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Cortical responses, recorded by electroencephalography and magneto-

encephalography, can be characterized in the time domain, to study

event-related potentials/fields, or in the time– frequency domain, to

study oscillatory activity. In the literature, there is a common con-

ception that evoked, induced, and on-going oscillations reflect different

neuronal processes and mechanisms. In this work, we consider the

relationship between the mechanisms generating neuronal transients

and how they are expressed in terms of evoked and induced power.

This relationship is addressed using a neuronally realistic model of

interacting neuronal subpopulations. Neuronal transients were gener-

ated by changing neuronal input (a dynamic mechanism) or by

perturbing the systems coupling parameters (a structural mechanism)

to produce induced responses. By applying conventional time–

frequency analyses, we show that, in contradistinction to common

conceptions, induced and evoked oscillations are perhaps more related

than previously reported. Specifically, structural mechanisms normally

associated with induced responses can be expressed in evoked power.

Conversely, dynamic mechanisms posited for evoked responses can

induce responses, if there is variation in neuronal input. We conclude, it

may be better to consider evoked responses as the results of mixed

dynamic and structural effects. We introduce adjusted power to

complement induced power. Adjusted power is unaffected by trial-to-

trial variations in input and can be attributed to structural perturba-

tions without ambiguity.

D 2006 Elsevier Inc. All rights reserved.

Introduction

Cortical oscillatory activity, as disclosed by local field

potentials (LFPs), electroencephalographic (EEG) and magneto-

encephalographic (MEG) recordings, can be categorized as

ongoing, evoked or induced oscillations (Galambos, 1992;

Tallon-Baudry and Bertrand, 1999). Evoked and induced oscil-

lations differ in their phase-relationships to the stimulus. Evoked

oscillations are phase locked to the stimulus, whereas induced

oscillations are not. Operationally, these two phenomena are

revealed by the order of trial averaging and spectral analysis. To
1053-8119/$ - see front matter D 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.neuroimage.2006.02.034

* Corresponding author. Fax: +44 020 7813 1445.

E-mail address: j.kilner@fil.ion.ucl.ac.uk (J.M. Kilner).

Available online on ScienceDirect (www.sciencedirect.com).
estimate evoked power, the MEG/EEG signal is first averaged over

trials and then subject to time–frequency analysis to give an event-

related response (ERR). To estimate induced oscillations, the

time–frequency decomposition is applied to each trial and the

ensuing power is averaged across trials. The power of evoked and

background components are subtracted from this total power to

reveal induced power. In short, evoked responses can be

characterized as the power of the average; while induced responses

are the average power that cannot be explained by the power of the

average.

A common conception is that evoked oscillations reflect a

stimulus-locked ERR, in time–frequency space and that induced

oscillations are generated by some distinct high-order process.

Following Singer and Gray (1995), this process is often described

in terms of Fbinding_ and/or neuronal synchronization. The tenet of
the binding hypothesis is that coherent firing patterns can induce

large fluctuations in the membrane potential of neighboring

neurons which, in turn, facilitate synchronous firing and informa-

tion transfer (as defined operationally in Varela, 1995). Oscillatory

activity that is classified as induced is the measured correlate of

these massively synchronous neuronal assemblies. Oscillations are

induced because their self-organized emergence is not evoked

directly by the stimulus but induced vicariously through nonlinear

and possibly autonomous mechanisms.

Here, we propose an alternative view that evoked and induced

responses are, perhaps, more related than previously thought and

that a mixture of mechanisms can generate both. Critically, we make

a distinction between the mechanisms causing neuronal transients

and how the response is measured operationally, in terms of evoked

and induced oscillations. Having established this distinction, we

then examine the relationship between the mechanisms and the

time–frequency characterizations.

To pursue this, we used a model neuronal system in which the

mechanisms generating responses were under experimental con-

trol. This model was a neural mass model that we have used in

previous studies to look at measures of linear and nonlinear

coupling in EEG/MEG (David et al., 2004). The mechanisms of

phase locking in the genesis of ERPs and other phenomena (David

et al., 2005). Furthermore, this model is the basis of the forward

model in the dynamic causal modeling of ERP data in SPM (http://

www.fil.ion.ucl.ac.uk/spm; David et al., in press). Neuronal models

play a necessary role in this context because they afford direct
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access to the processes and mechanisms producing evoked and

induced oscillations. Once the mechanisms responsible for induced

responses are established, one can assess the specificity of their

expression in evoked and induced response components.

Overview

This paper is divided into three sections. In the first, we

establish a key distinction between dynamic mechanisms, normally

associated with classical evoked responses like the ERP and

structural mechanisms implicit in the genesis of induced

responses. Dynamic effects are simply the effect of inputs on a

systems response. Conversely, structural mechanisms entail a

transient change in the systems causal structure, i.e., its parameters

(e.g., synaptic coupling). These changes could be mediated by

nonlinear effects of input. We relate the distinction between

dynamic and structural mechanisms to series of dichotomies in

dynamical system theory and neurophysiology. These include the

distinction between driving and modulatory effects in the brain.

This section concludes with a review of how neuronal responses

are characterized operationally, in terms of evoked and induced

power, and how these characterizations relate to dynamic and

structural perturbations.

In the second section, we show that structural mechanisms can

indeed produce induced oscillations. In the example provided,

responses are induced by a stimulus-locked modulation of the

backward connections from one source to another. However, we

show that this structural effect is also expressed in evoked oscil-

lations when dynamic and structural effects interact. In the final

section, we show the converse, namely that dynamic mechanisms

can produce induced oscillations, even in the absence of structural

effects. This can occur when trial-to-trial variations in input

suppress high-frequency responses after averaging. Our discussion

focuses on the rather complicated relationship between the two

types of mechanisms that can cause responses in EEG/MEG and the

ways in which evoked and induced responses are measured. We

introduce adjusted power as a complement to induced power that

resolves some of these ambiguities.
Theory

Dynamic and structural mechanisms

In this section, we introduce two distinct mechanisms that

underlie neuronal transients. The distinction arises from a simple

view of neuronal responses, as the response of an input-state-

output system to perturbations. Any analytic system can be

described by an equation governing the dynamics of its states

and a function that converts the current state x of the system into

some output or measure y, in our case an EEG/MEG signal.

ẋx ¼ f x;u;hð Þ

y ¼ k x;hð Þ þ e ð1Þ

These states x(t) cover all the variables that describe the state of

a neuronal system (e.g., a collection of neuronal subpopulations

that constitutes an EEG source). For example, the states could

include the depolarization of all the systems neuronal compart-

ments, and any other variable that shapes its dynamics. u(t) or

inputs enter the state equations to changes states, directly or
indirectly. This input can have both stochastic and deterministic

(i.e., stimulus locked) components. h(t) is a system parameter that

encodes its functional or causal architecture; for example, the

connection strengths among neuronal units. ((t) represents obser-
vation noise. See Fig. 1 for a schematic representation of these

quantities.

From Eq. (1), it is immediately clear that the states, and

implicitly the systems response, can only be changed by perturbing

u(t) or h(t). We will refer to these as dynamic and structural effects

respectively. This distinction arises in a number of different

contexts. From a purely dynamical point of view, transients elicited

by dynamic effects are the systems response to input changes; for

example, the presentation of a stimulus in an ERP study. If the

system is dissipative and has a stable fixed point, then the response

is a generalized convolution of the input.

y tð Þ ¼ h u;hð Þ þ e h u;hð Þ ¼
X
i

X
t

0
>X

t

0
ji r1; N ; rið Þ

�u t�r1ð Þ; N ;u t�rið Þdr1; N ;driji r1; N ;ri;hð Þ

¼ fliy tð Þ
flu t � r1ð Þ;N ;flu t � rið Þ ð2Þ

where j(r1,. . . , rn, h) is called the nth order Volterra kernel. This

equation may look complicated, but it is just a generalization of a

conventional convolution equation to second and high-orders and

obtains from a simple Taylor expansion of Eq. (1). See Friston

(2001) for a fuller discussion. This generalized convolution has an

equivalent representation in the frequency or spectral domain.

Introducing the spectral density representation s(x)

u tð Þ ¼ X su xð Þe�jxdx ð3Þ

we can rewrite the Volterra expansion, Eq. (2) as

h u;hð Þ¼
X
i

X
p

�p
> X

p

�p
e j x1þ;N ;þxið ÞtC1ðx1; N ;xiÞ

�su x1ð Þ; N ;su xið Þdx1; N ;dxi ð4Þ

where the functions

C1 x1;hð Þ ¼ X
V

0
e�jx1r1j1 r1ð Þdr1

C2 x1;x2;hð Þ ¼ X
V

0
X
V

0
e�j x1r1þx2r2ð Þj2 r1;r2ð Þdr1dr2

are the Fourier transforms of the kernels. These functions are called

generalized transfer functions and mediate the expression of

frequencies in the output given those in the input. Critically, the

influence of high-order kernels or equivalently generalized transfer

functions means that a given frequency in the input can induce a

different frequency in the output. A simple example of this would be

squaring a sine wave input to produce an output of twice the

frequency.

The duration and form of the resulting dynamics effect depends

on the dynamical stability of the system to perturbations of its

states (i.e., how the systems trajectories change with the state).

Structural effects depend on structural stability (i.e., how the

systems trajectories change with the parameters). Systematic

changes in the parameters can produce systematic changes in the

response, even in the absence of input. For systems that show

autonomous (i.e., periodic or chaotic) dynamics, changing the



Fig. 1. (A) The causal structure of an input-state-output system is defined by parameters h. It receives inputs u that can elicit changes in the states x directly

(e.g., driving inputs uD, which generate postsynaptic potentials) or modulate the systems parameters (e.g., modulatory inputs uM which smoothly modify

dynamics, through changes in synaptic efficacy). The MEG/EEG output y depends on both inputs and parameters. (B) Neuronal model used in the simulations.

Two cortical areas interact with forward and backward connections. Both areas receive a stochastic input b, which simulates ongoing activity from other brain

areas. In addition, area 1 receives a stimulus a, modeled as a delta function. A single modulatory effect is considered. It simulates a stimulus-related slow

modulation of extrinsic backward connectivity. The outputs of the neuronal system are the MEG/EEG signals y1 and y2 from both areas. The model used

comprises three subpopulations for each area, coupled with intrinsic connections. Approximate state equations for this model are found in David and Friston,

2003. (C) Schematic of a single source model. This schematic includes the differential equations describing the dynamics of the source or regions states. Each

source is modeled with three subpopulations (pyramidal, spiny-stellate and inhibitory interneurons) as described in (Jansen and Rit, 1995). These have been

assigned to granular and agranular cortical layers, which receive forward and backward connection respectively. See David and Friston (2003) for a detailed

explanation of the state equations. For simplicity, we have removed lateral connections, which were not used in these simulations.

1 For simplicity we consider a single dynamic input uD and a single

modulatory input uM, which could be the same, i.e., uD = uM.
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parameters is equivalent to changing the attractor manifold, which

induces a change in the systems states. We before have discussed

this in the context of nonlinear coupling and classical neuro-

modulation (Friston, 1997; Breakspear et al., 2003). For systems

with fixed points and Volterra kernels, changing the parameters is

equivalent to changing the kernels and transfer functions. This

changes the spectral density relationships between the inputs and

outputs. As such, structural effects are clearly important in the

genesis of induced oscillations because they can produce frequency

modulation of ongoing activity that does not entail phase locking

to any event.

This difference between dynamic and structural effects is

closely related to the distinction between linear and nonlinear
mechanisms, but they are not synonymous. The second-order

approximation of Eq. (1) makes their relationship clear1

ẋx ¼ uD flf =fluD þ u2Dfl
2f =flu2D þ N

þ J þ uMflJ=fluM þ N þ x1flJ=flx1 þ Nð Þx

J ¼ flf =flx ð5Þ

Here, J is the system’s Jacobian. The top line encodes dynamic

effects that are mediated by a dynamic input u(t)D. This can have



2 A different definition is sometimes used, where induced responses are

based on the difference in amplitude between single trials and the ERR:

y(t) � y(t)e (Truccolo et al., 2002). The arguments in this work apply to

both formulations. However, it is simpler for us to use Eq. (10) because it

discounts ongoing activity. This allows us to develop the arguments by

considering just one trial type (as opposed to differences between trial

types).
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both linear and nonlinear components. The second line represents

structural effects that are mediated by structural inputs u(t)M. Here,

the input does not change the states directly but changes them

indirectly by modulating the systems Jacobian (i.e., its dynamic

structure). The matrices flJ(h)/fluM could be regarded as parameters

of the system or, more intuitively, as changes in the architecture

induced by inputs. Critically, structural effects are always nonlinear

and involve an interaction with the states. For readers familiar with

dynamic causal modeling with the bilinear model, bilinear effects

are structural effects. These effects are often construed as the

modulation of a coupling, in a neuronal network, by an experimental

input. In terms of the spectral formulation, structural inputs have

only second or high-order kernels and associated transfer functions.

In summary, dynamic effects are expressed directly on the states

and conform to a convolution of inputs to form responses.

Structural effects are expressed indirectly, through the Jacobian,

and are inherently nonlinear, inducing high-order kernels and

associated transfer functions.

Drivers and modulators

The distinction between dynamic and structural inputs speaks

immediately to the difference between Fdrivers_ from Fmodulators_
(Sherman andGuillery, 1998). In sensory systems, a driver ensemble

can be identified as the transmitter of receptive field properties. For

instance, neurons in the lateral geniculate nuclei drive primary visual

area responses, in the cortex, so that retinotopic mapping is

conserved. Modulatory effects are expressed as changes in certain

aspects of information transfer, by the changing responsiveness of

neuronal ensembles in a context-sensitive fashion. A common

example is attentional gain. Other examples involve extraclassical

receptive field effects that are expressed beyond the classical

receptive field. Generally, these are thought to be mediated by

backward and lateral connections. In terms of synaptic processes, it

has been proposed that the postsynaptic effects of drivers are fast

(ionotropic receptors), whereas those of modulators are slower and

more enduring (e.g., metabotropic receptors). The mechanisms of

action of drivers refer to classical neuronal transmission, either

biochemical or electrical, and are well understood. Conversely,

modulatory effects can engage a complex cascade of highly

nonlinear cellular mechanisms (Turrigiano and Nelson, 2004).

Modulatory effects can be understood as transient departures from

homeostatic states, lasting hundreds of milliseconds, due to synaptic

changes in the expression and function of receptors and intracellular

messaging systems.

Classical examples of modularity mechanisms involve voltage-

dependent receptors, such as NMDA receptors. These receptors do

not cause depolarization directly (cf., a dynamic effect) but change

the units sensitivity to depolarization (i.e., a structural effect). It is

interesting to note that backward connections, usually associated

with modulatory influences, target supragranular layers in the

cortex where NMDA receptors are expressed in greater proportion.

Having established the difference between dynamics and

structural effects and their relationship to driving and modulatory

afferents in the brain, we now turn to the characterization of evoked

and induced responses in terms of time–frequency analyses.

Evoked and induced responses

The criterion that differentiates induced and evoked responses

is the degree to which oscillatory activity is phase locked to the
stimulus over trials. An ERR is the waveform that is expressed in

the EEG signal after every repetition of the same stimulus. Due to

physiological and measurement noise, the ERR is often only

evident after averaging over trials. More formally, the evoked

response y(t)e to a stimulus is defined as the average of measured

responses in each trial y(t)

y tð Þe ¼ by tð Þ� ð6Þ

where t is peristimulus time.

A time–frequency representation s(x, t) of a response y(t)

obtains by successively filtering y(t) using a kernel or filter-bank

parameterized by frequencies xj = 2pmj, over the frequency range

of interest:

s x;tð Þ ¼
k x1;tð Þ‘y tð Þ

s
k xJ ;tð Þ‘y tð Þ

3
5

2
4 ð7Þ

where ‘ denotes linear convolution. k(xj, t) can take several forms

(Kiebel et al., 2005). We used the Morlet wavelet:

k xj;t
� �

¼ ffiffiffiffi
mj
p

exp � 1

2
tvj=r
� �2��

exp ix jt
� �

: ð8Þ

r is a user-specified constant, which sets the number of cycles of

the wavelet, and therefore the temporal and frequency resolution of

the wavelet transform. The total power, averaged over trials and the

power of the average are respectively

g x; tð ÞT ¼ bs x; tð Þs x; tð Þ4�

g x; tð Þe ¼ bs x; tð Þ�bs x; tð Þ4� ð9Þ

where * denotes the complex conjugate. g(x, t)e is evoked

power and is simply the power of y(t)e. Induced power g(x,t)i is

defined as the component of total power that cannot be explained

by baseline and evoked power2. This implicitly partitions total

power into three orthogonal components (induced, baseline and

evoked).

g x;tð Þi ¼ g x;tð ÞT � g xð Þb � g x;tð Þe

g x;tð ÞT ¼ g x;tð Þi þ g x;tð Þe þ g xð Þb ð10Þ

Baseline power g(x)b is a frequency-specific constant due to

ongoing activity and experimental noise, both of which are

assumed to be stationary, that is usually calculated over a period

of time preceding stimulus presentation.

Evoked and induced power and their mechanisms of generation

In this subsection, we establish how dynamic and structural

mechanisms are expressed in terms of evoked and induced power.

As illustrated in Fig. 1, the inputs for the ith trial u(i) can be

decomposed into a deterministic stimulus-related component a and
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trial-specific background activity b(i), which is stochastic and

unrelated to the stimulus

u ið Þ ¼ aþ b ið Þ: ð11Þ

For simplicity, we will assume that the state-space defined by

Eq. (1) operates largely in its linear regime, as suggested by studies

which have found only weak nonlinearities in EEG oscillations

(Breakspear and Terry, 2002; Stam et al., 1999). This allows us to

focus on the first-order kernels and transfer functions. We will also

assume the background activity is stationary. In this instance, the

total power is, by Eq. (4)

g x;tð ÞT ¼ jC x;tð Þj2g x;tð Þu þ g xð Þe

g x;tð Þu ¼ g x;tð Þa þ g xð Þb ð12Þ

In words, the total power is the power of the input, modulated

by the transfer function |C(x, t)|2, plus the power of the noise term.

The power of the input is simply the power of the deterministic

component, at time t, plus the power of ongoing activity. The

evoked power is simply the power of the input, because the noise

and background terms are suppressed by averaging.

g x;tð Þe ¼ jC x;tð Þj2 bs x;tð Þa�bs x;tð Þa4�

¼ jC x;tð Þj2 g x;tð Þa ð13Þ

The baseline power at t = t0 is

g xð Þb ¼ jC x;t0ð Þj2g xð Þb þ g xð Þe ð14Þ

This means that induced power is

g x;tð Þi ¼ jC x;tð Þj2 � jC x;t0ð Þj2
� �

g xð Þb ð15Þ

This is an important result. It means that the only way induced

power can be expressed is if the transfer function C(x, t, h) changes
at time t. This can only happen if the parameters of the neuronal

system change. In other words, only structural effects can mediate

induced power. However, this does not mean to say that structural

effects are expressed only in induced power. They can also be

expressed in the evoked power: Eq. (13) shows clearly that evoked

power at a particular point in peristimulus time depends on both

g(x, t)a and C(x, t, h). This means that structural effects mediated

by changes in the transfer function can be expressed in evoked

power, provided g(x, t)a > 0. In other words, structural effects can

modulate the expression of stationary components due to ongoing

activity and also deterministic components elicited dynamically. To

summarize so far:

& Dynamic effects (of driving inputs) conform to a generalized

convolution of inputs to form the systems response.

& Structural effects can be formulated as a time-dependent change

in the parameters (that may be mediated by modulatory inputs).

This translates into time-dependent change in the convolution

kernels and ensuing response.

& If the ongoing activity is nonzero and stationary, only structural

effects can mediate induced power.

& If stimulus-related input is nonzero, structural effects can also

mediate evoked power, i.e., dynamic and structural effects can

conspire to produce evoked power.
In the next section, we demonstrate these theoretical considera-

tions in a practical setting, using a neuralmassmodel of event-related

responses. In this section and in the simulations below, we have only

considered effect of a single trial type. In practice, one would nor-

mally compare the responses evoked and induced by two trial types.

However, the conclusions are exactly the same in both contexts. One

can regard the simulations below as a comparison of one trial type to

a baseline that caused no response (and had no baseline power).
Modeling induced oscillations

Neural mass models

The classical approach to modeling MEG/EEG signals is to use

neural mass models (Freeman, 1978; Lopes da Silva et al., 1974;

Robinson et al., 2001). The idea is to model the state of a neuronal

assembly, i.e., thousands of identical neurons, using operations that

describe the mean input–output relationships. For example, one can

summarize the state of a neuronal assembly with its mean membrane

potential and firing rate. The expected potential can be obtained

using a linear convolution of the mean firing rate with a gamma

function. This function can be understood as the postsynaptic

potential impulse response function. The output of the neuronal

assembly is a mean firing rate, which is a nonlinear (sigmoid) func-

tion of the mean membrane potential. There are several models of

MEG activity that are based upon this approach. In particular, the

Jansen model (Jansen and Rit, 1995) mimics the canonical archi-

tecture of a mini-column, which can be treated as a cortical source.

The Jansen model comprises three neuronal populations: excitatory

and inhibitory interneurons and pyramidal cells. The MEG/EEG

signal is assumed to be proportional to the depolarization of pyra-

midal cells. The parameters of the model are the synaptic time con-

stants, efficacies and coupling parameters that control the intrinsic

connections within a source and extrinsic connections among

sources. This model and various extensions have been used to

simulate oscillatory activity (David and Friston, 2003; David et al.,

2004; Jansen and Rit, 1995), evoked responses (Jansen and Rit,

1995; David et al., 2005) and epileptic activity (Wendling et al.,

2000).

Here, we model MEG/EEG signals using the Jansen model

(Jansen and Rit, 1995), extended to cover neuronal ensembles with

different kinetics (David and Friston, 2003) and extrinsic cortico-

cortical connections (David et al., 2005; Crick and Koch, 1998).

This model defines the state equation and observer in Eq. (1). The

details of these equations are not important in the present context.

A detailed description of the model can be found in David et al.

(2005) and the Matlab scripts are also available to download from

www.fil.ion.ucl.ac.uk/spm (as part of the DCM for ERPs toolbox;

e.g., spm_erp_fx.m).

The model used here does not model explicitly the diversity of

neuronal subpopulations and their processes, such as glial–neuron

interactions. However, because the Jansen model is a lumped

representation of diverse processes, one explicit parameter, such as

coupling between regions, can be understood as representing

diverse phenomena. For instance, when we manipulate coupling

parameters, we explicitly modify the efficacy of cortico-cortical

connections. The neural mechanisms responsible for this increase

of connection strength are diverse: modulation of transmitter

release, modulation of local synchronization due to glial cells, etc.

These relatively fine-scale processes are not included in the Jansen

 http:www.fil.ion.ucl.ac.uk\spm 
 http:www.fil.ion.ucl.ac.uk\spm 


O. David et al. / NeuroImage 31 (2006) 1580–1591 1585
model, but the mean field approximation of neural mass models

can, in many instances, capture the dynamics that emerge. We

chose Jansen’s neural mass model of EEG because there has been a

considerable amount of work showing that it can reproduce most of

the phenomena and dynamics seen in real EEG data.

The key thing is that the model has a relatively high degree of

face validity, when it comes to modeling neuronal dynamics and,

critically, allows selective dynamic or structural perturbation.

We consider a simple model composed of two sources, inter-

connected with forward and backward connections (Fig. 1B). The

sources receive two types of inputs. The first models afferent activity

that delivers dynamic perturbations to the systems states (by

changing postsynaptic currents). This dynamic perturbation had

stochastic and deterministic components: background inputs b(i)

comprised Gaussian noise that was delivered to both sources. The

deterministic part modelled a stimulus with an impulse a(t) = y(0),
delivered to the first source at the beginning of each trial. The second

sort of input u(t)M induced a structural change by modulating

extrinsic connections. As one might expect, the effects of these two

input classes differ considerably. On the one hand, synaptic inputs

perturb the system nearly instantaneously, and the deterministic part

evokes responses that are phase locked to the stimulus. On the other

hand, modulatory inputs modify the manifold that attracts ongoing

activity, without necessarily resetting its phase. For simplicity, we

restrict our modulatory effects to a modulation of the extrinsic

backward connection, thus encompassing various synaptic mecha-

nisms which modify the gain of excitatory synapses (Salinas and

Their, 2000). We chose this form of modulation because it was the

simplest. Structural perturbations change the systems parameters

(i.e., coupling parameters modeling synaptic efficacy).We elected to

change one extrinsic connection; the backward connection. We

chose the backward connection because backward connections are

associated with modulatory effects, both in terms of physiology

(e.g., the mediation of extraclassical receptive field effects, see also

Allman et al., 1985 andMurphy et al., 1999) and anatomy (e.g., they

terminate in supragranular layers that expressed large number of

voltage-dependent NMDA receptors). See also Maunsell and van

Essen (1983) and Angelucci et al. (2002).

There may be many other modulatory mechanisms that will

produce the same pattern of oscillatory activity, and it will be an

interesting endeavor to disambiguate the locus of structural changes

using these sorts of models and empirical data (see David et al.,

2005).

Structural perturbation and induced oscillations

We assume that the stimulus engages a cascade of neural

events, involving recurrent hierarchical dynamics that modulates

the systems structure. This is modeled by the deterministic

modulatory input u(t)M. In our model (Fig. 1B), this increases

the strength of backward connections between the sources. This

could be regarded as modeling voltage dependence in a massive

pool of NMDA receptors located in the supragranular targets of

backward connections, although many other mechanisms could be

approximated by such changes in connectivity. In this example, we

use the following structural perturbation.

h tð ÞB ¼ hB 1þ u tð ÞM
� �

u tð ÞM ¼
t�t0

s exp � t�t0ð Þ
s

��
t � t0

0 t < t0

(
ð16Þ
where t0 and s are the onset and time constant of the modulating

input, respectively. This input acts on the parameter hB of the state

equation to smoothly modify the convolution of ongoing and

driving inputs.

To illustrate the points of the previous section, we will consider

two scenarios in which the modulatory effect arrives at the same

time as the driving input and one in which it arrives after the

dynamic perturbation has dissipated. Let us assume that the

modulatory input has a slow time constant s = 150 ms compared

to the main frequency of ongoing oscillations (10 Hz). The

modulatory effects can be expressed with stimulus onset or after

some delay. In the first case, evoked oscillations will be modulated,

and these effects will be visible in the ERR. In the second case,

phase locking with the stimulus will have been lost, and no effect

will be seen in the ERR. However, in both cases, structural changes

will appear as induced oscillations. This is illustrated in Fig. 2

(using 500 trial averages). In the upper panel we consider a

modulatory input immediately after stimulus onset. As expected,

evoked responses are much more pronounced relative to delayed

modulation (lower panel). The induced power (C) shows that

increases in the backward connection induce oscillations in the

alpha and gamma band. The induced power in Fig. 2 has been

frequency normalized (by removing the mean and dividing by the

standard deviation at t = 0) to show increased power in the gamma

band more clearly.

These simulations provide a nice model for induced responses

using a structural perturbation, in this instance, a slow modulation

of the efficacy of backward connections in a simple hierarchy of

neuronal populations. Critically, these simulations also show that

responses can be evoked structurally by a modulation of dynamic

perturbations. This dual mechanism depends on driving and

modulatory effects occurring at the same time, causing evoked

and induced responses in the same time–frequency window.

Structurally evoked responses and phase resetting

Phase resetting is a popular perspective on mechanisms

responsible for evoked responses (David et al., 2005; Makeig et

al., 2002; Klimesch et al., 2004). Phase resetting is inferred when

there is a phase locking of responses, with no change in their

amplitude. It is tempting to formulate phase resetting in terms of

dynamic and structural mechanisms and, in particular, the

appearance of evoked responses that are mediated by structural

mechanisms, as in Fig. 2. We have argued previously (David et al.,

2005) that phase resetting entails an interaction between the input

and the neuronal state of an ensemble (e.g. the phase of ongoing

oscillations). The response component u(t)M flJ/flu(t)M x in Eq. (5)

embodies this interaction. This means phase resetting is a structural

effect that is mediated by a deterministic, modulatory, component

of the input.

However, the joint expression of evoked and induced responses

does not imply phase resetting. This is because phase resetting is a

very specific structural mechanism that entails a reduction of

induced power. The reason is simple; if the stimulus does not

change the amplitude of oscillations, the total power will be

constant over peristimulus time. Phase resetting will increase

evoked power. Because induced power is the total power that

cannot be explained by evoked and baseline power, it must fall. This

provides the basis for a test for phase resetting, which we will

pursue in a later communication. Note that analyses framed in terms

of phase-distributions over trials (i.e., phase resetting analyses)



Fig. 2. Upper panel: simulation of fast stimulus-related modulation of backward connectivity, using the model depicted in Fig. 1B. Black curves are the

responses of area 1; grey curves correspond to area 2. Time– frequency responses are shown for area 1 only. The white line, superimposed on these spectral

profiles, shows the time course of the modulatory input. (A) Evoked power, after averaging over trials, showing late oscillations that have been augmented by

modulatory input. (B) Total Power, averaged over trials. (C) Induced power, normalized over frequency. Lower Panel: As for the upper panel, but here the

modulatory effect has been delayed. The main difference is that low-frequency evoked components have disappeared because dynamic and structural

perturbations are now separated in time and cannot interact. See main text for further details.
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discount amplitude variations and assume that differences in phase

distributions are not mediated by amplitude differences.

Having established that evoked responses can be mediated by

structural mechanisms, we now show that induced responses can

be mediated by dynamic mechanisms.
Induced oscillations and trial-to-trial variability

Above, we have considered the stimulus as a deterministic

input. In this section, we consider what would happen if the

stimulus-related input was stochastic. This randomness is most

easily understood in terms of trial-to-trial variability in the inputs.

Following Truccolo et al. (2002), we examine two random aspects

of inputs, namely stochastic variations in gain and latency. We

derive equations that predict the effects of this variability on

evoked and induced responses, and we test the predictions using

the model of the previous section.

Trial-to-trial variability

As suggested in Truccolo et al. (2002), we consider two types

of variability in the input. The first relates to a trial-to-trial gain or

amplitude variations. For an identical stimulus, early processing

may introduce variations in the amplitude of driving inputs to a
source. Gain modulation is a ubiquitous phenomenon in the central

nervous system (Salinas and Their, 2000), but its causes are not

completely understood. Two neurophysiological mechanisms that

may mediate gain modulation include fluctuations of extracellular

calcium concentration (Smith et al., 2002) and/or of the overall

level of synaptic input to a neuron (Chance et al., 2002). These

may act as a gain control signal that modulates responsiveness to

excitatory drive. A common example of gain effects, in a

psychophysiological context, is the effect of attention (McAdams

and Maunsell, 1999; Treue and Martinez-Trujillo, 1999).

The second commonly observed source of variability is in the

latency of input onset, i.e., the time between the presentation of the

stimulus and the peak response of early processing. Azouz and

Gray (1999) have investigated the sources of such latency

variations at the neuronal level. Basically, they describe two major

phenomena: (i) coherent fluctuations in cortical activity preceding

the onset of a stimulus have an impact on the latency of neuronal

responses (spikes). This indicates that the time needed to integrate

activity to reach action potential threshold varies between trials. (ii)

The other source of latency variability is fluctuations in the action

potential threshold itself.

Both types of trial-to-trial variability, gain modulation and

latency, can be modeled by introducing the random variables c and

s with density functions p(c) and p(s). In the context of random

latencies, the expected Fourier transform of the stimulus-related
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component is modulated by the Fourier transform s(x)s of the

probability density p(s)3

s x;t;sð Þa ¼ X k x;rð Þa t � r� sð Þdr

bs x;t;sð Þa� ¼ X X p sð Þk x;rð Þa t � r� sð Þdrds

¼ X X p sð Þexp jxsð Þk x;r� sð Þa t � r� sð Þdrds

¼ X p sð Þexp jxsð ÞdsX k x;r� sð Þa t � r� sð Þdr

¼ s xð Þss x; tð Þa ð17Þ

This is known as the characteristic function

s xð Þs ¼ X p sð Þexp jxsð Þds ð18Þ
A very tight latency distribution makes g(x)s = s(x)ss(x)s*

very broad over frequency and its effect is negligible. However, if

the latencies are more dispersed the modulation by the character-

istic function become tighter with a suppression of high frequen-

cies. In terms of evoked responses.

g x;tð Þe ¼ jC x; tð Þj2 bs x; t;sð Þa�bs x;t;sð Þa4�

¼ jC x; tð Þj2 g xð Þsg x;tð Þa ð19Þ

This equality shows that high-frequency components are lost

when latency varies randomly over trials. This means that ERR

will be estimated badly at high frequencies. This variation

effectively blurs or smoothes the average and suppresses fast

oscillations in the evoked response. However, the total power

remains unchanged because the power expressed in each trial

does not depend on latency. Therefore, the high frequencies

lost from the evoked responses now appear in the induced

response.

g x;tð Þi ¼ jC x;tð Þj2 � jC x;t0ð Þj2
� �

g xð Þb þ gg x;tð Þe

g ¼ 1� g xð Þs
g xð Þs

ð20Þ

In summary, the induced power has now acquired a stimulus-

locked component. This component gets bigger as the dispersion of

latencies increases and g(x)s gets smaller. Note that this

dynamically induced power can only be expressed in frequencies

that show evoked responses, because both depend on g(x, t)a, the

power in the stimulus-locked input.

A similar analysis can be pursued for variations in gain. Here

we will assume, by definition bc� = 1.

s x;t;cð Þa ¼ cs x;tð Þa

bs x;t;cð Þa�bs x;t;cð Þa4� ¼ bc�2g x;tð Þa ¼ g x;tð Þa

bs x;t;cð Þas x;t;cð Þa4� ¼ bc2�g x;tð Þa ð21Þ
3 We have assumed here and below that the variation in latency is small

in relation to the length of the wavelet used in the time-frequency

decomposition.
Giving

g x;tð Þi ¼ ðjCðx; tÞj
2 � jC x;t0ð Þj2Þg xð Þb þ gg x;tð Þe

g ¼ Varð�Þ ð22Þ

Gain variations also allow nonstructural mechanisms to induce

power. Here, the time-dependent changes in stimulus-dependent

power g(x, t)a again contribute to induced responses. In this

instance the contribution is not frequency specific, as with latency

variations, but proportional to the variance in gain Var (c) = bc2� �
1. To summarize:

& Induced power can be mediated by nonstructural mechanisms if

dynamic responses are caused by inputs that vary over trials.

& Latency variations in stimulus-locked inputs effectively sup-

press high frequencies in the average that are effectively

transferred from the evoked power to the induced power.

& Amplitude variations in stimulus-locked inputs do not affect

evoked responses but cause evoked power to be recapitulated in

the induced power as the variance of the amplitude increases.

We now illustrate these phenomena using simulations.

Simulations of dynamically induced responses

To ensure that any induced power in the simulations could not be

mediated structurally, we removed both the modulatory and sto-

chastic input. Therefore, there were no structurally mediated

changes in the systems manifold or kernels, and, even if there were,

they would not be seen because there was no ongoing activity. This

means that any induced power must be cased dynamically. 2000

trials were simulated with variations in latency and gain respectively.

First we simulated a pure latency jittering, without gain modu-

lation (Fig. 3). The stimulus onset latency p(s) = N(0, rs
2) was

sampled from a Gaussian distribution with zero mean and standard

deviation rs = 10 ms. The upper left panel shows the event-related

and evoked responses for a single trial. The black curve is the

response of area 1; the grey curve is the response of area 2. These

responses would constitute the ERR, after averaging, without trial-to-

trial variability. The time–frequency decomposition of the response

of area 1 shows two blobs; one located in the alpha band (around 10

Hz), the other in the gamma band (around 30 Hz). These correspond

to the responses of specific neuronal subpopulations. Fig. 3B shows

the event-related and evoked responses after averaging over all trials.

Latency variation causes evoked power to be lost at high

frequencies, as it is smoothed away in the average (compare the

evoked responses in panel B with the single-trial or total power in

panels A and C). The lost power now appears in the induced

responses, more markedly at higher frequencies (gamma band in Fig.

3D). This dynamically induced response has to occur at the same

time as the evoked response but is expressed in higher frequencies.

Finally, variation in gain was simulated. The gain c for each trial

was drawn from a log normal distribution p(ln k) =N(0,0.36). Fig. 4

summarizes the results of these simulations using the same format as

the previous figure. Fig. 4B shows the event-related and evoked

responses after averaging over all trials. As expected, there is no

significant difference between these evoked responses and the cano-

nical, single-trial response in Fig. 4A. However, the induced power

(D) is not zero and, as predicted, formally very similar to the evoked-



Fig. 3. Simulation of trial-to-trial latency jitter, using the model depicted in Fig. 1B. Black curves are the responses of area 1; grey curves correspond to area 2.

Time– frequency responses are shown for area 1 only. (A) Canonical response to a stimulus at time zero. (B) Evoked responses, after averaging over trials. (C)

Total power, averaged over trials. (D) Induced power. As predicted, high-frequency induced oscillations emerge with latency jittering (D). This is due to the fact

that trial-averaging removes high frequencies from the evoked power; as a result, they appear in the induced response.
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power. Critically, the induced and evoked responses generated by

this mechanism have the same time–frequency deployment.
Discussion

Summary

In summary, we made a distinction between dynamic and struc-

tural mechanisms that underlie transient responses to perturbations.
Fig. 4. Simulation of gain variations over trials. The format is the same as in Fig. 3.

affect induced power, rendering it a Fghost_ of the evoked power. See main text
We then considered how responses are measured in time–frequency

in terms of evoked and induced responses. Theoretical predictions,

confirmed by simulations, show that there is no simple relationship

between the two mechanisms causing responses and the two ways in

which they are characterized. Specifically, evoked responses can be

mediated both structurally and dynamically. Similarly, if there is

trial-to-trial variability, induced responses can be mediated by both

mechanisms. See Fig. 5 for a schematic summary.

For evoked responses, this is not really an issue. The fact that

evoked responses reflect both dynamic and structural perturbations
As predicted, although gain variation has no effect on evoked power it does

for details.



Fig. 5. Schematic illustrating the many-to-many mapping between dynamic vs.. structural causes and evoked vs. induced responses.
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is sensible, if one allows for the fact that any input can have

dynamic and structural effects. In other words, the input perturbs the

states of the neuronal system and, at the same time, modulates

interactions among the states. The structural component here can be

viewed as a nonlinear (e.g., bilinear) effect that simply involves

interactions between the input and parameters (e.g., synaptic status).

Generally, the structurally mediated component of evoked

responses will occur at the same time and frequency as the

dynamically mediated components. This precludes ambiguity when

interpreting evoked responses, if one allows for both dynamic and

structural causes.

The situation is more problematic for induced responses. In the

absence of trial-to-trial variability induced responses must be

caused by structural perturbations. Furthermore, there is no

necessary co-localization of evoked and induced responses in

time– frequency because induced responses are disclosed by

ongoing activity. However, if trial-to-trial variability is sufficient,

induced responses with no structural component will be expressed.

This means that induced responses that occur at the same time as

evoked responses have an ambiguity in relation to their cause.

Happily, this can be addressed at two levels. First, induced

responses that do not overlap in peristimulus time cannot be

attributed to dynamic mechanisms and are therefore structural in

nature. Second, one can revisit the operational definition of induced

responses to derive a measure that is immune to the effects of trial-

to-trial variability. Note that here we do not consider that the

baseline activity is affected directly by the stimulus but interacts

with stimulus-dependent structural mechanisms to produce an

induced response component. Clearly, this component will then

form the input to other regions.

Adjusted power

In this subsection, we introduce the notion of adjusted power

as a complementary characterization of structurally mediated

responses. Adjusted power derives from a slightly more explicit

formulation of induced responses as that component of total
power that cannot be explained by evoked or ongoing activity.

The adjusted response is simply the total power orthogonalized,

at each frequency, with respect to baseline and evoked power.

g x;tð Þa ¼ g x;tð ÞT � g x;tð Þĝg

ĝg ¼ g x;tð Þþg x;tð ÞT

g x;tð Þ ¼
1 g x;t1ð Þe
s s
1 g x;tTð Þe

3
5

2
4 ð23Þ

+ denotes the pseudoinverse. Note that the evoked power has

been augmented with a constant that models baseline power. This

means baseline power does not have to be estimated explicitly.

The motivation for this linear adjustment is inherent in Eqs. (20)

and (22), which show that the confounding effects of trial-to-trial

variability are expressed in proportion to evoked power. Eq. (23)

is implicitly estimating baseline power and the contribution from

evoked power and removing them from the total power. In other

words, g is a 2-vector estimate of g(x)b and (1 + g). After these
components have been removed, the only components left must

be structural in nature

g x;tð Þa jC x;tð Þj2 � jC x;t0ð Þj2
� �

g xð Þb ð24Þ

Fig. 6 shows that the effect of trial-to-trial variability on

induced responses disappears when using adjusted power. This

means one can unambiguously attribute adjusted responses to

structural mechanisms. As noted by one of our reviewers the ERP-

adjusted response removes evoked response components, including

those mediated by structural changes. However, structurally

mediated induced components will not be affected unless they

have the same temporal expression. The usefulness of adjusted

power, in an empirical setting will be addressed in future work. The

treatment in this paper can be regarded as establishing its

motivation.



Fig. 6. Adjusted power (3D). The format is the same as in Fig. 3. As predicted, the adjusted power is largely immune to the effects of latency variation, despite

the fact that evoked responses still lose their high-frequency components.
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Conclusion

We have divided neuronal mechanisms into dynamic and

structural, which may correspond to driving and modularity

neurotransmitter systems respectively. These two sorts of effects

are not equivalent to evoked and induced responses in MEG/EEG.

By definition, evoked responses exhibit phase locking to a stimulus

whereas induced responses do not. Consequently, averaging over

trials discounts both ongoing and induced components and evoked

responses are defined by the response averaged over trials. Evoked

responses may be mediated primarily by driving inputs. In MEG/

EEG, driving inputs affect the state of measured neuronal

assemblies, i.e., the dendritic currents in thousands of pyramidal

cells. In contradistinction, structural effects, mediated by modula-

tory inputs, engage neural mechanisms which affect neuronal states,

irrespective of whether they are phase locked to the stimulus or not.

These inputs are expressed formally as time-varying parameters of

the state equations modeling the systems. Although the ensuing

changes in the parameters may be slow and enduring, their effects

on ongoing or evoked dynamics may be expressed as fast or high-

frequency dynamics.

We have considered a further cause of induced oscillations,

namely trial-to-trial variability of driving inputs. As suggested in

Truccolo et al. (2002), these can be modeled by varying latency

and gain. We have shown that (i) gain variations have no effect on

the ERR but increase induced responses in proportion to evoked

responses, (ii) jitter in latency effectively smoothes the evoked

responses and transfers energy from evoked to induced power,

preferentially at higher frequencies.

The conclusions of this work, summarized in Fig. 5, provide

constraints on the interpretation of evoked and induced responses in

relation to their mediation by dynamic and structural mechanisms.

This is illustrated by the work of Tallon-Baudry and colleagues,

who have looked at non-phase-locked episodes of synchronization

in the gamma-band (30–60 Hz). They have emphasized the role of

these induced responses in feature-binding and top-down mecha-

nisms of perceptual synthesis. The top-down aspect is addressed by

their early studies of illusory perception (Tallon-Baudry et al.,

1996), where the authors ‘‘tested the stimulus specificity of high-

frequency oscillations in humans using three types of visual stimuli:
two coherent stimuli (a Kanizsa and a real triangle) and a

noncoherent stimulus.’’ They found an early phase locked 40-Hz

component, which did not vary with stimulation type and a second

40-Hz component, appearing around 280 ms, that was not phase

locked to stimulus onset. This shows a nice dissociation between

early evoked and late induced responses. The induced component

was stronger in response to a coherent triangle, whether real or

illusory and ‘‘could reflect, therefore, a mechanism of feature

binding based on high-frequency synchronization’’. Because it was

late, the induced response can only be caused by structural

mechanisms (see Fig. 5). This is consistent with the role of top-

down influences and the modulatory mechanisms employed by

backward connections in visual synthesis (Maunsell and van Essen,

1983; Bullier et al., 2001; Albright and Stoner, 2002).

Classical ERP/ERF research has focused on dynamic perturba-

tions (Coles and Rugg, 1995). On the other hand, studies of event-

related synchronization (ERS) or desynchronization (ERD) are

more concerned with structural effects that may be mediated by

modulatory systems (Pfurtscheller and Lopes da Silva, 1999).

Practically speaking, we have shown that it is not always possible to

distinguish between dynamic and structural effects when inferring

the causes of evoked and induced oscillations. However, certain

features of induced oscillations might provide some hints: (i)

induced oscillations in high frequencies concomitant with evoked

responses in low frequencies may indicate a jittering of inputs. (ii)

Induced oscillations that are temporally dissociated from evoked

responses are likely to be due to modulatory or structural effects.

Finally, we have introduced the notion of adjusted power that can be

unambiguously associated with structural effects.
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