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Abstract
Diffusion measurements in the human central nervous system are complex to characterize and a
broad spectrum of methods have been proposed. In this study, a comprehensive diffusion encoding
and analysis approach, Hybrid Diffusion Imaging (HYDI), is described. The HYDI encoding scheme
is composed of multiple concentric “shells” of constant diffusion-weighting, which may be used to
characterize the signal behavior with low, moderate and high diffusion-weighting. HYDI facilitates
the application of multiple data-analyses strategies including diffusion tensor imaging (DTI), multi-
exponential diffusion measurements, diffusion spectrum imaging (DSI) and q-ball imaging (QBI).
These different analysis strategies may provide complementary information. DTI measures (mean
diffusivity and fractional anisotropy) may be estimated from either data in the inner shells or the
entire HYDI data. Fast and slow diffusivities were estimated using a nonlinear least-squares bi-
exponential fit on geometric means of the HYDI shells. DSI measurements from the entire HYDI
data yield empirical model-independent diffusion information and are well-suited for characterizing
tissue regions with complex diffusion behavior. DSI measurements were characterized using the zero
displacement probability and the mean squared displacement. The outermost HYDI shell was
analyzed using QBI analysis to estimate the orientation distribution function (ODF), which is useful
for characterizing the directions of multiple fiber groups within a voxel. In this study, a HYDI
encoding scheme with 102 diffusion-weighted measurements was obtained over most of the human
cerebrum in under 30 minutes.
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Introduction
The diffusion tensor is a good model of the diffusion-weighted signal behavior for low levels
of diffusion weighting (e.g., b < 1500 s/mm2). However, the diffusion tensor model does not
appear to be consistently accurate in describing the signal behavior for higher levels of
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diffusion-weighting. The problems with the simple diffusion tensor model arise from two
sources – (1) apparent “fast” and “slow” diffusing components (Niendorf et al., 1996; Mulkern
et al., 1999; Assaf and Cohen, 1998a, 2000; Clark and Le Bihan, 2000; Inglis et al., 2001;
Ronen et al., 2003; Maier et al., 2004) that cause the signal decay with diffusion-weighting to
appear non-monoexponential; and (2) partial volume averaging (Alexander et al., 2001)
between tissue groups with distinct diffusion tensor properties (e.g., crossing white matter
tracts, averaging between white matter and gray matter tissues). The non-monoexponential
diffusion behavior is likely to arise from local restriction effects from cellular membranes.

The effect of partial volume averaging causes ambiguities in the interpretation of diffusion
tensor measurements. Whereas the diffusion anisotropy is generally assumed to be high in
white matter, regions of crossing white matter tracts will have artifactually low diffusion
anisotropy. Consequently, in regions with complex white matter organization, changes or
differences in diffusion tensor measures may reflect either changes in either the tissue
microstructure or the partial volume averaging components. As the diffusion weighting is
increased the profiles of apparent diffusivity reveal non-Gaussian diffusion behavior in voxels
with partial volume averaging (Niendorf et al., 1996; Mulkern et al., 1999; Assaf and Cohen,
1998a, 1998b, 1999b, 2000; Assaf et al., 2000; Clark and Le Bihan, 2000; Alexander et al.,
2001; Alexander et al., 2002; Frank, 2002; ). Despite these limitations, the applications of
diffusion tensor imaging have been rapidly growing, mainly because of the relative simplicity
and good acquisition efficiency (e.g., it can be acquired in clinically acceptable times).

A growing number of strategies have been developed for measuring and interpreting complex
diffusion behavior. The methods vary in their acquisition sampling and analysis approaches.
High angular resolution diffusion imaging (HARDI) methods (including QBI: q-ball imaging;
and GDTI: generalized DTI) typically obtain images with a constant moderate to high level of
diffusion weighting (b > 1500 s/mm2) over a large number (> 30) of non-collinear encoding
directions (Liu et al., 2004; Özarslan and Mareci, 2003). The HARDI approaches may be used
to detect and characterize regions of crossing white matter tracts; however, they are insufficient
for characterizing aspects of non-monoexponential diffusion.

Other methods attempt to bridge the ability to measure both fast and slow diffusion with high
angular sampling. The most basic approach is diffusion spectrum imaging (DSI), which obtains
diffusion-weighted samples on a Cartesian sampling lattice in q-space (Wedeen et al., 2000,
2005). Diffusion displacement spectra are related to the q-space measurements by a Fourier
transform (Callaghan, 1991; Cory and Garroway, 1990; King et al., 1994, 1997; Assaf et al.,
2000; Assaf and Cohen, 2000). While Cartesian sampling facilitates the straightforward FFT
for estimation of the displacement densities of water molecules, it is not required. Recently,
investigators have proposed non-Cartesian sampling strategies of q-space (Assaf et al., 2004;
Assaf and Basser, 2005; Wu and Alexander, 2005; Khachaturian et al., 2007). Assaf et al.
applied a model (CHARMED) of slow and fast diffusion compartments to estimate what they
deemed as hindered and restricted diffusion (Assaf et al., 2004; Assaf and Basser, 2005). In a
separate study, we demonstrated that the non-Cartesian q-space sampling strategy that uses
concentric spherical shells of constant |q| may be used for estimating DTI, DSI and QBI
properties in a single experiment (Wu and Alexander, 2005). The number of encoding
directions is increased with each encoding shell to increase the angular resolution with the level
of diffusion-weighting. Thus, the most interior shells may be used for diffusion tensor analyses
where high angular resolution was not essential, and the outermost shell with the highest
diffusion-weighting and angular resolution may be used for HARDI approach such as QBI
analysis. The entire data set from all shells are combined for both DSI and multi-exponential
diffusion analyses. This flexible diffusion encoding strategy is called hybrid diffusion imaging
(HYDI).
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The concentric shell framework used in the HYDI q-space scheme provides flexibility in the
data features to be emphasized. DTI works best at lower b values; therefore, the measurements
from the inner shells may be used to estimate the diffusion tensor. A minimum of six directions
is required to estimate the DT although more may be acquired to improve accuracy. On the
outer shell(s) the number of directions may be increased to better characterize complex tissue
organization. In this case, QBI may be applied to the outermost shell data. Combining all shells,
the whole HYDI dataset may be used for DSI. In addition, the behavior of q-space diffusion
signals were investigated across all shells, and diffusivities were estimated using both
monoexponential and bi-exponential models. The ultimate goal is to develop an efficient
diffusion imaging measurement strategy that can provide characterization of complex diffusion
in a clinically feasible scan time.

In this paper, a basic demonstration of HYDI is performed using both measured brain image
data and simulated data. Strategies for HYDI image analysis are discussed. Finally, a summary
and demonstration of several quantitative measures that can be obtained using HYDI are also
provided.

Materials and Methods
HYDI Encoding

The implementation of hybrid diffusion imaging is very similar to diffusion spectrum imaging
(DSI) (Wedeen et al., 2005) except that q-space samples are placed on concentric shells instead
of a Cartesian lattice. The q-space encoding wave-vector, q, for a specific HYDI sample using
a standard pulsed-gradient spin-echo pulse sequence is q = γGδ,where γ is the gyromagnetic
ratio, G is the encoding gradient vector, and δ is the diffusion-gradient pulse width. The
encoding wave-vectors were placed on 5 concentric shells in q-space as listed in Table 1. The
total number of q-space encoding samples was 102 including a central q=0 sample, and the
maximum diffusion-weighting corresponded to a b-value of 9375 s/mm2 (corresponding to a
maximum q = 76 mm−1). On each shell, the samples were arranged uniformly and the number
of encoding directions generally increased with the level of diffusion-weighting (although the
2nd and 3rd shells both had 12 encoding directions). The specific encoding set is not necessarily
optimum from a sampling density or accuracy standpoint, but does adequately illustrate the
features of the HYDI encoding strategy. Future studies will be performed to optimize the
specific set of encoding directions.

MRI Experiments
In vivo brain data with HYDI was obtained on six healthy volunteers using a 3T GE SIGNA
scanner (GE Healthcare, Waukesha, WI). The diffusion-weighting (DW) pulse sequence was
a single-shot, spin-echo, echo-planar imaging (SS-SE-EPI) pulse sequence with diffusion
gradient pulses, dual-echo gradient refocusing to minimize distortions from eddy currents, and
cardiac gating (using a photo-plethysmograph) to minimize signal fluctuation from brain
pulsations. The q-space diffusion-encoding scheme is described above. The maximum b-value
was 9375 sec/mm2 with a maximum DW gradient of 40 mT/m, gradient duration (δ) and
separation (Δ) of 45 and 56 ms, respectively. This sampling scheme corresponded to Δqr =
15.2 mm−1 and maximum q = 76.0 mm−1 (Table 1). The field of view (FOV=(2Δqr) −1) and
the resolution (max qr−1) of the displacement density of water molecular are 65 μm and 6.57
μm, respectively. Other imaging parameters included an in-plane voxel size = 2 mm
(FOV=25.6 cm and matrix size = 128x128), 30 slices with slice thickness = 3 mm covering
most of the cerebrum, TE/TR= 122/11700 ms and a total scanning time of approximately 30
min. SNRs were calculated for each shell. The signals were the mean diffusion-weighted
signals at each shell. The noise was estimated by the standard deviation of the subtraction of
two images at b=0 s/mm2 scaled by a factor of sqrt(2) −1.
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HYDI Data Processing
The HYDI encoding approach is extremely flexible for a wide spectrum of diffusion image
analyses. The acquisition of diffusion-encoded images on shells with constant diffusion-
weighting is amenable to DTI and QBI analyses. The entire data set may be regridded to a
Cartesian lattice for DSI analysis. These approaches are described here.

At lower levels of diffusion-weighting (i.e., b < 2000 s/mm2), the diffusion tensor model is
generally a good description of the signal behavior. In this study, conventional diffusion tensor
image analysis was performed using data from shells with diffusion-weighting (DW) up to
b=1500 sec/mm2 (Table 1, shells 0 to 2). In addition, diffusion tensor maps were also estimated
using the entire HYDI dataset to match the data and SNR for comparisons between DTI and
DSI. The diffusion tensor elements were calculated using non-linear least squares estimation
with the Camino software package (Cook et al., 2006). DT measures including the mean
diffusivity (MD), the fractional anisotropy (FA), and the major eigenvector colormap were
derived from the diffusion tensor (Basser and Pierpaoli, 1996).

To evaluate the deviation of the diffusion-weighted signals from an ideal Gaussian distribution
(the basis for the diffusion tensor), we calculated the root-mean-square (RMS) of the q-space
signal residuals from the fit to the diffusion tensor model. The higher RMS errors reflect larger
deviation of the q-space signals from the Gaussian diffusion model.

At higher levels of diffusion-weighting, q-ball imaging (QBI) appears to yield relatively high
angular resolution (Tuch et al., 2003). Thus, the data in the outermost shell (Table 1 – shell 5
with 50 directions at b = 9375 s/mm2) was used for QBI analysis. The QBI-ODF (orientation
density function) was reconstructed using the Funk-Radon transform (Tuch et al., 2003),

(1)

where R̂ is the unit vector of the dynamic displacement and E(q⃗) is the q-space signal, E(q⃗) =
S(q⃗) S(0). For each direction (R^), the ODF is the integral of q-space signals on the circle
perpendicular to R^ on the sphere (e.g., equator).

The entire HYDI data set in Table 1 was used for diffusion spectrum imaging (DSI) analyses.
First, to minimize overestimation of signals near the noise floor, q-space signals were set to
zero if smaller than 2 times of the mean signal in air. This was also done Second, non-uniform
q-space signals were regridded onto a 9x9x9 Cartesian lattice using a bilinear interpolation
algorithm (MATLAB function “griddatan”) (Barder et al., 1996). After sample interpolation,
the probability density function (PDF) of the water diffusion displacement at the diffusion time
Δ was calculated using the Fourier Transform (FT) of the normalized q-space signals
(Callaghan, 1991;Cory and Garroway, 1990;Assaf et al., 2000,2002;Wedeen et al., 2000,
2005),

(2)

where R⃗ is the displacement vector of water molecules.

Several measures were derived from the DSI-PDF. The zero displacement probability

(3)
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describes the probability density of water molecules that minimally diffuse within the diffusion
time Δ (Assaf et al., 2000; Wu and Alexander, 2005). The mean-squared displacement (MSD)
is defined as (Wu, 2006)

(4)

which describe the average diffusivity within a voxel. The Einstein diffusion equation, 〈R⃗〉 =
6Δ ̄ ,describes a linear relation between the expectation value of R⃗2 and the mean diffusivity.
A directional colormap is created from measurements of the full-width at half-maximum,
FWHMx,y,z, of the PDF in three orthogonal directions (Wu and Alexander, 2005). The q-space
measures Po and MSD were first described by Assaf et al. in their one dimensional q-space
measurements (Assaf et al. 2000, 2002). In this study, the definition of Po was extended to a
three dimensional calculation. The definition of the “mean-displacement”, however, was
slightly different as they calculated the mean-displacement using the FWHM described in the
paper by Cory et al. (1990).

The orientation distribution function (ODF) may also be estimated from the entire q-space data
by the radial integral of the PDF (Tuch et al., 2003; Wedeen et al., 2000),

(5)

where ρR^=R⃗ Note that this definition is different than the ODF estimated from the QBI analysis
in Eq. (1).

To compare PDF measures and DTI measures in specific tissues, brain segmentation and
anatomically specific ROIs were generated for all six subjects. The Po map was used for brain
tissue segmentation, which used FMRIB’s automated segmentation tool (FAST) software
(Zhang et al., 2001). This approach generated plausible tissue segmentation maps of grey matter
and white matter. In addition, hand-generated (polygon shaped) regions-of-interest (ROIs)
were created for six WM regions and three deep brain GM regions. The WM ROIs included
the corpus callosum splenium (CCs), corpus callosum genu (CCg), posterior limb of internal
capsule (PLIC), prefrontal WM (WMpf), occipital WM (WMocc) and centrum semiovale (CS),
and the GM ROIs included the thalamus (Th), caudate nuclei (Cau) and putamen (Put). The
mean and standard deviations of Po, FA, and MD for both DTI and DSI analysis were computed
for the entire WM segmented region and all of the WM and GM subregions.

The multiple-shell acquisition of HYDI also facilitates the calculation of both the arithmetic
and the geometric means of diffusion signals for specific levels diffusion weighting (|q|). Means
of the diffusion-weighted signals were then used to estimate mean diffusivities. Since the
diffusion is not expected to be mono-exponential over the entire range, two strategies were
implemented for characterizing the diffusivities. The first was to estimate the mean apparent
diffusivities over small ranges of b-values. In this case, mono-exponential diffusion was
estimated for different shell sub-ranges of the mean q-space signals – i.e., b = 0 to 1500 s/mm2
(shells 0, 1, 2); b = 375 –3375 s/mm2 (shells 1,2,3); b = 1500–6000 s/mm2 (shells 2,3,4); and
b = 3375 – 9375 s/mm2 (shells 3,4,5). Obviously, the data in the higher b-value ranges will
emphasize the slow diffusion components and the low b-value ranges the faster diffusion
components. This was done for both the geometric and arithmetic means.

In the second approach, the geometric means, GMs, across all shells, s, were fitted to a one-
dimensional bi-exponential model using a nonlinear least squares algorithm. The bi-
exponential model is described as
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(6)

where f1 and f2 are the volume fractions, D1 is the assumed fast diffusivity, D2 is the assumed
slow diffusivity, and const. is constant. This model has one constraint, i.e. f1 + f2 = 1, and 4
variables (f1, D1, D2, and constant) needed to be estimated. The HYDI acquisition has 6 shell
sample points (including measurements at b=0) that were used for the estimation.

Computer Simulation
To study the ODF angular errors and angular resolution of the HYDI encoding scheme, a Monte
Carlo noise simulation was performed. Both fast and slow diffusion compartments (Clark and
Le Bihan, 2000; Maier et al., 2004) were simulated for each tract group, including for crossing
white matter tracts. Diffusion measurements in corpus callosum were used to simulate fast and
slow Gaussion diffusion functions (Maier et al., 2004). The q-space signal was modeled using

(7)

where n was the total simulated fiber number, fif was the volume fraction of the fast component
of the ith fiber, and fis was the volume fraction of the slow component. The summation of all

volume fractions was 1, i.e. . Dif and Dis described the diffusion tensor for both
fast and slow component of the ith fiber assuming no exchange between comartments. Gaussian
random noise was added the q-space signals in quadrature (Pierpaoli and Basser, 1996). The
magnitude of noised signals was used for data processing. The SNR was calculated as the ratio
of the zero DW signal to the standard deviation of the Gaussian noise. Six SNR levels (i.e. 10,
20, 30 ,40 50 and 100) were studied, and for each SNR level, 1000 and 100 random trials were
simulated to study ODF angular error and ODF angular resolution, respectively.

For the investigation of errors in the estimated fiber direction, a single-fiber (i.e. n=1) WM
model was used. We generated 100 uniform tensor orientations over one hemisphere using an
analytical approach (Hasan et al., 2001, Wong and Roos, 1994). The angular error was defined
as the angular differences between the ideal direction and the direction of the maximum
likelihood of the ODF profile which is obtained from either the QBI (outermost shell) or DSI
(all shells) analyses (Campbell et al., 2004, 2005). For the investigation of the ODF angular
resolution, a WM model of two-crossing fibers (i.e. n=2) was used. Four intersection angles
(45º, 60º, 75º and 90º) and 100 random trials for each intersection angle were simulated. The
ODF angular resolution is defined as the average number of fibers that can be separated from
the ODF profile of the crossing-fiber configuration among the 100 random trials.

Results
Maps of diffusion tensor (DT) measures calculated from HYDI inner-shells are shown in Fig.
1(a)–(c). Maps of DT measures calculated from the entire HYDI dataset are shown in Fig. 1
(e)–(g). PDF measures from DSI analysis are in Figs 1(i)–(k). There are some similarities
between the contrast in FA and Po maps (Figs 1(a), (e) & (i)), MD and MSD (Figs 1(b), (f) &
(j)), and the eigenvector and FWHM color maps (Figs 1(c), (g) & (k)). However, one difference
between FA and Po appeared at the fiber crossing areas, such as the prefrontal and occipital
WM, the Po map (Fig. 1(i)) demonstrated a more uniform intensity in WM than the FA maps
(Fig. 1(a) & (e)). This observation was further supported by an ROI study across 6 subjects
(Table 2). For single-fiber ROIs including the corpus callosum splenium (CCs), corpus
callosum genu (CCG) and posterior limb of internal capsule (PLIC), FA values of the whole
dataset (Table 2, column 4) were larger than 0.8 with the coefficient of variation (CV) of ∼5–
10%. However, for the complex WM ROIs including prefrontal WM (WMpre), occipital WM
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(WMocci) and centrum semiovale (CeSe), mean FA (all shells) values decreased to ∼0.7 with
increased CV of 15–20%. In contrast, Po values (Table 2, column 2) are more consistent
(∼0.10–0.12) between homogeneous and heterogeneous WM ROIs with similar CVs of
roughly 10%. In general, WM FA values from the inner-shells (Table 2, column 3) were smaller
and more heterogeneous (0.48–0.86) than that from the whole dataset (Table 2 column 4) with
larger CVs (12–32%), whereas GM FA values (0.36–0.52) and their CVs (25–45%) were very
similar in both datasets.

Maps of Po also showed that WM (Mean±SD = ∼0.115 ± 0.010) including complex regions
appeared consistently separable from deep brain GM (∼0.0786 ± 0.010). Whole brain
segmentation was performed on the Po maps using FMRIB’s automated segmentation tool
(FAST) software (Zhang et al., 2001). The segmented regions were used to construct
histograms of estimated Po, FA, and MD measures for regions of GM and WM (Fig. 2). The
statistics of these distributions are listed in Table 3. It is clear that the histogram overlap between
GM and WM is much less for Po than FA. This is primarily because FA in WM is very
heterogeneous. The MD distribution estimated from the DSI analysis is also much narrower
than the MD estimates from the DTI analyses. However, the distributions for both GM and
WM are highly overlapping in all cases, although the relative peak positions are reversed for
DSI and DTI analyses.

The WM and GM SNRs for each shell are listed in Table 4. This data was from one subject,
and the results were similar in other subjects. The SNR decreased as the b value increased. At
the outermost shell (b = 9375 s/mm2), the WM had mean and peak signals of 13% and 30%
of the b=0 signal, respectively; and the GM had mean and peak signals of 5% and 16%,
respectively.

To investigate the consistency between the estimated diffusion tensor model and the measured
q-space signals in the HYDI data, maps of the root-mean-square difference between the DT
model and the q-space DW signals were generated and are shown in Fig. 1 (d) & (h). The non-
zero intensities in WM indicated the inadequacy of the DT model for describing diffusion
signals at high levels of diffusion-weighting. The model errors were considerably higher in
WM than GM (particularly cortical GM) where the RMS residuals are close to zero. These
results were consistent with the measurement of DT Kurtosis by Lu et al. and Jensen et al.
(Jensen et al., 2005; Lu et al., 2006). A similar map was generated by taking geometric mean
of the QBI images normalized by the signal at b = 0 (see Fig. 1 (l)). Again, the signal in WM
was hyperintense from the restricted diffusion signals. It should be noted that the RMS residuals
map for the inner shell DTI data appeared more homogeneous (Fig. 1 (d)) than the RMS
residuals map for the DTI from the entire data (Fig. 1 (h)), particularly in regions of crossing
WM.

The HYDI acquisition scheme of spherically symmetric shell of constant q-space radii of
facilitated the estimation of diffusivities over different diffusion-weighting ranges. In this
study, both the arithmetic and geometric means were computed for q-space signals at different
shells as shown in Fig. 3 (a) and (b) and the regional statistics for whole brain WM and GM
are listed in Table 5. The tissue contrast between GM and WM appeared to increase with the
level of diffusion weighting. The image contrast for both the geometric and arithmetic mean
maps were similar although the arithmetic mean signal was consistently higher and appears
less noisy, particularly at higher levels of diffusion-weighting.

Maps of estimated diffusivities over ranges of three contiguous q-space shells using a linear
least squares fit of a monoexponential model are shown in Fig. 3(c) and (d) for both the
arithmetic and geometric means, respectively. Mean diffusivity measurements over ranges of
|q| for WM and GM are summarized in Table 5. The mean diffusivities decreased as the
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diffusion-weighting was increased. This observation indicated that the diffusion over the entire
range of b-values was not mono-exponential. At high diffusion weighting, the estimated
diffusivities of WM were much lower than that in GM. However, for the highest range of
diffusion weighting (shells 3–5: b = 3375 – 9375 s/mm2) the MD maps appear quite noisy.

Fig. 4 and Table 6 summarize the results from bi-exponential fitting (Eq. (6)) of the geometric
mean data. The results demonstrated similar fast diffusion signal fractions (f1 = 74%) and fast
mean diffusivities (D1 ∼ 1000 x10−6 mm2/s) for GM and WM. However, the slow mean
diffusion component for WM (D2 ∼ 144 x10−6 mm2/s) was slower than GM (∼377 x10−6

mm2/s), which was consistent with the higher levels of restricted diffusion in WM. The fast
diffusion component of the mean CSF signals was > 99%.

The organization of WM fiber tracts were visualized using ODF profiles generated from QBI
analyses using the 50 directional data points in the outer shell of the HYDI encoding. Fig. 5
illustrates examples at the level of the Pons (a) and the Centrum Semiovale (b). In Fig. 5 (a)
the fiber tract organization in the pontine region revealed corticospinal tracts (blue), central
tegmental tract (blue), transverse potine fibers (red) and the middle cerebellar peduncle fibers
(green). In Fig. 5 (b), the fibers of of the cingulum (green), corona radiata (blue), transverse
fibers of corpus callosum (red) and the subcortical arcuate fibers (red) were visualized. These
ODF profiles illustrated regions of crossing fibers between these fiber groups at the sub-voxel
level.

Simulation results of the ODF angular error versus SNR for both HYDI (DSI analysis) and
QBI (outer shell only) are summarized in Fig. 6.For SNR ≥ 20 (b = 0 data), the angular error
was less than 5º for both approaches. Simulated noise-free ODF profiles for crossing WM
fibers at different angles are shown in Fig. 7(a). The influence of noise on the detection of
multiple fibers was evaluated and is summarized in Fig. 7(b). The results were relatively
insensitive to the SNR level. For a 90º intersection angle, both methods reliably detected two
fibers groups. At 75º and 60ºintersection angles, QBI was slightly superior in detecting two
fiber groups. At 45º, both methods consistently detected only a single fiber group. The ability
to detect multiple fibers was reduced when the maximum b value was decreased (results not
shown).

Discussion
In this study an alternative q-space encoding scheme, HYDI, was described. It was an efficient
diffusion imaging approach that was flexible for a wide range of image analysis strategies from
a single dataset. To our knowledge, this was the first demonstration of simultaneous DTI, DSI,
QBI and bi-exponential diffusion analysis from a single diffusion-weighted dataset. Possibly,
the most similar experimental design is the CHARMED method (Assaf et al. 2004, 2005),
which has a similar q-space sampling scheme of concentric q-space shells. From the
CHARMED analysis, one may estimate a single hindered (fast) diffusion tensor component
and multiple restricted (slow) diffusion components. Thus, the CHARMED method provides
information similar to the diffusion tensor, fast/slow diffusion, and complex WM organization
in a single acquisition. However, the CHARMED method is based upon specific models of
diffusion; thus, the results depend heavily on the assumed model. The proposed HYDI
framework did not assume any underlying models for most of the analyses – DSI and QBI –
and for other analyses it used simpler models for the data – the diffusion tensor and bi-
exponential diffusion decay. As the data were acquired using similar schemes, it may be
possible to perform CHARMED analysis on HYDI studies. Future studies are necessary to
compare HYDI and CHARMED methods more directly.
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In a comparison of DSI and DTI measures, the DSI Po and MD indices appeared to be more
homogenous and consistent than the DTI FA and MD measures in WM areas. DTI has been
shown to be highly sensitive to averaging between two or more white matter fiber groups in a
voxel (Alexander et al., 2001). Conversely, the Po map was sensitive to the most restricted
diffusion component of the distribution, which was relatively independent of multiple fiber
groups. In addition the MD estimated from the DSI PDF appeared to have narrower
distributions in comparison with the MD measurements from DTI. Obviously, there were
challenges associated with comparing DSI and DTI measures as much more data was required
for DSI analysis. Consequently, the DTI analysis was performed using two different partitions
of the data – the inner shells (0–2), and the entire HYDI data set. The inner shell DTI analysis
was more comparable to many published DTI studies although the TE is quite long causing
the SNR to be suboptimal. The DTI analysis of the entire data enabled the comparison of DTI
and DSI using the same data although this has inherent problems from the standpoint that the
diffusion at high levels of diffusion weighting is non-Gaussian. It is interesting that the WM
FA from the entire data set was significantly higher than values that are typically measured in
most DTI studies. This was because the restricted diffusion measurements in the directions
perpendicular to WM tracts exhibited very slow diffusivities, which increased the FA. The MD
of WM was also shifted towards lower values. These observations were caused by more
apparent restricted diffusion at higher diffusion weighting. An alternative comparison strategy
would have been to collect DTI data with an optimized protocol over the same period of time
as the HYDI experiment. The latter option was not considered as the acquisition would have
been too lengthy compared to most DTI protocols and it is well known that FA is quite
heterogeneous in the CNS even with high SNR data.

In the end, what is most critically important is how these measures reflect tissue changes
associated with disease processes, thus future studies will need to evaluate these methods in
different animal models and disease groups. To date, only a small number of studies have been
published regarding the relationships between disease and high diffusion-weighting
measurements including q-space based approaches and fast/slow diffusivity measurements.
Several recent studies showed that the q-space measurements appeared to be sensitive to both
changes associated with normal brain development (Ben Bashat et al. 2005) and disease in
multiple sclerosis (Assaf et al. 2002), vascular dementia (Assaf et al. 2002), dysmyelination
(Biton et al. 2006), spinal cord injury (Nossin-Manor et al. 2002), and gliosis associated with
epilepsy (Eidt et al. 2004). Measurements of fast and slow diffusivity have recently been
investigated in prostate and brain tumors (Mulkern et al. 2006; Maier et al. 2001, respectively),
and stroke (Brugieres et al. 2004). Ultimately, the utility of these new high diffusion-weighting
approaches like HYDI will depend upon whether they also improve the specificity of tissue
pathology.

Several researchers have described methods for characterizing non-Gaussian diffusion
including diffusion kurtosis (Jensen et al., 2005; Lu et al., 2006) and stretched exponentials
(Bennett et al. 2003, 2004). In this study, non-Gaussian behavior was characterized by using
the root-mean-square (RMS) of the residuals from the diffusion tensor fit. This approach was
attractive in its simplicity and was similar to the Chi-squared error measure used by Maier et
al. (2003) for characterizing tumor pathology. As Fig. 1(d,h) demonstrated, the RMS residuals
from the Gaussian fit were greatest in WM, intermediate in GM, and dark in CSF. The RMS
residual map in Fig. 1(d) was similar to the geometric or arithmetic mean signal images at the
highest diffusion weighting (Fig. 1(l) and Fig. 3(a,b)) as the simple DT model predicted that
the signal will be almost completely attenuated at the highest diffusion weighting. The
appearance of the RMS residual map for DT fit to the entire HYDI data was slightly different
and also appears more heterogeneous.
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For applications, such as white matter tractography, which require the characterization of
complex white matter organization (e.g., fiber crossing and orientations), computer simulations
showed that the HYDI-QBI appears to provide slightly higher angular resolution than the full
HYDI data set. Overall, the ODF profiles from QBI appeared sharper with fewer artifactual
side lobes. The angular resolution may be improved by increasing the number of measurements
in the outer shell although the relative improvement appeared to be small in a recently published
study (Hess et al., 2006).

In this study, the QBI-ODF were calculated using the straight Funk-Radon Transform (Tuch
et al., 2003; Tuch, 2004), although recent studies by Hess et al. (Hess et al., 2006), Özarslan
et al. (Özarslan et al., 2006) and Khachaturian et al. (Khachaturian et al., 2007) describe
alternative methods that may improve the accuracy of the ODF profiles further. The latter two
approaches utilized diffusion measurements at lower diffusion-weighting to improve the ODF
performances. However, unlike our multiple-shells ODF, a direct radial integration of PDF,
which is considered as a linear operation, these approaches used more complicated computation
algorithms such as model fitting with assumptions of bi-exponential decay (Özarslan et al.,
2006) and nonlinear fusion of spherical Gabor wavelet bases (Khachaturian et al., 2007). The
latter study by Khachaturian et al. is consistent with our ODF comparisons results between
DSI and QBI. They demonstrated that the ODF profiles from QBI appeared sharper than the
ODF profiles obtained through a linear combination of QBI and DTI data, which has some
similarities to the DSI data used here. However, their nonlinear fusion method did appear to
yield sharper ODF profiles. Future studies will investigate the application of more advanced
methods for ODF estimation, which should be feasible using HYDI.

The protocol described here may be feasible for research applications with a reasonable scan
time (< 30 min) for whole brain coverage with 30 ∼ 50 slices. The overall scan time of this
protocol was likely too long for practical use in the clinic. However, targeted studies with fewer
slices may be possible in a clinically feasible time (under 10 minutes). It should be noted that
the image data was collected using cardiac gating, which appears to reduce the signal variability
and artifacts from pulsatile brain motion (Nunes et al., 2005). Since high b-values will increase
the sensitivity to physiological motion, cardiac gating is recommended. However, shorter scans
(i.e., ∼30–40% reductions in scan time) may be achieved without gating at the increased risk
of local motion artifacts. Future studies may be able to identify the specific q-space signal
features that are critical for assessment of disease related changes to tissue microstructure. This
strategy may enable the technique to be tailored to general protocols that would be practical
in a clinical setting.

One issue related to quantitative diffusion-weighted measurements was the use of signals near
the noise “floor”. In DTI, low DW signals cause an underestimation of the signal attenuation,
thus the diffusivities will be underestimated (Jones and Basser 2004). This was likely the case
for our diffusion measurements in the outer (b = 6000 and 9375 s/mm2) shells (Figure 3 and
Table 5,6). These estimates may be improved using Rician noise models for low signals (Koay
et al. 2006) and this will be investigated further in futures studies.

In this study, the q-space encoding scheme of HYDI was derived empirically and is not
necessarily optimal. Future studies will investigate the effects of different sampling strategies.
However, there are several important strategies in designing a good HYDI scheme. First, the
angular sampling on each shell should be as uniform as possible. Second, the number of q-
space shells is an important consideration as this will enable the characterization of non-
Gaussian diffusion decay. Overall, the HYDI approach is very flexible and the optimum
encoding scheme will depend upon the application and the information that is deemed most
important. For example, more samples in the outer shells (e.g., improved angular resolution)
may be more optimal for characterizing complex WM and white matter tractography studies
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in regions with crossing white matter tracts. Conversely, in studies that focus on DTI properties,
it may be more desirable to obtain more measurements at lower diffusion-weighting.

Finally, since HYDI uses non-Cartesian sampling, undersampling errors will appear differently
from Cartesian DSI. In the current HYDI encoding strategy, the sampling density in the radial
direction is higher than the angular direction, which may lead to aliasing in the angular
direction. The tradeoff between Cartesian DSI and HYDI is the increased flexibility in the DW
image analysis methods being used for HYDI. Future studies will need to compare HYDI
directly with DSI to establish the relative benefits.

Conclusion
To our knowledge, this study is the first to demonstrate simultaneous measurements of DTI,
QBI, DSI and bi-exponential diffusion from a single data set in a moderate scan time on a
clinical MRI scanner. The proposed HYDI method is a flexible q-space encoding scheme that
may be tailored to emphasize specific diffusion features and is amenable to a wide range of
diffusion image analysis strategies. Further investigations are necessary to optimize the HYDI
encoding scheme for specific applications. Finally, the approach needs to be evaluated for
characterizing clinical pathology relative to diffusion tensor imaging to establish whether the
increase in scan time is justified.
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Fig. 1.
Maps of HYDI MR experiments. DTs calculated from inner-shells and from whole dataset
were in the upper and middle rows, respectively. Inner-shells DT was estimated using a linear
least squares fit whereas whole dataset DT was estimated using a non-linear least squares fit.
DT measures: FA (a) & (e), MD (b) & (f) and major eigenvector colormap (c) & (g). PDF
measures, including Po (i), MSD (j) and FWHM colormap (k) regulated by Po, were calculated
using DSI algorithm on HYDI whole dataset. The association of anatomical directions with
color-codes for both major eigenvector colormaps and FWHM colormaps are left-right = red,
anterior-posterior = green and superior-inferior = blue. The grayscale of (b), (f) and (j) is 0 to
2500 10−6mm2/s
The root-mean-square (RMS) of residuals between the DT model and the real q-space
diffusion-weighted signals are in (d) & (h). Higher intensity reflects larger deviation of the
DTI model to the real DW signals. (l) The map of the geometric mean of the QBI images (b =
9375 sec/mm2) normalized by the signal at b = 0.Only tissues with more restricted
microstructures have diffusion signals at this high diffusion weighting. Thus, similar to (d) &
(h) WM and deep GM have higher intensity than cortical GM and CSF.

Wu and Alexander Page 15

Neuroimage. Author manuscript; available in PMC 2008 June 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Histograms of PDF and DTs measures of WM and GM. PDF measures, Po in (a) and MSD in
(b). DT from whole dataset has FA in (c) and MD in (d). DT of inner-shells has FA in (e) and
MD in (f). WM and GM were selected by using FAST segmentation on Po maps. The
histograms were drawn from the combined results of six subjects.

Wu and Alexander Page 16

Neuroimage. Author manuscript; available in PMC 2008 June 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Mean diffusion signals maps and diffusivity maps at each shell. (a) The arithmetic means. (b)
The geometric means. (c) Shell diffusivities estimated from arithmetic means of three
contiguous shells. (d) Shell diffusivities estimated from geometric means of three contiguous
shells. Diffusivities were estimated using a linear least squares fit with a monoexponential
model.
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Fig. 4.
Results of a nonlinear least-squares fit of a bi-exponential model (Eq. (6)) on geometric means
in Fig. 3(b). (a) The volume fraction of D1. (b) The volume fraction of D2. Note that (f1+f2)
was assumed to be 1 in this study. (c) The assumed fast diffusivity, D1. (d) The assumed slow
diffusivity, D2.

Wu and Alexander Page 18

Neuroimage. Author manuscript; available in PMC 2008 June 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Wu and Alexander Page 19

Neuroimage. Author manuscript; available in PMC 2008 June 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
ODF profiles generated using the QBI algorithm on the outermost shell of HYDI. The region
of interest (ROI) was located on the Pons area (a) and the Centrum Semiovale (b). In general,
QBI-ODF has higher angular resolution to resolve multiple crossing fibers. Abbreviation
denotes: AF: subcortical arcuate fibers, Cing: cingulum fibers, CR: corona radiata, CS: cortical
spinal tract, CTT: central tegmental tract, MCP: middle cerebellar peduncle, SLF: superior
longitudinal fasciculus, TPF: transverse pontine fibers.
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Fig. 6.
Estimated angular errors of a single fiber ODF. The angular error denotes the angular difference
between the ideal fiber direction and the direction of the maximum likelihood of ODF profile.
The error bar denotes one standard deviation across total 1000 trials (i.e. 10 random trials times
100 directions).The maximum b value for all schemes is 10000 sec/mm2.
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Fig. 7.
ODF angular resolution. (a) Simulated noise-free ODF profiles of two crossing fibers with four
different intersection angles from 90º to 45º. Two methods were compared including DSI
processing on HYDI whole dataset, HYDI102, and QBI processing on the outermost shell of
HYDI, HYDI QBI50. (b) The average fiber number detected using ODF profiles. This bar figure
denotes the mean and standard deviation across 100 trials of random-noise on q-space
diffusion-weighted signals.
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Table 6
Results of a nonlinear fit of a bi-exponential model on shell geometric means.

f1 f2 D1 (10−6mm2/s) D2 (10−6mm2/s)

WM 0.74 ± 0.14 0.26 ± 0.14 996 ± 355 144 ± 116
GM 0.74 ± 0.16 0.26 ± 0.16 1067 ± 447 377 ± 176

Whole brain WM and GM were segmented using Po map and FAST algorithm. f1 and f2 are volume fractions for fast diffusivity, D1, and slow diffusivity,
D2, respectively. The standard deviation is across whole brain ROI of one subject.
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