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Minimum L1-norm solutions have been used by many investigators to

analyze MEG responses because they provide high spatial resolution

images. However, conventional minimum L1-norm approaches suffer

from instability in spatial construction, and poor smoothness of the

reconstructed source time-courses. Activity commonly ‘‘jumps’’ from

one grid point to (usually) the neighboring grid points. Equivalently, the

time-course of one specific grid point can show substantial ‘‘spiky-

looking’’ discontinuity. In the present study, we present a new vector-

based spatial– temporal analysis using a L1-minimum-norm (VESTAL).

This approach is based on a principle of MEG physics: the magnetic

waveforms in sensor-space are linear functions of the source time-

courses in the imaging-space. Our computer simulations showed that

VESTAL provides good reconstruction of the source amplitude and

orientation, with high stability and resolution in both the spatial and

temporal domains. ‘‘Spiky-looking’’ discontinuity was not observed in

the source time-courses. Importantly, the simulations also showed that

VESTAL can resolve sources that are 100% correlated. We then

examined the performance of VESTAL in the analysis of human

median-nerve MEG responses. The results demonstrated that this

method easily distinguishes sources very spatially close to each other,

including individual primary somatosensory areas (BA 1, 2, 3b),

primary motor area (BA 4), and other regions in the somatosensory

system (e.g., BA 5, 7, SII, SMA, and temporal–parietal junction) with

high temporal stability and resolution. VESTAL’s potential for obtaining

information on source extent was also examined.
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Introduction

MEG is a functional imaging technique that detects neuronal

activity with millisecond temporal resolution. However, many

different source configurations can generate identical magnetic

field distribution at the MEG sensor array. In order to unambig-

uously localize the sources that generate the MEG signal, specific

assumptions must be made about the nature of the neuronal

sources. These are termed ‘‘source models.’’ A widely accepted

source-modeling technique for MEG involves calculating a set of

equivalent current dipoles (ECDs), assuming that the underlying

neuronal sources are focal. This dipole fitting procedure is non-

linear and over-determined since the number of unknown dipole

parameters is much less than the number of MEG measurements.

Automated multiple-dipole model algorithms such as multiple

signal classification (MUSIC) (Mosher et al., 1992; Mosher and

Leahy, 1998; Mosher et al., 1999a) and multistart spatial and

temporal (MSST) multiple-dipole modeling (Huang et al., 1998;

Aine et al., 2000; Huang et al., 2000; Shih et al., 2000; Stephen

et al., 2002; Hanlon et al., 2003; Stephen et al., 2003; Huang et al.,

2004a; Huang et al., 2004b) have been studied and applied to the

analysis of human MEG responses. However, the ability of dipole

models to adequately characterize neuronal responses is limited

due to (1) difficulties in localizing extended sources with ECDs;

(2) problems in accurately estimating the number of dipoles in

advance; and (3) the sensitivity of dipole time-courses to errors in

dipole location, particularly in depth.

Other methods of modeling MEG responses include lead-field-

based imaging approaches. Unlike multiple-dipole modeling, lead-

field approaches divide the source space into a grid containing a

large number of dipoles, and the inverse problem is to obtain the

dipole moments for the grid nodes (Hamalainen and Ilmoniemi,

1994). Here the inverse solution is a highly under-determined since

the number of unknown dipole moments is much greater than the

http://www.sciencedirect.com
mailto:mxhuang@ucsd.edu
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M.-X. Huang et al. / NeuroImage 31 (2006) 1025–10371026
number of MEG sensors. Consequently, a large number of solutions

can fit the data equally well. To handle this ambiguity, additional

constraints are needed to reduce the non-uniqueness of the solution.

The main advantage of lead-field approaches is that the number of

sources to model does not need to be specified in advance. The

minimum L2-norm inverse is a lead-field-based inverse solution that

minimizes the total power (L2-norm) of the dipole moment

(Hamalainen and Ilmoniemi, 1994). Such a solution can be easily

obtained using a direct linear inverse operator (pseudo inverse

calculation with regularization) of the lead fields. Dale et al. (2000)

developed an anatomically constrained minimum L2-norm solution

using noise covariance normalization to obtain statistical signifi-

cance of MEG responses. Strengths of this solution included low

computational cost and smooth source time-courses, making

statistical comparison across different conditions quite simple. This

anatomically constrained minimum L2-norm solution has been used

in many MEG applications (Dale et al., 2000; Dale and Halgren,

2001; Marinkovic et al., 2003). However, the spatial resolution of

the minimum L2-norm solution is relatively low and tends to

provide distributed reconstructions even if the true generators are

focal. Cross-talk between source time-courses of nearby grid points

can also be relatively high.

Independent component analysis (ICA) is another signal

processing tool that can separate different signals, which are

statistically independent in time. ICA has been used to successfully

identify and remove artifacts (e.g., eye blink, eye movement,

muscle artifact, cardiac artifact, etc.) from contaminated EEG and

MEG data (Vigario, 1997; Ikeda and Toyama, 2000; Jung et al.,

2000a; Jung et al., 2000b). ICA has also been used to separate

different brain sources (Makeig et al., 1997; Vigario and Oja, 2000;

Vigario et al., 2000; Barros et al., 2000; Jung et al., 2001).

However, it has been difficult to directly examine two major

assumptions underlying ICA: that source time-courses of brain

activation are (1) statistically independent, and (2) non-Gaussian.

Statistical independence implies uncorrelated source time-courses;

ICA has difficulties of resolving highly correlated brain sources.

To address these limitations, the present study examined the

efficacy of a novel minimum L1-norm solution in analyzing MEG

responses. The minimum L1-norm solution selects the source

configuration that minimizes the absolute value of the source

strength, and can handle highly correlated sources, since additional

assumptions about their temporal dynamics are not needed. Like the

minimum L2-norm, the minimum L1-norm method does not need

information about the number of sources as a prerequisite. Unlike

minimum L2-norm solutions, the minimum L1-norm solution can

also provide focal high-resolution images for focal generators. The

minimum L1-norm solution is a non-linear minimization approach

that can be effectively implemented by linear programming (LP)

(Matsuura and Okabe, 1995; Matsuura and Okabe, 1997; Uutela et

al., 1999). Although LP is not as fast as the direct pseudo-inverse

used by the minimum L2-norm solution, many LP algorithms can

efficiently handle problems with thousands to millions of variables.

Deviating from the LP implementation of minimum L1-norm

approaches, Phillips et al. (1997) suggested a lead-field-based

inverse method for MEG using a combination of L1-norm and

neighborhood clustering function. However, their cost function

needed to be minimized by a Markov random field (Geman and

Geman, 1984), which results in a high computational cost,

particularly when the number of dipoles on the grid is large.

Although minimum L1-norm methods, particularly the magnetic

current estimation (MCE) L1-norm solution (Uutela et al., 1999),
have been used in manyMEG applications (Vanni and Uutela, 2000;

Tesche, 2000; Stenbacka et al., 2002; Pulvermuller et al., 2003;

Osipova et al., 2005; Auranen et al., 2005; Liljestrom et al., 2005),

these conventional approaches have some limitations. The first is

that the dipole orientation at each grid point must be known before

applying L1-norm methods (Uutela et al., 1999); or the dipole

orientation must be iteratively determined (Matsuura and Okabe,

1995, 1999). The latter approach can significantly slow down the

computation, without appreciably improving the results (Uutela

et al., 1999). In the former case, the dipole orientation on each grid

point is chosen based on the orientation derived from the minimum

L2-norm approach. However, when MEG data contain multiple

generators, the L2-norm reconstructed dipole orientation may

deviate from the true orientation (see Results for examples), which

can then cause the minimum L1-norm analysis to misfit the data.

The most serious limitations of conventional minimum L1-norm

approaches are their instability in spatial location and poor

smoothness in reconstructed source time-courses. For instance,

one often sees activity ‘‘jumping’’ from one grid point to (usually)

neighboring grid points. Equivalently, the time-course of one

specific grid point can show substantial ‘‘spiky-looking’’ disconti-

nuities. This problem is also encountered in other focal localization

methods using lead-field approaches (e.g., FOCUSS Gorodnitsky

et al., 1995). Although averaging across many time points reduces

the discontinuity in source time-courses, this results in a loss in

temporal resolution (Uutela et al., 1999; Vanni and Uutela, 2000;

Tesche, 2000; Stenbacka et al., 2002; Pulvermuller et al., 2003;

Osipova et al., 2005; Auranen et al., 2005; Liljestrom et al., 2005).

In the present study, we introduce a novel vector-based spatial–

temporal analysis using a L1-minimum-norm (VESTAL) solution.

This approach is to ensure the linear relationship between MEG

waveforms in sensors and the time-courses of the underlying

neuronal sources. In the VESTAL approach, the temporal

information in the data was used to enhance the stability of the

reconstructed vector-based L1-minimum norm solution. Since this

approach makes no additional assumptions about the temporal

dynamics of the sources, it can also handle sources that are 100%

correlated. VESTAL also effectively obtains source strength and

dipole orientation without iteration or choosing a pre-fixed dipole

orientation for each grid node. VESTAL was tested in computer

simulations, and using data from human MEG responses. The

results show that VESTAL provides high spatial stability and

continuous temporal dynamics, without compromising spatial or

temporal resolution.
Material and methods

Minimum L1-norm solution (general approach)

As in all lead-field-based MEG and EEG inverse approaches,

we first divide the source space (the brain volume or just the

cortex) into a grid of a large number of dipole locations. The m � s

sensor waveform matrix B = [b(t1), b(t2), . . . , b(ts)] contains MEG

data where m is the number of MEG sensors and s is the number of

time points, b(ti) is an m � 1 vector of the MEG measurements at

given time point. For each column of B, we have:

b ¼ Gqþ noise ð1Þ

where G is the m � n (lead-field) gain matrix, q is the n � 1 dipole

moment vector for given time point, and n is the number of
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unknown dipole moment parameters related to the number of points

p in the source grid. In general, n = 3p if all x, y, and z components

(or q, h, u components in spherical coordinate system) of the dipole

moment contribute to the MEG field. If one used a spherical MEG

head model, the radial (q) component of the dipole generates zero

external magnetic fields and n = 2p. In the case that the dipole

orientation is known or pre-fixed, n = p. The MEG inverse problem

is to obtain q for a given b. Since m (the number of equations) is

usually much less than n (the number of unknown parameters), we

are dealing with a highly under-determined problem, and there are a

large number of solutions that will fit the data. To reduce the

ambiguity, additional constraints (source models) are needed. The

minimum L1-norm solution selects the source configuration that

minimizes the absolute value of the source strength. Let G = USVT

be the singular value decomposition of the gainmatrix, theminimum

L1-norm solution is seeking the source distribution q that meets the

following condition (Uutela et al., 1999):

min wT jqj
� �

subject to constraints SngV
T
ngq; UT

ngb ð2Þ

where Sng, Ung, and Vng contain the ng largest singular values and

the associated singular vectors, respectively. In Eq. (2),w is an n � 1

optional weighting vector chosen to remove potential bias towards

grid nodes at the superficial layer and it usually taken to be the

column norm of theGmatrix (Matsuura and Okabe, 1997; Uutela et

al., 1999) or a Gaussian function (Ioannides et al., 1993). Unlike the

minimum L2-norm solution, the solution to Eq. (2) is a non-linear

minimization procedure. However, if one can replace the absolute

values in |q| with some non-negative values related to q, one can

solved the set of equations through (primal) linear programming

(LP).

Because the dipole moments can be either positive or negative,

an additional step is needed to deal with the absolute values. It has

been proposed that if one introduces two new non-negative

variables qa and qb (Eiselt et al., 1987), one can rewrite Eq. (2) as:

min wT qa þ qb
� �� �

s:t: SngV
T
ngq; UT

ngb; q ¼ qa

� qb; qaj

n o
; qbj

n o
� 0; qj

� �
; j ¼ 1:n ð2aÞ

On the other hand, one can also introduce a different non-

negative variable r (Chvatal, 1983; Eiselt et al., 1987; Matsuura

and Okabe, 1997), such that Eq. (2) can be rewritten as:

min wT r
� �

s:t: SngV
T
ngq; UT

ngb; q V r; q � � r; r � 0 ð2bÞ

The drawback of both of these two approaches is the substantial

increase in the number of variables and constraints (Eiselt et al.,

1987). Two alternative approaches were introduced to handle this

issue, both of which required knowledge of the dipole orientation

at each grid node. The first approach by Matsuura and Okabe

(1999) who modified the LP algorithm to iteratively update the

orientation. However, partially due to convergence problems, the

results did not appear substantially better than a second approach

by Uutela et al. (1999) who pre-fixed each dipole orientation to the

one obtained from a minimum L2-norm solution. In both cases,

minimizing the L1-norm was transferred into minimizing the sum

of non-negative dipole amplitudes through LP. Such approaches

may cause a misfit of the data if the orientation derived from

iteration or the minimum L2-norm solution deviates from the real

orientation when multiple sources are activated at the same time

(see Results).
New vector-based minimum L1-norm solution

In the present study, we adopted a vector-based minimum L1-

norm approach, which deals with all n = 3p (or 2p in the case of

MEG spherical model) dipole components individually. We found

that in order to handle the non-negative requirement of the LP, we

only needed to know the sign of each component at each grid node,

not the actual orientation of the dipole. Assuming we have such

information about the sign, we will have:

min wTd
� �

; subject to constraints SngV
T
ng6d ; UT

ngb ð3Þ

where d is a n � 1 non-negative dipole strength vector and 6 is a

n � n diagonal sign matrix with the diagonal elements equal T 1

dependent on the sign of the dipole moments (in x, y, z or q, h, u
directions) at each grid node. Eq. (3) can be easily solved by LP.

The remaining problem is to obtain the sign information for each

component of the dipole moment at each grid node. In practice, we

found that the sign information from the minimum L2-norm

solution is adequate to construct the 6 matrix. Note that unlike

the approach from Uutela et al. (1999) who pre-fixed the orientation

of the dipole to the one obtained from the L2-norm solution (i.e.,

fixed the ratio of the x, y, and z components of each dipole

moment), we only adopted the sign of each component from the L2-

norm solution without imposing constrains on the ratios between x,

y, or z components. This is one difference between our vector-based

minimum L1-norm approach and conventional L1-norm

approaches, which allow us to reconstruct not only the dipole

strength, but also the dipole orientation as shown in the simulation

(see Results). Our experience also suggests that this new vector-

based L1-minimum-norm approach using Eq. (3) gives virtually the

same result, with only a fraction of computational cost, as the

approach using Eqs. (2a) or (2b).

Handling the orientation bias towards the coordinate axes

One problem that needs to be addressed by the minimum L1-

norm approach is that the solution has a tendency (bias) towards the

coordinate axes. For example, in spherical MEG head model, a

dipole at the ith node of the grid, the vector-based L1-minimum

norm solution can also be expressed as minimizing ~p
i¼1widi

jcos wið Þj þ jsin wið Þjð Þ where w i is the angle between total dipole

moment and the orientation of the elevation in a tangential

containing the dipole node, and di is the non-negative dipole

strength. This will introduce a bias towards the coordinate axes

(Fig. 1). In order to handle this bias, an additional factor

jcos we
i

� �
j þ jsin we

i

� �
j

� ��1
was included in the weighting vector

w in Eq. (3), where wi
e is the angle associated with the estimated

orientation based on L2-minim norm solution. Notice that we only

used the orientation estimation from the L2-norm to reduce the bias

for the L1-norm analysis, but did not force the L1-norm solution to

be in the L2-norm orientation. The results from the simulations

showed that the L1-norm orientation obtained using this approach

is more accurate than the original estimation of the orientation from

L2-norm.

Another advantage of the above approach is that one does not

need to worry about the convergence problem in a separate

orientation optimization step (Matsuura and Okabe, 1999). We

found that this process can be time-consuming and becomes

impractical for a grid with a large number of dipoles. With the new

approach of using the estimated L2-norm orientation in the



Fig. 1. Orientation bias of the minimum L1-norm solution. A spherical MEG

model is assumed. Here, w measures the angle between the total dipole

moment vector and the orientation axes. w = 0- means the dipole moment

vector is along the orientation of elevation (i.e., ĥ), while w = 90- indicates

the dipole points to the azimuth direction (i.e., û). The function Acos(w)A +

Asin(w)A in the L1-norm showed bias (smaller values) towards the

coordinate axes.
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weighting vector, we were able to achieve accurate orientation with

virtually no increase of computational cost.

Handling pink noise with pre-whitening

So far, we are dealing with white noise, which is identical and has

an independent distribution (IID). In studying human MEG and

EEG responses, correlated pink noise is common. In that case, one

needs to perform pre-whitening to the data using the noise

covariance matrix C (Sekihara et al., 1997, 1999), prior to applying

the vector-based minimum L1-norm solution. During the process,

one can simply replace G with G̃ = C�1/2 G and B (or b) with B̃ =

C�1/2 B (or b̃ = C�1/2b). Here, the whitening operator was obtained

with the help of the eigenvalue decomposition of the noise

covariance matrix: C = UC�C
2UC

T and C�1/2 = �C
�2UC

T (Hamalai-

nen, 2005). For evoked responses requiring trial averaging, the

covariance matrix was obtained from the raw (unaveraged) data,

and the covariance matrix of the averaged responses from the raw

noise covariance matrix divided by the number of trials used in the

averaging (Sekihara et al., 1999; Hamalainen, 2005).

Preventing under- and over-fitting of the data using chi-square

One important issue is to ensure the data are fit appropriately

and to prevent over- and under-fitting while minimizing the L1-

norm. This is achieved by selecting the appropriate number of

dominating singular values ng in Eq. (3). If the selection of ng is

too small, one will not be able to fit the data well. On the other

hand, if ng is too large, one will actually over-fit the data by fitting

the noise feature. In the present approach, we select ng such that

the chi-squired value:

X 2 ¼ G̃Gp� b̃b
� �T

G̃Gp� b̃b
� �

ð4Þ

(i.e., the square error between the predicted and measured magnetic

fields, divided by the noise covariance matrix) for each time point

will be in the range of mF 3:29
ffiffiffiffi
m

p
where m is the number of

MEG/EEG sensors. Statistically, the largest 99% acceptable value
for chi-square should be within this range. To fulfill Eq. (4), we

explored two approaches to truncate the small singular values in G̃.

The first approach truncated the singular values if they meet the

following condition:

k2kV
a
m

Trace G̃GG̃GT
� �

I
1

SNR
ð5Þ

where kk was the singular values of whitened gain matrix G̃, SNR

is the (variance) signal-to-noise ratio of the whitened data, and a is

a scaling factor. Such selection was consistent with the one

typically used in minimum L2-norm regularization (Hamalainen,

2005). The second approach for truncation used an automated, but

more complicated algorithm to determine the optimal truncation

based on original work from (Sano, 1993). Our experience showed

that both approaches gave satisfactory and very similar results.

New vector-based spatial– temporal analysis using

L1- minimum-norm (VESTAL)

One major problem of conventional L1-norm approaches is the

instability in spatial construction and discontinuity in reconstructed

source time-courses. Vector-based minimum L1-norm solution

operating on individual time points will also suffer from the same

instability as the conventional approaches. To increase spatial and

temporal stability, we developed a spatial– temporal vector-based

minimum L1-norm solution. The idea was based on a principle of

MEG physics, which states that the magnetic waveforms in the

sensor-space are linear functions of the dipole time-courses in the

source-space. If we perform singular value decomposition for the

m � s MEG sensor waveform data matrix:

B ¼ UBSBV
T
B ð6Þ

one can see that all temporal information in the MEG sensor

waveform can be represented as a linear combination of the

singular vectors in the matrix VB. Since MEG sensor waveforms

are linear functions of the underlying neuronal source time-courses,

the same signal subspace that expands the temporal dimension of B

should also expand the temporal dimension of the n � s source

time-course matrix D = [d(t1), d(t2), . . . , d(ts)] estimated from the

vector-based minimum L1-norm solution for s time points. By

projecting D towards VB, we can ensure that source time-courses

matrix D and sensor waveform matrix B share the same temporal

information as requested by the MEG physics:

DVESTAL ¼ DP� ð7Þ

where the projection matrix P� = VBVB
T is constructed using the

dominant (signal-related) temporal singular vectors (subspace) of

the sensor waveforms. We called DVESTAL the vector-based

spatial– temporal analysis using L1- minimum-norm (VESTAL).

The criterion of selecting the signal-related subspace dimension of

the B matrix through SVD is to make sure the chi-square values

stay within the range of mF 3:29
ffiffiffiffi
m

p
(m is the number of MEG

channels) for each time point after the spatiotemporal linear

projection using Eq. (7). The adequate subspace dimension is the

lowest value that meets this criterion. If the signal-related subspace

is under-estimated (i.e., less than the adequate subspace dimen-

sion), chi-square values increase dramatically above the upper

range. This is as a strong indication of a bad fit and should be

avoided. On the other hand, if the signal subspace is over estimated

by one or two, the results of the source time-courses and the chi-

square values stay virtually the same. This is because the



Fig. 2. Computer simulation of VESTAL for 3 dipoles. White noise of 10 fT was added to the sensor waveforms (SNR = 8.1 dB). (a–c) True dipole time-

courses for two 100% correlated dipoles (#1 and #2) and one asynchronous dipole (#3). The solid and dashed lines represent the dipole time-courses along the

true dipole orientation and the one in the orthogonal direction, respectively. The dashed-dotted line and the dotted line are dipole time-courses along the two

coordinate axes (i.e., ĥ and û). The three numbers in each subplot indicate the angle between the total dipole moment vector and the direction of ĥ. (d– f)
Reconstructed dipole time-courses using VESTAL. The solid and dashed lines represent the dipole time-courses along the best fitting dipole orientation and the

one in the orthogonal direction, respectively. The other definitions are the same as in the first row. (g– i) Source strength maps of VESTAL at three time points.

The three black spots from VESTAL coincide with the true dipole locations.
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probability that spatiotemporal modes of the signal fall into the few

noise singular vectors by chance (due to slightly over-estimation) is

rather small. Insensitivity to slight over-estimations of the subspace

dimension has been observed in other MEG inverse approaches as

well (e.g., MUSIC: Mosher et al., 1992; Mosher and Leahy, 1998).

In many cases, researchers want to obtain the best fitting

orientation and source time-courses associated with the best

orientation. In the present study, the best fitting orientation at each

node is obtained by simply adopting the orientation of the leading

spatial-domain (row or left) singular vector formed by the time-

courses of the individual components of the dipole at the node. The

associated best fitting source time-course is the leading time-domain

(column or right) singular vector multiplied by the leading singular

value (Mosher et al., 1992; Mosher and Leahy, 1998).

Setup for computer simulations and analyzing human

MEG response

In the present study, two computer simulations were conducted to

examine three key issues related to the performance of VESTAL.
These issues included: (1) examining VESTAL’s ability of handling

highly correlated sources, (2) studying VESTAL’s accuracy of

obtaining source orientations when the true orientations is along the

coordinate axes or deviate from them, and (3) exploring VESTAL’s

potential of obtaining source extent and the impact of the upper limit

of the source amplitude to the source extents.

The performance of VESTAL was further examined using

human MEG responses evoked by unilateral median-nerve

stimulation. This task is particularly appropriate because it has

been used routinely in humans to study the somatosensory system,

which is probably the most well studied neuronal system in

humans. Consequently, we have an excellent understanding of the

underlying neuronal activity, which allowed us to predict with a

high degree of confidence where sources should be found. For

example, neurophysiology studies have shown that strong stimu-

lation of the peripheral nerve activates: (1) primary somatosensory

area (SI) with a first component around 20 ms post-stimulus (Wood

et al., 1985; Hari et al., 1993; Forss et al., 1994; Kawamura et al.,

1996; Mauguiere et al., 1997a,b; Jousmaki and Forss, 1998; Forss

and Jousmaki, 1998; Hari and Forss, 1999; Huang et al., 2000,



Fig. 3. Computer simulation of VESTAL for obtaining source extent. (a) The true source configuration with extent. (b) Under a very high SNR condition (70

dB ¨ V) with no upper bound imposed on source strength, VESTAL accurately reconstructs the source geometry. (c) Under a more realistic SNR level where

the difference between the MEG fields generated by the true source and the point focal source is less than the noise level, VESTAL provides a focal

reconstruction with stronger amplitude. Here, no upper bound is imposed on the source strength, which explains the large difference in the scaling on the color

bar. (d) When we impose an upper bound to the source amplitude, VESTAL provides a source extent comparable to the true source.
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2004a, 2005); (2) primary motor area (M1) with a first component

around 20–30 ms post-stimulus (Rosen and Asanuma, 1972;

Lemon and Porter, 1976; Jones et al., 1978; Wong et al., 1978;

Jones et al., 1979; Lemon, 1979; Lemon, 1981; Davidoff, 1990;

Baldissera and Leocani, 1995; Kawamura et al., 1996; Spiegel et

al., 1999; Huang et al., 2000; Huang et al., 2004a; Huang et al.,

2005); (3) superior parietal area (Jones et al., 1978; Jones et al.,

1979; Forss et al., 1994; Boakye et al., 2000; McGlone et al., 2002;

Waberski et al., 2002); (4) supplementary motor area or SMA

(Urbano et al., 1997; Boakye et al., 2000; Barba et al., 2001); and

(5) secondary somatosensory areas (SII) (Hari et al., 1993; Forss

and Jousmaki, 1998; Hari and Forss, 1999; Fujiwara et al., 2002;

Simoes et al., 2003; Huang et al., 2005).

However, in previous MEG studies, it has proven difficult to

distinguish individual regions in SI (BA 1, 2, and 3b) and the parietal

cortex (BA 5 and 7), which is part of the somatosensory system

(Kandel et al., 2000). In addition, we are not aware of any study that

has shown source time-courses for all of these regions at once.

A data set of this kind is quite challenging for many MEG

inverse algorithms since it contains a large number of neuronal

generators, many of which are very close in space. Additional

complications are that sources can be both focal and extended,

have a relatively short duration in time, and may have highly

correlated time-courses. This type of challenge is especially

suitable for evaluating the strengths of VESTAL.

To evaluate VESTAL using a challenging data set, we

conducted MEG recordings from a healthy subject as he underwent
median-nerve stimulation. The subject’s right median-nerve was

stimulated using a bipolar Grassi constant current stimulator. The

stimuli were square-wave electric pulses (0.2 ms duration)

delivered at about 1 Hz (ISI: 800 ms to 1200 ms). The intensity

of the stimulation was adjusted until robust thumb twitches were

observed. A trigger from the stimulator, which was simultaneous

with the stimulus, was sent to the MEG acquisition system for

signal averaging. Magnetic fields evoked by median-nerve

stimulation were measured using an Elekta/Neuromagi whole-

head MEG system (Helsinki, Finland), with 122 planar gradiom-

eter channels in a magnetically shielded room (IMEDCO-AG,

Switzerland). EOG electrodes were used to detect eye blinks and

eye movements. An interval of 500 ms post-stimulus was recorded,

using 300 ms pre-stimulus data for noise estimation. Data were

sampled at 1000 Hz and run through a high-pass filter with 0.1 Hz

cut-off and through a notch filter (58–62 Hz) to remove 60 Hz

power-line noise. Three hundred artifact-free MEG responses were

averaged with respect to the stimulus trigger to increase the SNR.
Results

Computer simulations examining the performance of VESTAL

Example one: focal and 100% correlated sources

The purposes of the first simulation are: (1) to examine the

ability of the VESTAL method in providing high spatial and



Fig. 4. Superimposed MEG sensor waveforms evoked by right median-nerve stimulation in a normal subject. (a) Measured sensor waveforms. (b) Predicted

sensor waveforms from VESTAL. (c) Residual waveforms. (d) Singular values of the measured sensor waveforms.
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temporal stability when handling focal and correlated sources, even

in a noisy environment and (2) to examine the accuracy of

obtaining the source orientation using VESTAL. Simulated MEG

responses were generated with 3 dipoles, two of which had time-

courses that were correlated 100% (Figs. 2a–c). A spherical head

model was used in the forward calculation (Sarvas, 1987). In this

head model, only the two tangential dipole components were used

in the calculation since radial components of a dipole do not

contribute to the MEG fields. The orientation of the dipoles was

designed to cover a variety of situations: Dipole #1 (Fig. 2a) was

along one coordinate axes in the elevation direction ĥ; Dipole #2

(Fig. 2(b)) was 45- from both coordinate axes (i.e., ĥ and azimuth

direction û), and Dipole #3 (Fig. 2c) was 30- from ĥand 60- from
û. In Fig. 2(b), the time-courses along were artificially displaced

up-and-down a little for visualization purpose. The sensor

configuration of an Elekta/Neuromagi whole-head 122-channel

MEG system was adopted in the simulation. White noise with 10

fT SD was added to the sensor waveforms. The total noise variance

was 15% of the signal variance for the entire interval (SNR = 8.1

dB).

The inverse solution using VESTAL with a spherical grid (642

vertices) showed that the algorithm had no problem accurately

localizing these dipoles. Figs. 2d– f showed that VESTAL

accurately reconstructed the shape of dipole time-courses, includ-

ing ones that were 100% correlated (Figs. 2d–f). No ‘‘spiky-

looking’’ discontinuities (a typical phenomenon of conventional

minimum L1-norm approaches) were observed. The reconstructed

dipole orientations from VESTAL deviated from the true orienta-

tions by 0.0-, 4.0-, and 6.9-, respectively.
In contrast, the orientations obtained from the minimum L2-

norm solution deviated from the true dipole orientations by 10.3-,
12.5-, and 11.1-, respectively for the three grid nodes where the

true dipoles are located. This result demonstrates that the dipole

orientations from VESTAL were more accurate than the ones

provided by minimum L2-norm solution.

Example two, source extent

The second example explored VESTAL’s performance in

obtaining the spatial extent of the source. A cubic grid of 5 mm

mesh size was used in the simulation. Fig. 3a shows the true

source configuration in which 6 grid points were activated

simultaneously to generate the signal. A half sinusoidal time-

course with a maximum amplitude of 2 nAm was used by all the

nodes that were active. For a nearly noiseless case (SNR ¨ V

(70 dB)) with no upper bound imposed on the source strength,

VETSAL precisely reconstructed the shape of the source (Fig.

3b). However, when a realistic amount of noise (SNR = 10.8 dB)

was added to the data without an upper bound on source

strength, VESTAL showed a more focal reconstruction than the

true source configuration, but with a much stronger amplitude

(i.e., ¨7 nAm in Fig. 3c; note the difference in scaling of the

color bar) than any of the individual nodes in the true con-

figuration. The reason for this phenomenon is well-known: the

difference in the magnetic fields created by the source config-

urations in Figs. 3a and c is much less than the noise variance, a

typical example of the ill-posed problem of the MEG inverse

solution. VESTAL simply chose the focal source configuration

that fit the data. On the other hand, when we put an upper bound



Fig. 5. Snapshots of VESTAL source amplitudes across time in the left hemisphere viewed from lateral (top three rows) and medial (bottom three rows)

directions. Sources were obtained from MEG responses evoked by right median-nerve stimulation in a healthy subject. The color scale (opaque red to bright

yellow) was from 0 nAm to 5 nAm. Top two rows: early activations of individual areas in SI (BA, 1, 2, and 3b) and M1 (BA 4) were highly distinguishable. BA

5 and 7 showed activation during 40–70 ms. Middle two rows: SII, PV, SMA, anterior temporal, and temporal–parietal junction showed activation later than

the primary sensorimotor areas. Bottom rows: an area in the vicinity of the thalamus showed early activation.
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Fig. 6. Marked improvement of the smoothness for the source time-courses of the median-nerve responses using VESTAL. (a) Superimposed ‘‘spike-looking’’

source time-courses when conventional minimum L1-norm was used to fit the median-nerve response. (b) Superimposed source time-courses after the

spatiotemporal projection using VESTAL. The rest showed four individual source time-courses from VESTAL: (c) SI BA 3b; (d) SI BA 1, 2; (e) SII BA 23, 40;

(f ) SMA, BA 6.
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on the source amplitude (Fig. 3d; 2 nAm bound), VESTAL

shows a source extent that is more comparable with the true

source configuration.

Performance of VESTAL for human MEG responses

The VESTAL approach was applied to a data set containing

MEG responses evoked by unilateral median-nerve stimulation in a

healthy subject. Fig. 4a shows the measured sensor waveforms of

MEG responses evoked by the right median-nerve stimulation,

with all 122 channels superimposed. The predicted MEG sensor

waveforms in Fig. 4b from the VESTAL solution matched the

measurement very well. Fig. 4c shows that mainly noise remained

in the residual waveforms (i.e., measurement minus predicted). The

singular values of the sensor waveforms in Fig. 4(a) are displayed

in Fig. 4d. A subspace of dimension six was used by VESTAL for

spatial– temporal projection in Eq. (7).
Fig. 5 shows multiple snap shots across time of the VESTAL

solution. No threshold was applied to the maps due to the clean

background in the VESTAL reconstruction. The inflated brain

surface was obtained using the Freesurfer software (Dale et al.,

1999; Fischl et al., 2004). In this analysis, a grid containing 7757

nodes was used as the source space for the cortical region, plus

1058 nodes for the cerebellum. The boundary element method

(BEM) (Hamalainen and Sarvas, 1989; Ferguson et al., 1994;

Schlitt et al., 1995; Mosher et al., 1999b) was used as the forward

model. For each node, the two dominant components (essentially

the two tangential components) were used in the analysis so that

the total number of unknown variables was 17630 per time point.

Fig. 5 displays snapshots of VESTAL derived source amplitudes

across time in the left lateral (top three rows) and medial (bottom

three rows) views of the left hemisphere. During the 20–30 ms

interval, primary somatosensory (SI) and primary motor (MI) areas

were activated with the dominant activation in BA 3b and weaker
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activation in BA 1, 2, and 4. During the 50–70 ms interval,

activation in BA 3b decreased while BA 1 and 2 become the

dominant sources. Another interesting finding was the ability of

VESTAL to map out BA 5 and 7. These two areas became activated

at 40 ms and activity lasted until around 80 ms. Activation of the

secondary somatosensory area (SII, BA 23/40) started after 60 ms

and peaked about 90 ms. Another noteworthy finding was that a

region in the ventral parietal (PV) area slightly poster to SII became

activated at about 110 ms. A couple of sources in the temporal lobe

were also observed. The temporal–parietal junction, a poly-sensory

area, was activated between 70 ms and 110 ms. Another more

anterior temporal area showed activation between 80 and 110 ms.

SMA activity is also visible in Fig. 5, but it started relatively late at

about 110 ms and peaked at about 130 ms. In addition to the cortical

areas, early activation was seen in the thalamus (row 4 in Fig. 5). The

cerebellum is not shown in the plot since the highest amplitude

observed in that region was only 0.55 nAm.

Fig. 6 demonstrates the marked improvement of the smoothness

for the source time-courses using VESTAL. Fig. 6a shows the

superimposed source time-courses when the conventional mini-

mum L1-norm was used to fit the same median-nerve response.

The solution was sensitive to noise and ‘‘Spiky-looking’’ disconti-

nuities were highly visible. Fig. 6b shows the superimposed source

time-courses after the spatiotemporal projection using VESTAL

(Eq. (7)). The ‘‘spiky-looking’’ discontinuities were absent in the

VESTAL source time-courses which were as smooth as the sensor

waveforms in Fig. 4a. The remaining of the plots in Fig. 6 show the

time-courses of four individual neuronal generators obtained by

VESTAL. The SI (BA 3b) sources in Fig. 6c showed strong

activation during 20–30 ms. The SI (BA 1, 2) source time-course

clearly showed a broad peak during 50 ms–80 ms and peaked at

about 65 ms (Fig. 6(d)). The SII area started at about 65 ms, peaked

at about 90 ms, and ended at about 120 ms (Fig. 6e). In contrast,

the much later SMA generator started at about 100 ms and peaked

at about 130 ms (Fig. 6f ).

Computational cost of VESTAL

The computational cost of VESTAL is low compared with

many non-linear optimization approaches such as non-linear

multiple-dipole modeling (Huang et al., 1998). In the above

example of human median-nerve MEG responses using a grid of

8815 nodes and 17630 dipole moment parameters per time point, it

took about 23 s to finish the fit for each time point. The total time

for the entire interval with 136 time points was about 50 min. The

LP calculation was performed using the ‘‘linprog’’ program in the

MATLABi Optimization Toolbox on a LINUX-based PC from

Dell with Intel 3.2 GHz Xeoni CPU and 1 GB RAM.
Discussion

In the present study, a new vector-based spatial– temporal

analysis using L1-minimum-norm or VESTAL was studied.

Computer simulations and results from analyses of human MEG

responses showed several advantages of this novel algorithm. First,

VESTAL has high stability and resolution in the spatial domain. This

was particularly striking in the analysis of the median-nerve

stimulation data, which illustrated that VESTAL can easily

distinguish sources that are very close spatially, such as primary

somatosensory areas BA 1, 2, 3b, and primary motor area BA 4.
Second, VESTAL also demonstrated high stability and resolution in

the temporal domain. Figs. 6(a) and (b) clearly showed the dramatic

improvement of the temporal continuity using VESTAL over the

conventional minimum L1-norm approach. Source time-courses

obtained from both simulated data and human MEG recordings

show high temporal stability (continuity) with no loss of temporal

resolution. These two features of VESTAL resulted from combining

the essential spatial– temporal projection in Eq. (7) with the vector-

based minimum L1-norm approach in Eq. (3). The vector-based

approach is important because it ensures that the row-(spatial) space

of matrix D accurately represents the reconstructed source maps so

that no ‘‘ghost images’’ from other regions will be falsely created.

Eq. (7) was based on the fact that the MEG sensor waveforms are

linear functions of the source time-courses; no temporal constraints

were introduced during the analysis. Although the linear relationship

betweenMEG sensor signal and source amplitude is behind allMEG

source estimation techniques, not all approaches ensure this linear

relationship in a spatiotemporal sense as VESTAL does to the

reconstructed source time-courses. Hence, method-specific ‘‘spiky-

looking’’ artifacts that do not exist in the sensor waveforms may

present in the source time-courses with some approaches (e.g., the

conventional minimum L1-norm approaches in Matsuura and

Okabe, 1995, 1997, 1999; Uutela et al., 1999, and commercial

software packages like CURRY). A third strength of VESTAL is that

it can resolve sources that are correlated 100%, as illustrated by the

computer simulation, and also has no problem resolving uncorre-

lated sources. We consider this feature of VESTAL an improvement

over many existing MEG and EEG localization methods including

beamformer approaches, which assume that source time-courses are

uncorrelated (Van Veen et al., 1997; Gross and Ioannides, 1999;

Robinson and Vrba, 1999; Gross et al., 2001; Sekihara et al., 2001;

Hillebrand and Barnes, 2003; Barnes and Hillebrand, 2003); and

MUSIC, which assumes they are linearly independent (Mosher et

al., 1992, 1999a; Mosher and Leahy, 1998).

We also examined the performance of VESTAL in obtaining

information about source extent. Our computer simulation dem-

onstrated that VESTAL can accurately obtain the source extent

only if this information is not buried in noise, which generally

requires very high SNR. With realistic SNR, VESTAL will provide

focal images when no upper bound is imposed on the source

strength. To obtain information about source extent under realistic

SNR, additional information such as the maximum dipole moment

density (dipole moment per mm2) is needed to set a meaningful

upper bound for the source strength. Such information can be

obtained from invasive electro-neurophysiology studies in animals

and humans. This issue regarding the source extent, however,

applies to all inverse approaches.

The application of VESTAL to the median-nerve MEG

response clearly demonstrated the great potential of this algorithm

in distinguishing multiple sources in empirical human responses

that are closely situated in space (e.g., BA 1, 2, 3b, 4, 5, and 7).

The source location and latency results derived from VESTAL are

highly consistent with the known neurophysiology of somatosen-

sory system and previous studies (Rosen and Asanuma, 1972;

Lemon and Porter, 1976; Jones et al., 1978; Wong et al., 1978;

Jones et al., 1979; Lemon, 1979, 1981; Wood et al., 1985;

Davidoff, 1990; Hari et al., 1993; Forss et al., 1994; Baldissera and

Leocani, 1995; Kawamura et al., 1996; Mauguiere et al., 1997a,b;

Jousmaki and Forss, 1998; Forss and Jousmaki, 1998; Hari and

Forss, 1999; Spiegel et al., 1999; Boakye et al., 2000; Huang et al.,

2000, 2004a, 2005; McGlone et al., 2002; Waberski et al., 2002).
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The SII responses obtained from VESTAL in this example also

agreed well with previous findings (Hari et al., 1993; Forss and

Jousmaki, 1998; Hari and Forss, 1999; Fujiwara et al., 2002;

Simoes et al., 2003; Huang et al., 2005). It was notable that an area

in the ventral parietal cortex slightly posterior to SII was activated

at about 110 ms, which is consistent with another report (Disbrow

et al., 2001). The latencies of the sources obtained from VESTAL

in the temporal lobe and temporal–parietal junction were later than

that of the SII source, and very similar to another study (Tesche,

2000). Based on human and monkey studies, the temporal lobe

source was believed to be at one of the unimodal association areas

that subserved central vision, primary auditory, and somatosensory

association areas, while the temporal–parietal junction source was

a common area that was sensitive to multimodal sensory inputs

(Jones and Powell, 1970; Seltzer and Pandya, 1978; Seltzer and

Pandya, 1984; Baylis et al., 1987; Tesche, 2000). To our

knowledge, this is the first case in which cortical areas in the

somatosensory system have been mapped out all at once with high

spatial resolution using MEG. In the temporal domain, the high

stability and continuity of the source time-courses obtained by

VESTAL demonstrate another major advantage of the algorithm.

In addition to the cortical areas, VESTAL showed early

activation in the thalamus, which is consistent with several MEG

and EEG studies (Tesche, 1996; Gobbele et al., 1998, 2004). Of

course, more evidence is needed to confirm this thalamic

activation, and to explore VESTAL’s potential for localizing deep

sources. Previous human MEG studies using electrical stimulation

of finger and the median-nerve also reported activations in

cerebellum (Tesche and Karhu, 1997, 2000). In the present

example, we did not observe strong activation in the cerebellum.

The discrepancy may be related to the different stimulation

methods. Unlike our study, other paradigms (Tesche and Karhu,

1997, 2000) have included random omissions of 15% of the

stimuli. This manipulation may produce attentional enhancement

of the cerebella responses, possibly due to its role in fine-grained

temporal tuning (Tesche and Karhu, 2000).
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