies the improvement in the

prediction of the current value of x (or y) by including the

current value of y (or x) in a linear model already containing the

past values of x and y. From this symmetry it can be seen that

Fxd y indeed contains no directional information at all. It

represents residual correlations in the data that cannot be assigned

to causally directed influence based on the information in the

data. In practice, nonzero values of Fxd y can be caused by

directed influence between x and y at a finer time-scale than that

at which x and y are observed (Granger, 1969, 1980). We

investigated the usefulness and validity of these measures in

investigating effective connectivity in fMRI data, both by

simulations and by application to real fMRI data.

Simulations

Based on the observed high correlation between Local Field

Potentials (LFPs) and the Blood Oxygenation Level Dependent

(BOLD) response (Logothetis et al., 2001), we can approximate

fMRI signals with a low-pass filtered and sub-sampled version of

LFPs. Previous invasive electrophysiological studies have shown

that statistical techniques based on VAR-modeling and Granger

causality are capable of detecting directed interactions between

neuronal populations as reflected in the dynamic structure of LFP

signals (Bernasconi and Konig, 1999; Bernasconi et al., 2000;

Brovelli et al., 2004; Freiwald et al., 1999). We used simulations to

investigate whether and to what extent this capability is preserved

with fMRI measurements. We assumed neuronal interactions to

occur at the level of LFP signals and quantified the effects of 1)

hemodynamics (i.e., filtering) and 2) fMRI image collection (i.e.,

temporal sampling of BOLD responses) on computed Granger

causality measures (see Fig. 1).



Fig. 1. A schematic illustration of the procedure to generate simulated time series (in the leftmost column), examples of the generated series at various stages (in

the middle column), and of resulting distributions of computed influence values for 5000 simulations (in the rightmost column). The top row depicts the

generation of simulated local field potential (LFP) signals of X and Y at high temporal resolution. The simulation model implements a temporally directed

influence from X to Y. The middle row represents the filtering of the LFP signals through a canonical hemodynamic response model to obtain simulated blood

oxygenation level dependent (BOLD) signals. The bottom row shows how a temporal down-sampling of the BOLD signals then gives the simulated fMRI

signal. Influence measures FxYy, FyYx, and Fxd y
can be computed from the generated time series at all three stages. If the simulation is repeated many times

(e.g., 5000), distributions of the influence measures can be obtained. These are shown in the rightmost column, where the distributions of FxYy values is shown

in blue, FyYx distributions are shown in green and Fxd y
distributions are shown in red. The set of distributions for the simulated fMRI signal (in the red box) is

of most interest in these investigations.
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The signals x[n] and y[n] of two interacting neuronal

populations X and Y were generated as a realization of a bi-

dimensional first-order VAR process with:

A 1½ � ¼ � 0:9 0

I � 0:9

�
;� ¼ 1 0

0 1

���

this model has the benefit of being simple while still allowing

achievement of the desired dynamic characteristics. The model was

specified to have the following properties: First, it embodies an

influence from X (its first channel, the influencing brain region) to

Y (its second channel, the brain region being influenced) of a

predetermined strength I (ranging from 0.0, no influence, to 0.5,

strong influence). Second, by construction, there is no influence in

the reverse direction from Y to X, rendering the modeled

interaction strictly unidirectional. Third, the influence from X to

Y was manipulated to have an additional delay D (ranging from 0

to 100 ms) representing the time that passes before the population

dynamics in X has an influence on Y’s dynamics. Fourth,

instantaneous dependence between X’s signal x[n] and Y’s signal

y[n] was also absent by construction (i.e., the off-diagonal terms in

� are zero). Fifth, the auto-regressive coefficients on the diagonal

(i.e., connecting x[n] and y[n] to their own respective pasts) were

set such that all of their spectral power is contained in the lower

frequency ranges. Thus, the influence X exerts on Y was

constructed to take place in the lower frequency ranges. This is

in line with the expectation that high-frequency dependencies

between x[n] and y[n] are not detectable after passing through

hemodynamics (essentially a low-pass filter) and being down-

sampled in the data acquisition. This would in turn transfer to the

interpretation that the directed influences detected in real fMRI

data would depend on low-frequency signal fluctuations, perhaps

caused by the experimental design.
The time-step of the simulation was taken to be 10 ms. In

every simulation, the model was simulated for 10,000 time-steps

(100 s), where additionally an initial 2000 + D time-steps were

simulated and later discarded to allow the system to enter a steady

state, to introduce the delay D and to avoid boundary effects in

subsequent filtering. After simulation and introduction of addi-

tional delay, the channels were individually filtered by convolu-

tion with a linear model of the Hemodynamic Response Function

(HRF) based on a gamma function (Boynton et al., 1996). The

tau parameter in this model, controlling the width of the HRF,

was set to 0.5, corresponding to short (0.5 s) stimulus durations

(Liu and Gao, 2000), relevant for fast event-related designs. After

individually normalizing the channels to zero mean and unit

variance, 20% of white Gaussian noise was added, representing

physiological noise in the BOLD response. Subsequently, these

simulated BOLD response signals were sampled every S time-

steps to simulate signal acquisition by the scanner with a whole

volume TR of S/100 s. After renormalizing the signals, another

20% of white Gaussian noise was added to represent measure-

ment error and noise in the acquisition. Note, that noise enters the

simulated system at three independent points. First, in the form of

the innovation u[n] that drives the dynamics of the VAR model

that generates the simulated LFPs. Second, noise is added at the

level of the hemodynamics, mimicking imperfections in the

transfer of neuronal signals to hemodynamic signals. Third, noise

is added at the level of sampling by the MR-scanner, simulating

additive instrumental noise. The resulting signals were used to

compute influence measures FxYy, FyYx, and Fxd y. The order p

of the estimated autoregressive models was set to that which

minimized the Schwartz Criterion (SC), an order selection

criterion, designed to trade-off the reduction in error-variance

against the increase in the number of parameters (Luetkepohl,

1991).
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Simulations were performed for systematic combinations of the

levels of crucial parameters in the model: the strength of influence

(I = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}), the delay of influence (D = {0, 1,

2, 3, 4, 5, 6, 7, 8, 9, 10}), and the temporal sampling (S = {10, 20,

30, 40, 50, 60, 70, 80, 90, 100}). For each of the 660 possible

combinations of these parameters, a set of 5000 simulations was

performed and influence measures FxYy, FyYx, and Fxd y were

computed on the simulated sampled signals. Inference was

performed in the context of the bootstrap (Efron and Tibshirani,

1993), which is based on empirically obtained null distributions

(See Appendix B for details). Significance thresholds can be

obtained both within the classical framework, controlling for Type

I error (quantified by the proportion of false positives within all

tests), and with methods controlling for the false discovery rate

(FDR, the expected proportion of false positives within all tests

with a positive result) and which are more appropriate in the

context of mapping effects over an imaging volume (Genovese

et al., 2002). An empirical null distribution for the simulations was

formed by computing the influence measures on pairs of signals

x[n] and y[n] from different simulations in the same set. Any

dependence between two channels from different realizations of
Fig. 2. Distributions of influence measures resulting from 5000 simulations. In (A)

values in green in the middle panel, and for Fxd y
values in red in the lower panel

difference terms for the same simulation set are shown in the upper panel of (B), a

same distribution of difference terms is shown again in blue in the upper panel of (C

red is the difference distribution of 5000 simulations with I = 0.0 (and D and S as

the same distributions are shown with S = 100 (1.0 s). Vertical red lines indicate c

FDR-based thresholds at q = 0.05, based on the empirical null distributions. Thresh

I = 0.0.
the model can only exist purely by chance and thus characterize the

null hypothesis of no influence.

Fig. 2A shows the distributions of values obtained for FxYy,

FyYx , and Fxd y in an exemplary set of simulations. Two

observations can be made from these distributions. First, the

values found for FxYy are, on average larger than those found for

FyYx, reflecting the true influences present at the LFP level.

Second, the values found for Fxd y are markedly different from

zero, pointing to instantaneous influence between X and Y not

actually present at the LFP level. This finding is not surprising

because we are applying Granger causality to time-series sampled

at a courser interval than that at which interactions take place

(Granger, 1969, 1980). The instantaneous influence term essen-

tially quantifies partial correlation (functional connectivity) that

cannot be assigned to influence in a certain direction purely from

temporal information in the data. As a general pattern over all

simulations, the levels of instantaneous influence found were large

and increased with increasing sample interval. Since our interest is

mainly in directed influences, the finding of instantaneous

influences need not be a conceptual difficulty. When found in

absence of additional directed influence, it merely points to the
histograms are shown for FxYy values in blue in the upper panel, for FyYx

for 5000 simulations with I = 0.3, D = 50 ms, and S = 0.5 s. The influence-

long with the associated empirical null distribution in the lower panel. The

) along with its null distribution in blue in the lower panel. Superimposed in

before) with its associated null distribution in red in the lower panel. In (D),

lassical significance thresholds at a = 0.05, and vertical green lines indicate

olds in C and D were computed from the joined set of values for I = 0.3 and
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necessity to incorporate further assumptions (such as those in

structural equation models (McIntosh and Gonzalez-Lima, 1994)

or dynamic causal models (Friston et al., 2003)) when inference on

effective connectivity is needed.

Thus, we turn to inference on FxYy and FyYx. Classical

significance thresholds for a = 0.05 are shown in Fig. 2A. All

FxYy values are above threshold, suggesting that there is good

sensitivity in detecting influence from X to Y even after

interference of hemodynamics and temporal down-sampling.

However, a much larger proportion of FyYx values are above

threshold than the nominal 0.05, showing that, in the context of

fMRI data, inferences on directed influences based on the simple

terms introduced above may be biased. Conceptually, the problem

of unidirectional influence turning into bi-directional interaction

(Wei, 1990) is due to the unavoidable loss of dynamic stochastic

information in both channels of the system arising from low-pass

filtering and down-sampling of the signals. In other words, some part

of the variance in x[n] that could previously be explained by X’s

past, is now explained by Y’s past, since the relevant information in

X’s past is lost. This leads to an inflation of the FyYx measure.

A possible solution to this inference problem, suggested by the

observed distributions of FxYy and FyYx is to perform inference

not on their individual values, but on their difference (FxYy �
FyYx). Positive values of this influence difference term would

point to influence from X to Y, whereas negative values would

indicate influence in the reverse direction. The distribution of

(FxYy � FyYx) for the same set of simulations as before is shown

in Fig. 2B, together with its empirical null distribution. It can be

seen from the significance thresholds for a two-sided test for non-

zero values that inference on the difference term behaves very well.

A very large proportion of values (N0.99) is significantly positive,

again indicating very good sensitivity. Moreover, only a very small

proportion (much smaller than 0.05) of values is significantly

negative, indicating good specificity. The observation of a smaller

than the nominal proportion of false positives was in fact repeated

over the full range of values of I, D, and S. It should be noted that

the regained robustness in inference on unidirectional influences

comes at the cost of a lack of sensitivity to true bi-directional

interactions (see Discussion).

Because the main goal of our approach is to map directed

influences over the whole brain, sensitivity and specificity were

investigated further within the framework of FDR-based hypoth-

esis testing (see Appendix B). In this testing framework, methods

are employed that control the FDR (the expected proportion of

false positives within all tests with a positive result) even over a

large number of tests, thus presenting an approach to the multiple

comparison problem (Genovese et al., 2002). To evaluate perform-

ance of FDR-based inference on the influence difference terms,

FDR-based thresholds were computed for sets of 10,000 simu-

lations of x[n] and y[n]. In half of the cases there existed influence

from X to Y (with given strength I and delay D), whereas in the

other half there was no influence between the simulated signals

(i.e., I = 0.0). This forms a more realistic inference situation where

cases of true influence must be detected within a larger set (e.g., an

imaging volume) of dynamically varying signals. To quantify

performance of the inference on the influence-difference terms, the

empirical power (as a measure of sensitivity) was computed, for a

given threshold, as the proportion of true positives within all tests,

that is, the proportion of values that were above threshold for the

set with non-zero I. The empirical fdr (as a measure of specificity)

for FDR-based thresholds was obtained as the proportion of false
positives within all tests with a positive result. Fig. 2C (upper

panel) again shows the distribution of influence difference values

obtained for the set of 5000 interacting signals with superimposed

the distribution of values obtained for the 5000 signals without

influence. FDR-based thresholds were computed for the full set of

10,000 simulations based on its empirical null distribution (shown

in the lower panel of Fig. 2C). Classical thresholds were also

computed for comparison. The same distributions are shown in

Fig. 2D for simulations with a larger sampling interval. Both the

probability of type I error, for classical thresholds, and the

empirical fdr, for FDR-based thresholds, are well under control.

Again, this degree of specificity was observed over the full range

of simulations. The FDR-based inference methods seem to adapt

well to the data, since the threshold automatically adjusts to trade-

off control over FDR against sensitivity, lowering when signal-

noise separation is good (when sampling faster as in Fig. 2C), and

increasing to more critical levels when separation is low (at the

lower sampling rate in Fig. 2D).

The estimated optimal orders for the simulations, as defined by

the order selection criterion (see Appendix A), showed an

interesting pattern. In general, the order for an autoregressive

model needed to capture the dynamics of the simulated fMRI

signal was not always equal to the order of the model used to

generate the LFPs (which was of order 1). Rather, the estimated

optimal order for simulated fMRI time-series was dependent on the

sample rate S. The distributions of optimal orders estimated for

series with fast sampling were mostly relatively high (e.g., peaking

at about 5, and ranging from 2 to 8, for the set of simulations with

I = 0.3, D = 5, and S = 10, that is, TR = 100 ms). As the sampling

interval increases, the observed optimal orders decreased (e.g.,

peaking at 2 for the simulations in Fig. 2C, where TR = 500 ms,

and showing almost exclusively an optimal order of 1 for the

simulations in Fig. 2D, where TR = 1000 ms). Thus, the order

selection criterion tends to select more complex models to capture

the dynamics that remain at high sampling rates, even more

complex than the original models because the original dynamics

are distorted in the hemodynamic filtering and temporal down-

sampling. The selected models at low sample rates are less

complex, since a lot of the dynamics is lost in the hemodynamics

and sampling. At the more realistic sample-rates for whole-brain

fMRI that were simulated (towards 1 s), the optimal order was

almost exclusively 1.

A summary of the simulations is given in Fig. 3, which plots

sensitivity (computed as empirical power, the proportion of true

positives), as a function of a range of values for I, D, and S. Three

main observations can be made. First, an increase in the strength of

influence, at given levels of influence delay and sampling interval,

leads to a steady increase in the influence difference measure and,

consequently, in the power to detect that influence. Second,

increasing the delay of influence, when keeping influence strength

and sampling interval constant, also has the effect of increasing the

influence measure. The conjoint effects of strength and delay of

influence seem to be roughly additive. Third, an increase in power

also results from decreasing the sampling interval for influence of

given strength and delay, where most power can be gained in the

current simulations by decreasing the sampling interval from 1 to

0.5 s. Overall, these simulations support a few important

conclusions. First, naRve computation of Granger causality over

fMRI signals as a measure of effective connectivity between

neuronal populations can be misleading. The influence difference

term, suggested here, proves to be a much more robust estimator of



Fig. 3. Graphical summary of simulation results. Three surface plots of Power (proportion of true influence cases that were above threshold), for I = 0.1 (lower

surface), I = 0.3 (middle surface), and I = 0.5 (upper surface), as a function of the sample interval S (in seconds), and the influence delay D (in milliseconds).
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influence, on filtered and down-sampled signals, similar to the

fMRI signal, at least in the case of unidirectional influence.

Second, the proposed method is able to detect influence between

neuronal populations in the fMRI signal even if the time scale and

delay of the influence is smaller than the interval at which the data

is sampled. However, the sensitivity to such interactions decreases

rapidly with increasing sampling interval. Finally, the strength and

the delay of influence have an additive effect on the computed

influence difference term, making the interpretation of the absolute

value somewhat ambiguous. A high computed influence difference

term can arise through a strong influence, or one with a large delay,

or both.

fMRI data

We applied GCM analysis to fMRI data obtained with a rapid

event-related design for a complex cognitive task. Two subjects

performed a visuomotor mapping task in which two stimulus

categories had to be mapped to two responses (bleftQ or brightQ).
The mapping of the two stimulus categories (bhousesQ and bfacesQ)
to the responses alternated periodically between the two possible

mappings. A remapping cue indicated a change in the required

stimulus–response mapping (S–R mapping) for the following

trials. In addition to the face stimuli and house stimuli, pictures

of objects appeared that required no response. This task was

explicitly designed to engage sensory and motor-related processes

and executive control functions. The stimulus categories used are

known to activate specific inferotemporal areas, the fusiform face

area (FFA) for face stimuli (Kanwisher et al., 1997) and the

parahippocampal place area (PPA) for house stimuli (Epstein and

Kanwisher, 1998). Likewise, left and right hand button responses

are known to be initiated in specific parts of right and left motor

cortex. Importantly, correct performance on the task requires

extensive interactions between different specialized systems in the

brain at two distinct levels and temporal scales. First, within every

single trial, a relatively fast transition of information has to take

place from sensory areas involved in the identification of a
stimulus to motor areas controlling the response hand. Probably,

the link between sensory and motor areas is not direct and

additional systems intervene in the relay of information. Further-

more, performance of the correct response requires contextual

information about the currently valid S–R mapping. Second, a

change in the S–R mapping at the remapping cue requires

executive control processes that must operate to change and then

maintain representations of the contextual information. The

systems involved in these control processes must continually

influence areas involved in the trial-to-trial responses to a given

stimulus. Therefore, they are expected to operate on a time scale

larger than that of a single trial. The GCM analysis was focused on

the identification of the areas and interactions involved in these

executive control processes, since their detection would probably

require less extreme sample rates.
Materials and methods

The two participating subjects were right handed, had normal or

corrected-to-normal vision. Subjects gave informed written con-

sent. Images were acquired using a 3 T scanner (bTrioQ, Siemens,

Erlangen, Germany). Functional images were acquired with a T2*

weighted echo planar sequence (echo time (TE) 28 ms, volume

repetition time (TR) 1000 ms, field of view 224 � 224 mm, 64 �
64 matrix, giving 3.5 � 3.5 mm in-plane resolution). The images

consisted of 18 oblique transverse slices (interleaved acquisition),

5 mm thick with a 1-mm inter slice gap. Both the fast-switching

(FS) condition and slow-switching (SS) condition comprised a full

acquisition run, each of which were performed twice by both

subjects. For the SS runs, 540 volumes were acquired; for the FS

runs, 500 volumes were scanned. Structural images were acquired

using a T1 MPRAGE sequence (echo time 4 ms, 256 � 256 � 192

matrix, 1 � 1 � 1 mm3 voxels). Stimulus presentation, response

registration, and synchronization to the scanner acquisition were

performed using the software program Presentation (Neurobeha-

vioral systems, San Francisco, CA). In the FS condition, the S–R
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mapping changed 24 times (every 2 to 6 trials), while in the SS

condition, the S–R mapping changed 8 times (every 15 trials). The

mapping cue consisted of a 500 ms change in color of the fixation-

cross (magenta for mapping 1, cyan for mapping 2). Trial stimuli

(5 face-pictures, 5 house-pictures, 5 object-pictures) were shown

for 120 ms with a stimulus onset asynchrony (SOA) of 2–6 s,

synchronized to the volume acquisition of the scanner. The fast-

switching runs contained 30 trials, each of faces, houses, and

objects, balanced over the five different instances and pseudo-

randomized with respect to the preceding SOA. The slow–

switching runs contained 40 trials of each of the trial-stimuli. In

both FS runs and SS runs, trial-stimuli were balanced over the two

S–R mappings giving 30 required left and right hand responses in

the FS runs and 40 required left and right hand responses on the SS

runs. Feedback on the correctness of responses was given at every

trial (500 ms change to a green fixation cross for a correct

response; red fixation cross for an incorrect response). Each of the

two subjects perfumed two runs of each of the SS condition and the

FS condition.

Imaging data were analyzed using BrainVoyager 2000 (Brain

Innovation, Maastricht, The Netherlands). The anatomical volume

was transformed to the Talairach coordinate system (Talairach

and Tournoux, 1988). The cortical surface was reconstructed

(Kriegeskorte and Goebel, 2001) and inflated for visualization of

results. The time courses of activation of individual voxels were

constructed from the functional images and corrected for the

temporal difference in acquisition of different slices (slice scan

time correction) using sinc interpolation. Subsequently, linear

trends and low frequency components (up to and including four

cycles in the time course) were removed prior to any analysis.

Voxel time courses were then coregistered to the structural

volume and transformed into Talairach space with a resolution of

3 � 3 � 3 mm using trilinear interpolation. No spatial or

temporal smoothing was applied to the functional time courses.

Regional activations were analyzed using single subject General

Linear Models (GLM) computed over multiple runs (fixed-effects

analysis). Predictor functions for the mapping cue, the control

stimulus, the face stimulus and the house stimulus, were constructed

as box-car functions (value one at the single scan where the relevant

event took place, value zero otherwise) filtered through a linear

model of the BOLD response (Boynton et al., 1996). Regions of

interest (ROI) were selected as activated regions in F-maps for the

contribution of the mapping cue predictor in the fast runs, or in the t

maps for the contrast of faces against houses computed overall runs

(fast switching and slow switching). Granger Causality Maps

(GCM) were computed for a given reference (ROI) by computing

the influence measures FxYy, FyYx, and Fxd y, for every voxel, from

the average time-course of the voxels in the ROI (as x) and the

voxel time-course (as y). In accordance with the results from the

simulations, the influence difference term (FxYy � FyYx) was then

computed for every voxel to form the difference-GCM (dGCM),

mapping influence to and from the ROI over the brain. The order of

the autoregressive models used for computation of the influence

measures was set to 1, based on observed optimal orders in the

simulations for a corresponding TR of 1 s, and on exploratory

analyses with the order selection criterion of these data and similar

data sets with the same TR. Before further inference and visual-

ization of the difference GCMs they were masked with the

thresholded (at 0.02) instantaneous GCM (Fxd y) as a simple first

approach to remove some of the observed vessel effects. The

reasoning is that vessels often have a large contribution to the
directed GCMs whereas their contribution to the instantaneous

GCMs is considerably more modest, probably because influence

from regions to large draining vessels happens at larger time lags. In

contrast, cortical contributions to the directed GCMs always seem

to be observed in conjunction with a large contribution to the

instantaneous GCM. The GCMs were computed as pooled

estimates separately over the two FS runs and the two SS runs for

each subject. Thresholds on the map were computed using the

bootstrap method and the false discovery rate, as explained above

and in Appendix B. Empirical null distributions were obtained by

recomputing the GCMs with a simple version of a dblock-
randomizedT reference time-course. The reference time-course

was split in two and the two halves were interchanged. Since

influence from observations of the reference ROI in the first half of

the run to other voxels in the last half of the run (or vice versa) can

only be due to chance, the resulting distribution of values in the

computed difference GCM characterizes the null hypothesis of

FxYy � FyYx = 0.

Event-related BOLD responses were estimated by a deconvo-

lution technique that can be formulated as a General Linear Model.

Delta-function predictors are formed for every peri-stimulus scan

for all relevant stimuli. Provided that the experimental design is

suitable (properly randomized stimulus order with an SOA

randomized in multiples of the volume TR), and the assumption

of linearity of the BOLD response is not heavily violated, the

resulting regression coefficients characterize the event-related

BOLD response.
Results

Figs. 4A and B show the dGCMs for a face-selective region in

the left infero-temporal cortex, identified by location and

selectivity as the fusiform face area (FFA), for subjects 1 and 2,

respectively. Regions shown in green have significantly negative

influence difference terms and are thus indicated to be sources of

influence to the reference ROI. Regions shown in blue have

significantly positive influence difference terms and are thus

indicated to be targets of influence from the reference ROI. The

dGCMs show qualitatively similar patterns of influence from and

to the left FFA in the two subjects. A strong influence on the left

FFA from early visual areas including the calcarine sulcus can be

seen in both subjects. Lateral premotor areas and medial

supplementary and pre-supplementary motor areas also show a

strong influence on the left FFA. The left FFA itself exerts its

influence mainly on other parts of the bilateral infero-temporal

cortex and on regions in bilateral posterior parietal cortex (PPC).

To aid in the interpretation of the maps, a post hoc deconvolution

analysis was performed on the time-courses of selected foci in the

maps. Event-related averages are shown for selected regions

including the reference ROI, synchronized to the occurrence of

the remapping cue and the face stimulus. This post hoc analysis

provides valuable insight into the interpretation of the GCMs. It

shows that the signal of influence sources in the maps rises and

peaks before the signal of the reference region. The signal-rise and

signal-peak of the reference region, in turn, precedes those of the

influence targets. This observation indicates an agreement between

fMRI mental chronometry (Formisano and Goebel, 2003; Menon

et al., 1998) and GCM to the extent that the temporal precedence in

stimulus-locked signal variation appears to be a contributing factor

to the GCMs. It should be noted that GCMs also reflect the



Fig. 4. Thresholded difference GCMs for a face-selective region in the left fusiform gyrus for subject 1 in (A) and subject 2 in (B). The FDR-based threshold

was set to q = 0.05. The reference region is shown in red. Green areas have a significant negative difference term and are sources of influence to the reference

region. Blue areas have a significant positive difference term and are targets of influence from the reference region. Event-related BOLD responses are shown

for the circled areas in the calcarine sulcus (in green), the fusiform gyrus (the reference area, in red) and the intra-parietal sulcus (in blue) for both the Cue

stimulus and the Face stimulus. Vertical bars indicate estimated standard errors.
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contributions from stochastic signal dependencies that are not

strictly stimulus-locked, since they are computed over large time-

segments within an experimental run.

An important issue that should be addressed when relying on

temporal precedence between fMRI signals from different sites in

the brain is the variability of the hemodynamics over the brain

(Formisano and Goebel, 2003; Saad et al., 2001). More precisely,

one should rule out the possibility that influence found from one

area to another based on temporal difference in signal variation is
due to a systematic difference in the hemodynamic lag at the two

areas. A possible approach to exclude this confound is to show that

the measured influence varies with experimental condition or

cognitive context. The reasoning is that structural differences in

hemodynamics persist over different conditions or contexts, so that

any observed systematic variation with condition or context,

should be due to changes in the neuronal population interactions.

Thus, in the presence of such experimentally modulated influence,

one can more reliably conclude that the measured influences reflect
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true neuronal interactions. To this end, we investigated differences

between the dGCMs found in the fast switching (FS) condition and

the slow switching (SS) condition. FS runs were of a similar length

as the SS runs and contained a similar number of face, house, and

control stimuli. However, the number of switches in the S–R

mapping in the FS runs was three times that in the SS runs. Thus,

although the stimuli, responses, and the general task were the same

in both conditions, the FS runs created a much more engaging

context, in which the subjects were required to exert a higher
Fig. 5. Thresholded difference GCMs for a region in the left intraparietal sulcus fo

(B) as in Fig. 4. The FDR-based threshold was set to q = 0.05 for both A and B. E

part of the left precentral sulcus (in green), the left PPC (the reference area, in red)

stimulus and the House stimulus.
degree of executive control in order to switch the S–R mapping

every few trials. Thus, it was hypothesized that this difference in

task requirements and the ensuing cognitive context would be

reflected in a difference in interactions between areas that

coordinate the required executive control. Figs. 5A and B show,

for the FS runs and the SS runs, respectively, the dGCMs for

subject 1 for a region in left posterior parietal cortex (PPC),

thresholded at the same level. The reference region in left PPC was

found to be highly activated at remapping cues, together with
r subject 1 for the fast-switching runs in (A) and the slow-switching runs in

vent-related BOLD responses are shown for the circled areas in the inferior

and the superior part of the left precentral sulcus (in blue) for both the Cue
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lateral premotor and prefrontal regions, medial supplementary

motor regions and other parietal areas. Overall, the dGCMs for FS

runs and SS runs look qualitatively very similar but differ in

intensity, suggesting that the degree of interaction of the left PPC

with other sites in the brain is different. In the FS runs, the left PPC

is seen to be influenced mainly by premotor and prefrontal regions

and presupplementary motor regions (left more strongly than

right). There is also influence from bilateral insula regions and

small clusters around the calcarine sulcus. The left PPC region

itself exerts its influence mainly on large parts of the inferotem-

poral cortex, lateral motor, and premotor areas and inferior and

superior parietal areas. In the SS runs, the influence from some of

the premotor, prefrontal, and insula regions remains, though mostly

at a lower intensity. The influence from the reference region on

some of inferior parietal and inferotemporal regions also remain in

the SS runs at a lowered level. Overall, it can be seen that the

change in cognitive context strongly modulates the intensity of the

maps. Fig. 5A shows the event-related responses for the remapping

cue and the house stimulus in the FS runs. These responses reflect

the temporal order relations implied by the GCM. In Fig. 5B, the

lower intensity of the maps in the SS runs is reflected in a less

clearly structured relationship between the event-related averages.
Discussion

We have proposed Granger causality mapping (GCM) as an

approach to explore directed influences between neuronal

populations in fMRI data. The method does not rely on a priori

specification of a dstructuralT or danatomicalT model that contains

pre-selected regions and connections between them. This distin-

guishes it from other effective connectivity approaches, such as

covariance structural equation modeling (McIntosh and Gonzalez-

Lima, 1994) and dynamic causal modeling (Friston et al., 2003),

that aim at testing or contrasting specific hypotheses about

neuronal interactions. Instead, GCM relies on the concept of

Granger causality to define the existence and direction of influence

between two stochastic time-series purely on the basis of temporal

precedence in their interdependency. Granger causality can be

formalized and tested using vector autoregressive (VAR) models

that capture the joint temporal dynamics of several time-series.

Effective connectivity approaches that are based on instantaneous

regression equations relating only concurrent values, such as

psychophysiological interactions (Friston et al., 1997) and struc-

tural equation modeling, discard possibly important temporal

information in the data. It has been shown (Lahaye et al., 2003)

that even in the context of functional connectivity, incorporating

lagged values increases the sensitivity to detect relationships

between typical fMRI time-series. Many of the more recent

effective connectivity approaches are based on stochastic or

deterministic dynamic models, capable of capturing temporal

structure. The Volterra series representation (Friston and Buchel,

2000) characterizes interactions in a nonlinear convolution model

relating multiple inputs to a single output. Thus dynamic nonlinear

influences on a single region can be characterized. In the

multivariate context, the vector autoregressive models used by

Harrison et al. (2003) can quantify directed influences between all

regions included in the model. Although temporal information is

used to give direction to the influences, the set of interacting

regions must be chosen beforehand. The same holds for dynamic

causal models (Friston et al., 2003) that use deterministic state-
space models to represent neuronal dynamics and interactions

augmented with forward models of the regional hemodynamic

response. Pre-specified models are very useful, even necessary,

when a specific hypothesis about neuronal interactions must be

tested. Furthermore, most methods making use of a predefined

anatomical model, capture the dynamics of all included regions

simultaneously in a full multivariate model. This allows them to

characterize and infer on indirect influences and other more

complicated influence pattern than the canonical done-to-manyT
pattern inherent to the (bivariate) Granger Causality Mapping

approach presented here. However, inference on a hypothesis

concerning part of the specified network is very sensitive to

misspecification of the model. Especially, the omission of areas or

structures that mediate influences or form an additional source of

influence can lead to spurious interactions. Furthermore, in early

stages of investigation, specific hypotheses about the exact

network underlying performance of a cognitive task might not be

readily available. As an exploratory method, Granger causality

mapping can form an important complement to these hypothesis-

driven methods in helping to formulate directed graph models of

regions and their interactions.

The fMRI signal is influenced by the intervention of

hemodynamics and a relatively low temporal resolution with

respect to the interactions of neuronal populations. Simulations

showed that these intervening operations of low-pass filtering and

down-sampling can introduce bias in inference on ordinary

granger causality based statistics. However, it was shown that

robust detection of unidirectional influence from one neuronal

population to another is possible in the fMRI signal using the

proposed influence-difference term. Interestingly, with sufficiently

high sample rates high sensitivity could be obtained even for

influences with moderate strength and delay, suggesting that in

practice considerable power could be gained with faster

acquisition schemes. In resolving unidirectional influences based

on temporal precedences in signal fluctuations, Granger causality

mapping relates to the approach of fMRI mental chronometry

(Formisano and Goebel, 2003; Menon et al., 1998). In fMRI

mental chronometry, the onset latency of BOLD responses is used

to resolve a sequence of processing stages. Granger causality

mapping forms an extension to this method, in principle using

temporal precedence not only in the stimulus locked onset of the

BOLD response but also in the ongoing signal fluctuations.

Indeed, we observed that the latency of trial-based BOLD

responses largely agreed with the directionality discovered by

the GCMs. An interesting question arising from these observa-

tions is to what amount the influences found are driven more by

strictly stimulus-locked deterministic signal fluctuations or by

ongoing stochastic fluctuations, perhaps more indirectly induced

by the experimental design. By its very nature, an autoregressive

model does not distinguish between these two sources of signal

fluctuations. The dynamics of the signal-fluctuations in an

autoregressive model are driven by the random error process

u[n], which is therefore often called the innovation process. The

causes of the fluctuations in the innovation-process itself are not

explicitly modeled and, therefore, remain unclear after the fitting

of an autoregressive model to given data. Thus, it is only by the

post hoc deconvolution analysis that we could ascertain that

stimulus-locked signal changes, as characterized by an event-

related average, seem to be an important source of temporally

delayed signal fluctuations captured by the autoregressive models.

More generally, autoregressive models estimated on the fMRI
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signal do not allow a dblind deconvolutionT that reconstructs an

estimate of neuronal population dynamics (e.g., LFPs) from the

observed fMRI signal. This would require more complex models

with physiologically feasible state-variables and parameters, and

an invertible observation model that characterizes local hemo-

dynamics (Friston et al., 2003; Riera et al., 2004).

A question that remains is how influence difference terms can

be interpreted in the context of more complicated bi-directional

interactions, such as top-down feedback. Consider, for instance, a

cortical area that sends bottom-up influence to a down-stream

region and simultaneously receives top-down modulation from that

same area. In this case, a dGCM likely shows only the dominant

direction of influence, and only has the capacity to detect changes

in the dominant direction of information flow between tasks or

conditions. However, in a slightly different case where the source

of bottom-up influence and the target of top-down modulation are

different but anatomically very close, the exploratory mapping

approach can prove to be very useful. With sufficient spatial

resolution, a dGCM can identify and distinguish these functionally

different parts of the network that might otherwise have been

lumped together.

An important consideration in any method that relies on

temporal precedence in fMRI data is to discount systematic

differences in the lag of the BOLD response as a cause of the

results. Of primary concern here is the possibility of a systematic

difference in the lag of the hemodynamic response between

different brain structures. Such a systematic difference could yield

spurious influences. We examined the modulation of influence by

experimental demands and cognitive context as a way to rule out

hemodynamics as a cause of the results. The pattern of influences

for a left posterior parietal region was indeed shown to be

modulated by a change to an experimental context that required

less cognitive effort. Perhaps, explicit modeling of these modu-

lations as psychophysiological interactions in a dynamic context

(Friston and Buchel, 2000; Harrison et al., 2003) can form a useful

extension to the current approach. A possible further improvement

in the applicability of the method is its combination with

approaches that try to identify and remove the effects of large

draining vessels in fMRI data. Large vessels could often be

observed in the GCMs, especially before projection onto the

cortical surface. There is certainly an influence from the

hemodynamic signal measured in a cortical area to that of the

vessels that drain it. However, since in neuroimaging studies it is

generally the interactions between neuronal populations that are of

interest, strategies to remove vessel-related effects from the GCMs

would be a useful addition. One should consider that in the current

implementation of GCM, one cannot be absolutely certain that a

detected influence between two areas is a direct influence. This

means that the influence shown between two cortical regions in a

dGCM could run via a third region. However, in this case, the third

region would also be expected to show up in the same map. In

addition, computation of an additional dGCM with this region as

the reference could reveal its intervening role, being a target of

influence from one of the areas, and a source of influence to the

other. Similar considerations apply for other situations with

additional influence from areas not taken into account, such as

cases of common input. Computing conditional GCMs based on

conditional influence measures (Geweke, 1984), which include the

activity of a third area into the VAR models to partial out its

influences, is a possible further approach towards handling these

cases.
In summary, we think the exploratory approach of mapping

influences between a region of interest and the rest of the brain will

form a very useful addition to existing models of effective

connectivity. The absence of structural assumptions in the form

of an anatomical model makes it a useful tool in exploring possible

alternative anatomical models underlying performance of cognitive

and sensorimotor tasks. Because of its reliance only on assump-

tions incorporated in the concept of Granger causality, it can clarify

which interactions are supported by temporal precedence informa-

tion in the acquired data, and which other interactions, highlighted

only by instantaneous correlations, require explicit directional

modeling. Especially in early phases of investigation and data

analysis, our method can help formulate explicit hypotheses about

functional networks that can later be tested with more hypothesis-

driven approaches.
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Appendix A. Computation of the influence measures

Geweke’s dependence measure Fx ,y (Geweke, 1982) can be

defined using the (zero-lag) autocorrelation matrices of the

residuals of the following three VAR models involving the

K-dimensional series x[n] and L-dimensional series y[n]:

x n½ � ¼ �
Xp
i¼1

Ax i½ �x n� i½ � þ u n½ � var u n½ �ð Þ ¼ �1

y n½ � ¼ �
Xp
i¼1

Ay i½ �y n� i½ � þ v n½ � var v n½ �ð Þ ¼ T1

and with q n½ � ¼ x n½ �
y n½ �

�
:

�

q n½ � ¼ �
Xp
i¼1

Aq i½ �q n� i½ � þ w n½ � var w n½ �ð Þ ¼ Y ¼ �2 C

CT T2

��

where q[n] is O-dimensional (with O = K + L), �1 and �2 are K

by K, T1 and T2 are L by L, and Y is O by O. Although both x[n]

and y[n] can both be vector time series, they were both scalar time

series in these investigations, that is, K = L = 1. The residual

correlation matrices �1, �2, and Y, quantify how well we are able

(using linear AR models) to predict current values of x and y from

their past values. The measures of total linear dependence between

x and y, linear influence from x to y, linear influence from y to x,

and instantaneous influence between x and y are defined to be,

respectively (Geweke, 1982):

Fx;y ¼ ln j�1jd jT1j = jYjð Þ

FxYy ¼ ln jT1j = jT2jð Þ

FyYx ¼ ln j�1j = j�2jð Þ

Fxy ¼ ln j�2jd jT2j = jYjð Þ
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where |�| is the determinant of�. From these definitions, it can

be seen that it holds that:

Fx;y ¼ FxYy þ FyYx þ FxSy

Here, we are assuming that the finite order AR-models are valid

descriptions of the time-series x[n], y[n], and q[n], which also

implies the assumption that q[n] is wide sense stationary (WSS)

and thus that x[n] and y[n] are jointly WSS. Since it holds that

|T2| V |T1|, FxYy will always be nonnegative. As we can interpret

the determinant of a correlation or covariance matrix as a measure

of generalized variance, |T1| is the generalized variance of the

mean squared error in predicting y[n] by a linear projection on its

own past values {y[n�1], y[n�2], . . .}. Therefore, FxYy quantifies

the reduction in this generalized variance obtained by adding past

values of x to the projection set. A similar interpretation holds for

FyYx . Fxd y essentially quantifies the deviation of the residual

correlation matrix Y of the joint VAR model from being block-

diagonal, and thus the extent to which there is residual instanta-

neous correlation between x[n] and y[n].

VAR models were estimated from simulated or experimental

data using a version of the multivariate fast orthogonal algorithm

specialized for the estimation of VAR models with the possibility

for non-linear terms and time-varying coefficients (Bagarinao and

Sato, 2002). To specify the order p of the autoregressive models to

be estimated, the Schwarz Criterion (SC) was used, which is an

order selection criterion, constructed in a Bayesian context that

trades off reduction in error-variance against increased model

complexity, that is, number of parameters (Luetkepohl, 1991). The

SC for a given VAR model fit is a function of model order p, model

dimension D, the residual correlation matrix �, and the number of

observations N, and is given as SC pð Þ ¼ ln j�jð Þ þ ln Nð Þ
N

pD2

(Luetkepohl, 1991), where dj�jT denotes the determinant of �.

Evaluating SC( p) for a large range of orders, the optimal order is

selected as that for which SC( p) is minimal.
Appendix B. Statistical inference

Parametric inference was developed for the influence measures

FxYy, FyYx, and Fxd y (Geweke, 1982). However, such inference

does not extend to more general conditional measures of influence

(Geweke, 1984), and is not valid when dealing with sampled or

aggregated time-series (Wei, 1990). Thus, inference on computed

influence measures was performed within the framework of the

bootstrap methodology (Efron and Tibshirani, 1993). A large

number M of surrogate time-series are generated that are

sufficiently dlikeT the original in their dynamic and statistical

properties and that satisfy the null hypothesis of no influence.

Computation of the influence measures over these surrogates gives

a bootstrap empirical distribution of values that characterizes the

null hypothesis. The empirical P value or achieved significance

level (ASL) for a given influence statistic obtained from real data

can be taken as the proportion of values in the empirical null

distribution more extreme than this value. Inference can then

proceed either within the classical framework, controlling for

probability of type I error a or, alternatively, with methods

controlling for the False Discovery Rate (FDR). A classical test for

an influence term being larger than zero is performed by setting the

significance threshold at the value in the empirical null distribution

that separates the a*M largest values from the rest. A two-sided
test for an influence difference term FxYy � FyYx (see text) being

non-zero corresponds to setting a lower threshold at the value in

the empirical null distribution of difference terms that separates the

(a/2)*M smallest values from the rest, and a upper threshold at the

separation of the (a/2)*M largest values.

When performing a large number V of simultaneous statistical

tests (e.g., over a large number of voxels in a statistical parametric

map), one can alternatively employ methods that control for the

FDR, the expected proportion of false positives among all tests for

which the null hypothesis is rejected (Genovese et al., 2002). This

has the advantage of dealing with multiple comparison problem,

while retaining considerable power in the detection of effects and

adapting to the noise level in the data. The FDR-based thresholds

corresponding to a two-sided test for the influence difference term

being non-zero at an accepted FDR level q are obtained from the set

of empirical P values of the obtained statistics over all voxels.

Empirical P values for the influence difference terms were pooled

for positive and negative terms by taking absolute values of both the

true statistic distribution and the null distribution. The empirical P

value for a given (absolute) difference term was then obtained as the

proportion of larger values in the (absolute) empirical null

distribution. Subsequently, the FDR-based threshold is obtained

from the P values as follows. In the ordered collection of P values,

let r be the largest i for which P[i] V (i/V) * ( q/c(V)), then the

threshold is set at the value corresponding to the P value P[r]. The

value of the constant c(V) is determined by assumptions on the joint

distribution of P values over all voxels. Here, it was set to c(V) = 1,

which applies when the P values at different voxels are independent

and when noise is Gaussian with nonnegative correlation across

voxels. Alternatively, it can be set to c Vð Þ ¼ �V
i ¼ 11=i; which

applies for any distribution of P values over voxels.
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