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Abstract

In this paper, we present a novel approach to imaging sparse and focal neural current sources from

MEG (magnetoencephalography) data. Using the framework of Tikhonov regularization theory,

we introduce a new stabilizer that uses the concept of controlled support to incorporate a priori

assumptions about the area occupied by focal sources. The paper discusses the underlying

Tikhonov theory and its relationship to a Bayesian formulation which in turn allows us to interpret

and better understand other related algorithms.

Introduction

The brain’s neuronal activity generates weak magnetic fields (10 fT-pT).

Magnetoencephalography (MEG) is an non-invasive technique for characterizing these

magnetic fields using an array of superconducting quantum interference devices (SQUIDs).

SQUID magnetometers can measure the changes in the brain’s magnetic field on a

millisecond timescale, thus, providing unique insights into the dynamic aspects of the

brain’s activity. The goal of biomagnetic imaging is to use MEG data to characterize

macroscopic dynamic neural information by solving an electromagnetic source localization

problem.

In the past decade, the development of source localization algorithms has significantly

progressed (Baillet et al., 2001). Currently, there are two general approaches to estimating

MEG sources: parametric methods and tomographic imaging methods (Hamalainen et al.,

1993). With parametric methods, a few current dipoles of unknown location and moment

represent the sources. In this case, the inverse problem is a non-linear optimization in which

one estimates the position and magnitude of the dipoles.
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In this paper, we use the tomographic imaging method, where a grid of small voxels

represents entire brain volume. The inverse problem then seeks to recover a whole brain

activation image, represented by the moments and magnitudes of elementary dipolar sources

located at each voxel. The advantage of such a formulation is that the forward problem

becomes linear. However, the ill-posed nature of the imaging problem constitutes

considerable difficulty, most notably due to the non-uniqueness of the solution.

A common way to constrain the non-uniqueness is to use the weighted minimum norm

methods. Such methods find solutions that match the data while minimizing a weighted l2
norm of the solution (Hamalainen et al., 1993; Sarvas, 1987; Wang et al., 1992; Pascual-

Marqui and Biscay-Lirio, 1993). Unfortunately, these techniques tend to “smear” focal

sources over the entire reconstruction region.

There are three basic approaches for creating less smeared solutions to the MEG focal

imaging problem: (1) use of lp norms, (2) Bayesian estimation procedures with sparse priors,

and (3) iterative reweighting methods. The first approach that produces sparse solutions uses

an l1, or an lp norm. Although, the l1 norm solution can be formulated as a linear

programming problem which converges to the global solution, other lp norm methods are

calculated using multidimensional iterative methods which often do not converge to the

correct solution. Furthermore, all lp methods are sensitive to noise (Matsuura and Okabe,

1995; Uutela et al., 1999). The second approach is a Bayesian framework with sparse priors

derived from Gibbs distributions (Schmidt et al., 1999). However, these methods are very

computationally intensive since full a posteriori estimation is solved using the Markov-chain

Monte-Carlo or mean-field approximation methods (Bertrand et al., 2001a,b; Phillips et al.,

1997). The third approach is iterative reweighted minimum norm method. The method uses

a weighting matrix which, as the iterations proceed, reinforces strong sources and reduces

weak ones (Gorodnitsky and Rao, 1997; Gorodnitsky and George, 1995). The problems

associated with this method are sensitivity to noise, high dependency on the initial estimate

and tendency to accentuate the peaks of the previous iteration. In addition, the method often

produces an image of a focal source as a scattered cloud of multiple sources that exist near

each other.

In this paper, we combine features of all three approaches outlined above and derive a novel

Controlled Support MEG imaging algorithm, using Tikhonov regularization theory. The

advantages of our algorithm are the quality of focal source images as well as robustness and

speed. We first formulate the MEG inverse problem under the framework of Tikhonov

regularization theory, and introduce a way to constrain the problem using specially selected

stabilizing functionals. We then describe the relationship of this formulation to the minimum

norm methods and Bayesian methods. Subsequently, we revisit minimum support stabilizing

functional which obtains the sparsest possible solutions, but may produce an image of a

focal source as a cloud of points. To remedy this problem, we derive a new controlled

support functional, by adding an extra constraining term to the minimum support and then

explain details of computationally efficient method of reweighted optimization. The

minimization algorithm section explains how the numerical minimization is carried out. In

Results and discussion section, we demonstrate performance of the algorithm using results
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from Monte-Carlo simulation studies with realistic sensor geometries and variety of noise

levels.

Formulation of the MEG inverse problem using Tikhonov regularization

Let the three Cartesian coordinates of the current dipole strength for each one of the Ns/3

voxels be denoted by the length Ns vector s. The data consist of a vector b that contains

magnetic field measurements at all receivers. The length of the b is determined by the

number of sensor sites, as denoted by Nb. The forward modeling operator L connects the

model to the data:

(1)

where L is also known as the “lead field.” The lead field is a matrix of size Nb×Ns that

connects the spatial distribution of the dipoles s to measurements at the sensors b. According

to Hadamard (1902), the three difficulties in an inverse problem are: (1) the solution of the

inverse problem may not exist, (2) the solution may be non-unique, (3) the solution may be

unstable. The Tikhonov regularization theory resolves these difficulties using the notions of

misfit, the stabilizer and the Tikhonov parametric functional.

The notion of misfit minimization resolves the first difficulty, the non-existence of the

solution. In the event that an exact solution does not exist, we search for the solution that fits

the data approximately, using the misfit functional as a goodness-of-fit measure. Following

tradition (Eckhart, 1980), we use a quadratic form of the misfit functional, denoted as φ:

(2)

When the model produces a misfit that is smaller than the noise level (Tikhonov discrepancy

principle), this model could be a solution of the problem.

The second difficulty, the non-uniqueness, is a situation where many different models have

misfits smaller than the noise level. All of these models could be solutions of the problem.

In practice, we need only one solution that is good. The stabilizing functional, enoted S(s),

measures goodness of the solution. Designing the stabilizer S is a difficult task which we

will discuss in detail in the next two sections. In simplest terms, S is small for “good”

models and large for “bad” models. Therefore, the weighted sum of misfit and stabilizer

(denoted as P) measures both the goodness of data fit and goodness of the model:

(3)

where λ is regularization parameter and P is Tikhonov parametric functional. Both

difficulties considered so far (non-uniqueness and non-existence) are resolved by posing the

minimization of parametric functional:

(4)
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The third difficulty, the ill conditioning, is a situation where small variation in the data

results in large variation in the solution. Careful choice of regularization parameter λ

resolves this difficulty. In short, the Tikhonov discrepancy principle defines the choice of λ,

which is discussed in The minimum support stabilizer section.

In summary, the formulation of MEG inverse problem using Tikhonov regularization

reduces to minimization of the Tikhonov parametric functional to (4).

Finally, we note that a probabilistic framework provides a similar view on the inverse

problem (Baillet and Garnero, 1997). A Bayesian approach poses the maximum a posteriori

(MAP) problem:

(5)

Note that the logarithm of (5) is (4). While using different underlying axioms, the Tikhonov

problem results in a formulation similar to the Bayesian approach. In the Bayesian

framework, the functional exp (−λS(s)) incorporates prior assumptions on distribution of s.

A stabilizer function in the Tikhonov framework can be viewed as the log of the prior

probability drawn from an exponential distributions on the sources, without the

normalization terms for probability distributions. For example, a quadratic functional would

correspond to a Gaussian prior, a linear functional corresponds to a Laplacian prior and a P-

norm functional would correspond to a sparse distribution drawn from the exponential

family.

The minimum support stabilizer

As discussed in the previous section, the role of a stabilizer is especially important for a

situation in which many different models produce similar data. Clearly, the misfit functional

alone cannot discriminate between these models. Therefore, this situation requires using

additional discriminatory measure, such as the stabilizing functional.

The choice of the stabilizing functional S is difficult. S should be small for good models and

large for bad models, so that the minimum of S determines the solution. Unfortunately, the

definition of a good model relies upon empirical knowledge and depends upon each

particular problem.

The good model for MEG inverse problem should adequately represent focal current

sources, i.e., sources that occupy a small volume (or, sources with small support). Therefore,

the minimum support functional (Last and Kubik, 1983) (Portniaguine and Zhdanov, 1999)

(denoted as Smin) is one possible choice for the stabilizer:

(6)

where sk is a component of vector s.
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To better understand physical meaning of the minimum support stabilizer consider the

following form of Smin:

(7)

where sign denotes signature function

(8)

Continuous approximation of the sign2 function is better for numerical implementation:

(9)

where constant 10−16 is machine precision. Note that, substituting (9) into (7) leads to (6).

The form (7) is convenient to understand the physical meaning of Smin. Functional Smin

measures a fraction of non-zero parameters. In other words, Smin measures support. If we

use Smin as a stabilizer, we define the good model as one with the small support.

However, not all images with small support are suitable for imaging of focal MEG sources.

As indicated in Fig. 1, sometimes the minimum support method represents a single focal

source as a cloud of scattered points which can be misinterpreted as multiple local sources

located near each other (panel a). What we ideally want in this situation is an image of a

single patch, as depicted in panel (b) of Fig. 1. We note that this problem has also been

reported by the researchers working with other types of sparse priors (Phillips et al., 1997).

In the next section, we deal with this problem by introducing additional restrictive term to

the minimum support stabilizer.

Controlled support stabilizer

The controlled support stabilizer (denoted as Scon) is a functional that reaches its minimum

for images with a predetermined support value α. That value should be small, but not so

small that it creates the undesirable of producing scattered sources. In other words, the

image in Fig. 1 case b, which we consider to be good, produces a minimum of the stabilizer

Scon. The undesirable (scattered) image (case a in the same figure) corresponds to a larger

value of stabilizer Scon. This discriminative effect of Scon happens because Scon is a

weighted sum of the previously introduced minimum support stabilizer Smin and an

additional restricting term Sreg:

(10)

where the restricting term Sreg is:
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(11)

Upon examining expression (11) we notice that the functional Sreg has opposing properties

to Smin, Sreg has a maximum where Smin has a minimum. Obviously, the choice of the

weighting factor α determines the balance between terms (1−α)Smin and αSreg. In summary,

Smin favors minimum support solutions, Sreg favors solutions with large support, and Scon

favors solutions with support controlled by the value of α.

The remainder of this section addresses two important details. First, we must explain why

the effect of Sreg is opposite to that of Smin. Second, we will discuss the normalizations of

Smin and Sreg, which leads to their invariance to discretization. We must note that Sreg is the

square of the l2 norm weighted by the product of ll and l1 norms (11).We think of Sreg as a

normalized l2 norm. Therefore, the minimum of Sreg is reached at the minimum l2 norm

solution (a solution with large support where Smin has maximum). The maximum of Smin is

1, which happens for a case with one nonzero parameter, where Scon is at its minimum.

Strictly speaking, the maximum of Sreg is also possible for other cases. However, opposing

properties of the minimums are more important for our purposes.

Now, we consider the normalizations of Smin and Sreg. Factor 1/Ns normalizes Smin (6),

while divisions by l1 and l∞ norms normalize stabilizer Sreg (11). Normalizations are

important for the meaningful summation of Smin and Sreg in expression (10), because they

make the terms bounded:

(12)

In addition, normalizations make functionals Smin and Sreg invariant to discretization and

grayscale of the image. To illustrate this property, consider an example 2D image with a

total of 100 pixels, where 96 pixels are zero, and a compact domain in the middle contains 4

pixels all with the value of a. The left panel in Fig. 2 illustrates this case. The following

calculations find values of Smin and Sreg for this case:

(13)
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According to (13), Smin=0.04 (which is a fraction of the non-zero pixels in the image from

Fig. 2) and Sreg=1. Now, we refine the discretization twice. The resulting image has total of

400 pixels with 16 pixels containing the value of a, as shown in the right panel of Fig. 2.

Calculations similar to (13) show that Smin and Sreg did not change (Smin=0.04 and Sreg=1).

This example also shows that functional values are invariant to a (image level, or grayscale).

Note that the same properties hold true for 3D grids and volume models that we consider in

this paper.

The method of reweighted optimization

In this section, we discuss how to solve minimization problem using the method of

reweighted optimization. To obtain the final form of the objective functional (denoted as

Pcon), we substitute definitions (2), (6), (10), (11) into (3):

(14)

In this section, we discuss the idea of how to solve the minimization problem:

(15)

Arguably, the minimization of Pcon is difficult, because it is a non-linear (non-quadratic)

functional of s. We have two feasible options for the numerical solution of our non-quadratic

problem. The first uses gradient-type inversion methods, and the second uses the method of

reweighted optimization. While the gradient-type minimization method is well known

(Fletcher, 1981), this method requires computing the gradient of a functional (14).

Computing such a gradient is problematic since we previously used sign while constructing

Pcon (see formulas (8) and (9)).

In this paper, we use the method of reweighted optimization, a historical choice for related

minimum support problem (Last and Kubik, 1983; Portniaguine and Zhdanov, 1999;

Portniaguine, 1999). In addition, a number of researchers have found the reweighted

optimization convenient (Wolke and Schwetlick, 1988; O’Leary, 1990; Farquharson and

Oldenburg, 1998), especially for cases where non-linearity is represented by weights to the

quadratic term. This is exactly our case. Notice that the term  in (14) can be taken out of

the brackets

(16)

Thus, model-dependent weighting of the quadratic functional represents the non-linearity in

(14):
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(17)

where wk is model-dependent weight

(18)

It is convenient to assemble weights into a sparse diagonal matrix W(s) with terms wk in the

main diagonal, and write (17) in matrix notations:

(19)

To understand our optimization algorithm in detail, it is necessary to convert the parametric

functional to a purely quadratic form, which has a known analytic solution. This form is

obtained by transforming the problem into a space of weighted model parameters. To do

that, we insert W(s)W(s)−1 term into (19):

(20)

Then, we transform (20) by replacing the variables:

(21)

After substituting (21), expression (20) results in a purely quadratic form of the functional

with respect to sw:

(22)

Since Pcon (sw) is purely quadratic with respect to sw, the minimization problem for Pcon

(sw) has an analytical solution, known as the Riesz representation theorem (Aliprantis and

Burkinshaw, 1978):

(23)

where Ib is unit matrix in the space of data (of size Nb×Nb).

Thus, the idea of reweighted optimization is to solve (15) iteratively, assuming the weights

are constant on each iteration. Starting from the initial guess for the weights, we can use the

Riesz representation theorem to find weighted solution. We can then convert back to
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original space, update the weights depending on the solution, and repeat the iterative

process. The next section discusses the details of this process. The above equation is

identical to the MAP estimator with Gaussian priors for the sources and the noise, where the

source variance is assumed to be an unknown diagonal matrix and the noise variance is

known and parameterized by λ.

The minimization algorithm

The algorithm for minimizing a parametric functional is iterative. On each iteration

(enumerated with index n), we compute the updates of: the weights Wn, the weighted lead

fields Lwn, the weighted model swn, and the update of the model sn. These quantities depend

upon values from previous iteration (denoted with index n−1). Inputs to the algorithm

include the data b, noise level estimate φ0, as well as the support parameter α. Before the

first iteration, we precompute the lead fields L, set weights to one W0=Is, and set the current

model update to zero s0=0. The important additional step are incorporated in the final

algorithm. The first is the choice of regularization parameter, the second is the line search

correction, and the third is termination criterion.

According to Tikhonov condition, the choice of the regularization parameter λ should be

such that the misfit (2) at the solution equals an a priori known noise level φ0 (Tikhonov and

Arsenin, 1977):

(24)

Substituting (23) into (24) yields the equation

(25)

which we solve with a fixed point iteration method. In Eq. (25) the only unknown variable is

the scalar parameter λ. Since the Gramm matrix  is small (Nb×Nb, where Nb is

small), the fixed point iteration method easily solves Eq. (25) for λ. For the cases where the

data dimension Nb is large, which makes the direct inversion of a Gramm matrix

impractical, solving Eq. (22) using the Riesz theorem (23) can be substituted by solving (22)

via a conjugate gradient method (Portniaguine, 1999). In this paper, we consider processing

of MEG data from an array of 102 sensors, so the dimension of data is small Nb=102 and

therefore the Gramm matrix is easily invertible with direct methods. Such a choice of the

regularization term is analogous to setting the noise variance in the Bayesian MAP

estimation procedure.

Second, to ensure convergence of the algorithm, we incorporate a line search procedure.

Convergence of the reweighted optimization depends upon how accurately the Eq. (22)

approximates the original non-quadratic Eq. (19). That, in turn, depends on assumption of

constant weights, which, in our case, are dependent on s. The usual assumption for any

iterative method is that the changes in a model are small from one iteration sn−1 to the next
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sn. That assumption may not always hold, and therefore, steps which converge on Eq. (22)

may be divergent on the original Eq. (16) due to significant changes in W(s). The well-

known method of line search (Fletcher, 1981) serves to correct this problem. Once the next

approximate update Sn' is found from the previous update sn−1 using the approximate

formula (22), we check the value of original non-linear objective functional Pcon (sn′). If the

objective functional decreases, the line search is not deployed. If the objective functional

increases (which signifies the divergent step), we perform a line search.

If Pcon (sn−1)<Pcon (sn), we perform a line search, by searching for the minimum of Pcon

with respect to the scalar variable t (the step length):

If Pcon (sn−1)<Pcon (sn), then we set t=1 and do not perform the line search. Note that the

smaller step size t is, the closer the corrected update sn is to the previous update sn−1 from

which the weights Wn were derived. Thus, the smaller t has the less weights change from n

−1 iteration to n, and therefore, our quadratic approximation becomes more accurate. With

small enough t, a smaller value of Pcon will always be found somewhere between sn−1 and s

′. Minimization of the scalar functional Pcon with respect to scalar argument t is a simple 1D

problem. That problem is solved by sampling the function at a few points (usually three or

four), fitting the parabola into it, and finding the argument of a minimum. Such sampling is

fast, for one estimate of the functional we only need to solve one forward problem. In many

previously conducted studies with minimum support functional Smin, the reweighted

optimization has never diverged (Last and Kubik, 1983; Portniaguine and Zhdanov, 1999).

Our new controlled support functional, Scon, is dominated by term Smin. Therefore, we

expected the same good convergence for S as was reported for Smin. However, in the Monte-

Carlo simulations carried out in this paper and with some limited datasets, the algorithm has

never called the line search routine because the divergence was never detected.

Third, the termination criterion was formulated based on the following two observations.

First, we must observe that all updates sn produce the same misfit φ0 (due to enforcement of

the Tikhonov condition). Therefore, only the second term Scon determines the minimum of

Pcon (sn) on a given set of arguments sn. This second term consists of two parts: (1−α) Smin

(sn), and αSreg (sn). The second observation is that the Smin (sn) term decreases with n, and

the Sreg (sn) term increases with n. This happens because on the first iteration n=1 we

produce the minimum norm solution, and then progress towards more focused solutions (see

discussion about opposing properties of Smin and Sreg in The minimum support stabilizer

section). So, the dominance of αSreg term over (1−α)Smin term signifies close proximity to

the minimum of Pcon. We summarize the complete algorithm as follows:

1. Compute Lwn using (21)

2. Determine regularization parameter by fixed point iteration of Eq. (25).
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3. Find the weighted model swn using (23):

4. Find preliminary update of the model sn using (21),

5. Check for divergence and incorporate line search.

6. Corrected update sn is found from the previous update sn−1 using step length t:

7. Check for termination criterion. We stop iterations if

8. Find the updated weight Wn using (18) and go to Step 1, repeating all steps in the

loop.

Results and discussion

In simulations we demonstrate the algorithm performance, estimate localization accuracy

and speed of the method. The geometry for all simulations was from an MR (magnetic

resonance) image of a subject. Fig. 3 shows a head surface extracted from the MR volume

image. We transformed the MEG sensor array to MRI coordinates by matching the reference

points (measured on the subjectTs head) and the extracted head surface (Kozinska et al.,

2001). Fig. 3 shows the MEG array as a “helmet” consisting of 102 square sensor “plates.”

Each plate has magnetic coils that measure the normal (to the plate) component of the

magnetic field. The middle of the plate serves as a reference point. In order to parameterize

the inverse problem, we divided the volume of the brain into 30,000 cubic voxels of size

4×4×4 mm. Vector s consists of strengths of three components of current dipoles within

each voxel. This produces Ns=90,000 free inversion parameters (unknowns). This

parameterization takes into account both gray matter and white brain matter. We did not use

the alternative parameterization with the cortical surface constraint because the final

reconstruction result would strongly depend on the accuracy of the cortical surface

extraction procedure. The controlled support algorithm is the point of our investigation. So,

we did not use cortical surface extraction since it may mask the evaluation of the

algorithmTs performance.

We built the underlying forward model (lead field operator) using the formula for a dipole in

a homogeneous sphere (Sarvas, 1987). We computed the sensitivity kernel for each sensor (a

row of matrix L), using an individual sphere locally fit to the surface of the head near that

particular sensor site (Huang et al., 1999).
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As a first numerical experiment, we placed two dipoles within the brain, approximately at

the level of the primary auditory cortex.

Fig. 4 shows the location of dipoles within the brain. That setup defines the vector s as zeros

everywhere except the specified dipole locations. We generate the data b using the forward

Eq. (1), adding Gaussian random noise such that the SNR is 400. The level of noise is set

relative to the data and measured in the same units as a normalized misfit, as defined by the

formula

(26)

where SNR is the signal-to-noise ratio defined by the ratio of the average signal power

across channels divided by the average noise power, and n is the noise vector. Fig. 5 shows

the resulting data as a flat projection.

To illustrate convergence, Fig. 6 shows the evolution of stabilizers during iterations, and

Fig. 7 shows the evolution of the solution. The isolines in Fig. 7 display the magnitudes of

the dipoles in the solutions, superimposed on a corresponding MRI slice.

Fig. 7 displays six solutions produced on each iteration. The first solution (panel 1) is a

minimum norm solution that is smooth, and maximums are far away from the true dipole

locations. In contrast to a common misconception about reweighted optimization methods,

observe how the location of maximum activation shifts during reweighted iterations (panels

1–6 in Fig. 7). Note that the method discussed here does not simply accentuate the peaks of

the previous iteration. The size and shape of the estimated source area are mainly due to the

model and the noise level and do not directly relate to the size and shape of the original

source.

Each of these solutions describe the data equally well, but they do not describe the prior

expectations that the activity is focused. The solutions are indistinguishable in terms of the

data fit, however, they have different values of the stabilizer. Fig. 6 shows evolutions of a

stabilizer S (solid line) and its individual components (α−1)Smin (dots) and αSreg (dashes).

We see that the first solution has a large value of a stabilizer, and on the next iterations, the

stabilizer decreases to a minimum.

We have empirically determined, from our Monte-Carlo experiments, that the best estimate

of the dipole location is not the maximum of the image, but rather the location of the

maximum of a local weighted average of the image around its maximum solution. Such a

technique is better since it provides estimates located away from the grid nodes, and is,

therefore, less sensitive to a given inversion grid. We estimate the dipole locations by

thresholding the whole image at 10% to the maximum, separating the individual maximums

by clustering, and determining the center of each cluster as the average of a position of

cluster points with weights corresponding to the intensity of the image. This procedure is

very fast for our compact images (fractions of a second) and does not increase the overall

computation time.
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Second, we estimate the localization accuracy and speed of our algorithm using the Monte-

Carlo study with 100 simulations. Each experiment is a separate round of inversion run on a

data generated by a dipole with a random orientation and a random location within the brain.

Fig. 8 shows a histogram of the root–mean–square localization error. The mean error was

2.1 mm, the three largest errors were 8,10 and 12 mm, all for dipoles located very deep

within the brain or at the corners of the mesh. Four errors were below 8 mm, and the rest of

93 errors were below 4 mm. These results are consistent with performance reported in the

literature for single-dipole parametric inversion (Leahy et al., 1998). With the geometrical

setup described above, and using a 700 MHz PC, the localization runs for 30 s.

Third, we run the source localization with different levels of noise, ranging from small

(SNR=400) to high (= 4). Table 1 summarizes the results. Each column in the table is

averaged from 100 Monte-Carlo trials. Expectedly, under high levels of noise localization

accuracy as well as errors in orientation deteriorates. However, the method performed

robustly and converged well even under 25% of noise and even in this case exhibited

localization accuracy of 10 mm.
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Fig. 1.
This Figure illustrates outcomes of two attempts to image a single focal source with two

different stabilizers. (a) Image obtained with minimum support stabilizer is a cloud of

disconnected multiple focal sources located near each other. (b) Image obtained with

controlled support stabilizer is a single patch.
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Fig. 2.
Functionals Smin and Sreg are invariant to image level and discretization. For illustration,

consider a 2D model depicted in this figure. Model has a non-zero domain in the middle.

Left panel, shows case with 100 pixels and 4 non-zeros. Functional values for this model are

Smin=0.04 and Sreg=1. Right panel, same case with finer discretization, 400 pixels and 16

non-zero values.
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Fig. 3.
Geometry that was used in the model study. An outer head surface was extracted from the

subject's MRI. MEG sensor array (a “hat” consisting of square receiver “plates”, as shown

here) was positioned in MRI coordinates by matching the reference points to the head

surface. Each “plate” measures normal component of a magnetic field.

Nagarajan et al. Page 17

Neuroimage. Author manuscript; available in PMC 2014 June 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4.
Location of two test dipoles (stars) within the head.
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Fig. 5.
Magnetic field data for two-dipole model (the model from Fig. 4). Data are shown by color

map superimposed on flat projection of measuring array (the helmet from Fig. 3). Dots show

the locations of the sensors, each sensor corresponds to one plate in Fig. 3. Data contain

Gaussian random noise such that the SNR=400.
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Fig. 6.
Evolution of stabilizers during reweighted iterations. Solid line shows evolution of S, dashes

show evolution of αSreg and dots show the evolution of (1−α)Smin. Stars show the stopping

point, where term (1−α)Smin becomes less than term αSreg. After that point term αSreg

(dashes) dominates, and Scon (solid line) flattens, as illustrated by this figure.
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Fig. 7.
Evolution of solution during reweighted iterations. The case corresponds to example

discussed in Fig. 6. Stars show “true” location of dipoles (location of dipoles within the head

is shown in Fig. 4). Solution is superimposed on corresponding MRI slice as isolines. Panels

numbered 1, 2, 3, 4, 7, 13 show the solutions at the corresponding iteration.
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Fig. 8.
Histogram of localization errors for 100 experiments with a randomly located dipole.

Average error is 2.1 mm, seven errors are above 4 mm.
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