
Improving the Analysis, Storage and Sharing of Neuroimaging
Data using Relational Databases and Distributed Computing

Uri Hasson1,2, Jeremy I. Skipper1,2, Michael J. Wilde5,6, Howard C. Nusbaum2,3,4, and
Steven L. Small1,2,4

1Department of Neurology, The University of Chicago, Chicago, IL, USA.

2Department of Psychology, The University of Chicago, Chicago, IL, USA.

3Centre for Cognitive and Social Neuroscience, The University of Chicago, Chicago, IL, USA.

4The Brain Research Imaging Centre, The University of Chicago, Chicago, IL, USA.

5The Computation Institute, The University of Chicago, Chicago, IL, USA.

6Mathematics and Computer Science Division, Argonne National Laboratory.

Abstract
The increasingly complex research questions addressed by neuroimaging research impose substantial
demands on computational infrastructures. These infrastructures need to support management of
massive amounts of data in a way that affords rapid and precise data analysis, to allow collaborative
research, and to achieve these aims securely and with minimum management overhead. Here we
present an approach that overcomes many current limitations in data analysis and data sharing. This
approach is based on open source database management systems that support complex data queries
as an integral part of data analysis, flexible data sharing, and parallel and distributed data processing
using cluster computing and Grid computing resources. We assess the strengths of these approaches
as compared to current frameworks based on storage of binary or text files. We then describe in detail
the implementation of such a system and provide a concrete description of how it was used to enable
a complex analysis of fMRI time series data.

1. Introduction
The development of non-invasive neuroimaging methods, such as positron emission
tomography (PET), and functional Magnetic Resonance Imaging (fMRI), has produced an
explosion of new findings in human neuroscience. Scientific advancement in this domain has
been the direct result of developments both in hardware technology for data acquisition and
algorithms for data processing and image analysis. As these analytical approaches have
improved in sensitivity and power, they have made it possible to address increasingly complex
scientific questions. Yet, while the scientific questions and analysis methods have become
more sophisticated, the computational infrastructures to support this work have generally not
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kept pace. In this article, we discuss a novel computational approach to support analysis of
functional imaging data. The importance of this approach is that it allows neuroscientists to
address more complex questions while concomitantly speeding up the rate at which these
questions can be evaluated.

Early neuroimaging research was based on grouping trials of the same sort into a single
presentation sequence in so-called “block designs”. While these designs enabled researchers
to address certain a priori questions, they left little room for a posteriori data analysis. More
recently, “event related designs” (both slow and fast variants) have not only enabled researchers
to evaluate a priori research questions but, importantly, also enabled a variety of interesting a
posteriori analyses that have been of tremendous value. For example, some researchers have
partitioned the stimuli according to post hoc classifications after data have been collected, as
in a study by Wagner et al. (1998), which analyzed stimuli as a function of whether they were
subsequently remembered or forgotten. The use of event-related designs has also opened the
way to new statistical analysis methods for estimation of event-linked hemodynamic responses,
and for assessing the correlation between neural activity and finer features of stimuli properties.

In light of these advancements, it is noticeable that there has been substantially less progress
in the development of computational infrastructures supporting the storage, analysis, and
sharing of fMRI data. Although there are significant efforts underway to represent and store
imaging data for large multi-center studies (Van Horn et al., 2001), the infrastructures at
individual research centers are often not optimally designed to support everyday imaging
research tasks. Most importantly, the performance of increasingly complex analyses, such as
evaluation of functional connectivity between brain regions, requires certain computational
tasks that can be cumbersome and even prohibitively difficult using traditional data
representation approaches (i.e., hierarchical file systems and matrix representation of images).
Such complex analyses require, for example, repeated averaging of subsections of time series
(TS) data and correlating TS data, but currently employed frameworks for data storage are ill
equipped for this task. Furthermore, as the complexity of analyses increases, current
approaches to data representation generate prohibitively large amounts of intermediate data
(e.g., “mask” files) in addition to the final results. This in itself causes serious management
overhead. The immediate result of these weaknesses is that the computational infrastructure
becomes a bottleneck in the progress of research: It results in slower data analysis, reduces the
number of questions that can be asked of the data, and makes it difficult to enable concurrent
access to the data (for local and remote users) as is often needed for complex analyses and
collaborative research. Thus, the current computational demands for imaging research call for
a different approach to storage and analysis of fMRI data. The basic requirements of such
systems are that they store data efficiently, enable rapid selection of data, and make data easily
accessible for both local and remote users.

In what follows, we present a unified framework for the analysis storage and sharing of
neuroimaging data that addresses these needs, using an approach based on the general data
representation and manipulation abilities of database management systems (DBMSs). While
this framework is technical in nature, its forte is in extending the researcher’s ability to ask
more questions about neuroimaging data and obtain rapid responses to these questions while
employing advanced statistical tools. These advantages increase the efficiency of a scientific
inquiry process that is often based on being able to ask increasingly refined questions about
data.

A major advantage of the database-centric framework we present here is that it not only uses
DBMSs for storing and sharing of data, but also takes advantage of DMBS capabilities by
making the database an integral part of the fMRI data analysis workflow. We review the
advantages that this approach offers over the traditional methods of storing and analyzing data
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using flat-files (i.e., binary or text files), and show how these directly bear on the scientific
routine and daily research in brain imaging. We demonstrate the scalability of these methods
when coupled with modern distributed cluster computing (Pfister, 1998) and Grid computing
technologies (Foster, 2005), in which numerous computers (computing nodes) perform tasks
in parallel, and discuss issues such as efficient data-storage, data-sharing, data-transparency,
and advanced data-analysis. Finally, we detail our implementation of such a system.

Our aim is to introduce such systems to researchers who have not considered this approach so
that they can become acquainted with both the strengths and limitations of database-oriented
analysis of brain images. We therefore first describe our general approach rather than the
specific details of our implementation (Section 2). We then present the description of the
system’s actual implementation (Section 3). The system is based on open source software tools
(widely available and supported by large developer communities) and a client-server approach;
the data are stored using a database server, and analyzed by remote client computers, which
request data over the network and analyze the data using a powerful statistical programming
language (R Development Core Team, 2005; http://www.R-project.org). We then provide
concrete details of one example analysis to communicate more practical information (Section
4). Specifically, we explain how this system was employed to conduct an analysis that
exemplifies beneficial aspects of using DBMS in conjunction with distributed computing to
conduct fMRI data analysis. This analysis is a “reverse-correlation” of fluctuations in
hemodynamic responses with specific stimulus properties of naturalistic stimuli. We trust that
these descriptions on both abstract and concrete levels will allow researchers to consider more
diverse and creative analysis methods and efficient ways for sharing and storing data.

2. Relational Databases and their Application to Imaging
As scientists wrestle with the exponential growth of their datasets, the power and utility of the
relational database is being applied with increasing breadth and frequency across a range of
scientific disciplines (Szalay & Gray, 2006). The benefits in terms of indexability, leveraging
of metadata, and scalability of database approaches over file-based approaches are becoming
clear in a growing number of disciplines (Gray et al., 2005). This trend can be seen clearly in
digital astronomy, where the Sloan Digital Sky Survey (http://www.sdss.org/) is making
increasing use of DBMS technology to describe millions of celestial objects, and to enable
searches across that data (Nieto-Santisteban et al., 2005). In this effort, improved data
organization and relational representation enables database queries, performed in a distributed
manner on Grid resources, to run an order of magnitude faster than a file-based implementation
of the same algorithm operating over file-based catalogs.

In bioinformatics, the warehousing of file-based data from both curated public data sources
and lab experiments into integrated relational databases affords new methods for search and
analysis. Here, the Genomics Unified Schema (http://www.gusdb.org; cf., Davidson et al,
2001) provides a fabric for creating integrated relational databases for functional genomics
data analysis from public data sources and from lab experiments in sequence analysis and
proteomics (Stoeckert, 2005).

Researchers using imaging data are already facing similar challenges. fMRI analyses typically
use and generate a vast number of data files. For example, individual participant data might
include structural images optimized for different tissue parameters (e.g., T1, T2, FLAIR),
diffusion weighted images (isotropic and anisotropic), perfusion images, angiograms, surface
representations of volumes, regions of interest, numerous TS (e.g., unregistered, registered,
detrended, despiked, error terms), various masks, as well as numerous statistical maps. Group-
level statistical maps might reflect the results of various types of statistical analyses performed
on the individual level data (e.g., analysis of variance (ANOVA), principal components
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analysis (PCA), t-tests, etc’). Together, the number of flat files generated (i.e., linear
unstructured data stored in files and organized in directories) can become quite large and the
entire set is typically complex, difficult to manage, and enormous in size. This is particularly
so when data are kept in the form of text files for purposes of certain advanced analyses. DBMS
offer many advantages over flat files in terms of storage, sharing and analysis, and we discuss
some of these in what follows. Certainly flat file systems allow more rapid sequential access
to data, which under the right circumstances, can result in faster processing. Yet, this advantage
is less important when the data in the database are analyzed in parallel utilizing high-
performance distributed computing systems.

In DBMSs, data are not stored in separate user-accessible files, but are encoded in a tabular
internal representation that reflects relations among data elements or tables of such elements.
(How or where this information is stored is irrelevant to users, and so we will not address this
further). All a user needs to know in order to access the data is the name of the table storing
the data and what data attributes it holds. For example, a user can request to see all the
information in the subject04 table by issuing a command (equivalent to): show all information
in table subject04. Or, if more specific information is needed: show all information in table
subject04 where the condition is ‘tone-presented’. DBMS are therefore indispensable for
querying (i.e., asking subset and relational questions of) large amounts of data, and in Section
3 we demonstrate how such capabilities can be utilized for rapid development and execution
of sophisticated fMRI analyses. A number of research projects have utilized databases for
archiving and making available large numbers of imaging datasets (Kotter, 2001; Van Horn et
al., 2001), or the results of statistical analyses (Fox & Lancaster, 2002). Such large-scale
projects, however, use DBMS to manage large amounts of file data, rather than to maintain
data in a form that facilitates use in outside analysis routines. They are not aimed at affecting
the daily practices of researchers working on fMRI projects in those stages of the work where
data are still being analyzed (or in some cases, mined) for certain patterns. Rather, they are
intended for archiving, reanalysis and meta-analysis.

For the individual researcher or a research lab, storing data in a database implies that given
proper permissions, the data could be accessed from any remote computer (whether on the
local network, or over the Internet) obviating the need to save multiple copies of data at different
locations. As a result, sharing data with remote collaborators is greatly simplified, because
servers can accept requests for data (queries) over computer networks. For example, two
research groups can analyze the same dataset using different methods of analysis (e.g., ICA
vs. contrast analysis). DBMS also allow for data filtering on the server side, thus eliminating
unnecessary network traffic. In practice, an analysis script written at one location can be sent
to remote collaborators and executed from their computers without any modification
whatsoever, since the remote center will access the original data, and the output of the analysis
would be identical across sites independent of the complexity of the analysis or its subtleties
(see Appendix for example). Furthermore, databases offer a single point-of-update: updating
data on the server will immediately affect all analyses conducted on those data without the
need to send newer versions of the data to other individuals involved in its analysis. Given
proper coordination (updates should not occur during data analysis proper), this feature assures
that all relevant parties access the exact same dataset.

Because database systems allow simultaneous access to data from multiple sources, they lend
themselves to distributed computing of various types. One distributed approach involves
cluster-computing frameworks in which multiple computers (computing nodes) work in
parallel to distribute the processing of a single computing job (Pfister, 1998). Another approach,
termed Grid computing (Buyya, Date, Mizuno-Matsumoto, Venugopal, & Abramson, 2005;
Foster, 2005; Foster, Kesselman, & Tuecke, 2001), is based on more loosely-associated
computing groups with intelligent ‘middleware’ software that makes those computers appear
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as a single computing resource from the user’s perspective. In both types of solutions, dozens
or even hundreds of computers perform analysis in parallel, simultaneously accessing the same
dataset (the approach described here was implemented on a computing cluster that supports
Grid computing; functionality that necessitates Grid computing is highlighted in the text).

While offering the possibility of storing data at a single location, if needed, DBMS offer integral
replication features that can speed up analyses and serve as a backup mechanism. For instance,
data stored on a database in a neuroimaging lab can be replicated to a “mirror” database
(technically known as a ‘slave’) at a different lab, allowing a remote collaborator to work on
a local copy of the data if needed. This scenario is particularly useful if the dataset is very large.
A large raw TS dataset can consist of dozens of gigabytes that would otherwise have to be
transferred over the network during each analysis. In another scenario, the slave database might
be set up on the same network as a computing cluster. In this configuration, during data analysis
the cluster nodes access the data on the slave database, which is located on the same local area
network as the cluster and is accessible via fast (e.g., fiber or gigabit) connections (see Figure
1). This configuration offers more efficient data access than connecting to the original database
over relatively slower wide-area network connections (e.g., Internet connections). Replication
can also be used to reduce the workload on a server when multiple machines need to access
the database in parallel, such as when multiple nodes are processing data simultaneously. For
example, 20 nodes can be configured to query the master database, and 20 others can be
configured to query the slave thus offering the required scalability for parallel environments.
(More sophisticated implementations, such as ‘rolling out’ partial copies of a database to
database engines running on the computing nodes are also possible.) Finally, slave databases
serve as immediately accessible backup systems if the main system becomes inaccessible.

Existing fMRI analysis tools could potentially interface with DBMS. Current data analysis
systems (e.g., AFNI, SPM, BrainVoyager, FSL) are integrated packages that use flat files to
save data throughout the analysis flow, and allow users to invoke statistical procedures using
integrated commands or extensions. Using a database as a storage ‘backend’ in these systems
would allow users to access data via database queries (rather than from a file) thus benefiting
from DBMS features described above, while still retaining a familiar working environment.
In addition, many software systems and programming language (e.g., Matlab, Excel, Perl,
Python, C) can currently interface with relational databases, which allows for parallelized data
processing by users others than those who had collected the data.

Effective and easy documentation of data structures is a natural byproduct of data
representation in DBMS. Relational databases can easily be used to serve metadata such as the
names of the tables in the database, the columns (attributes) that exist in each table, and the
type of data stored in each column. This feature makes it easy to document the structure of the
database and facilitates more effective sharing of information with others. We now turn to
describe the specific details of the neuroimaging data analysis system we have implemented.

3. System Description
3.1 General

The system we have implemented is based on an architecture similar to that in the framework
described above, in which distributed clients pull data from a central server, and work
independently and simultaneously to conduct a voxel-based analysis (volume-domain), a node
or vertex-based analysis (surface-mapping domain; e.g., Argall, Saad, & Beauchamp, 2005),
or a region-based analysis. In what follows we refer to voxels as a default, unless specifically
referring to analyses conducted in the surface domain. The server maintains a relational
database that stores the data that is to be analyzed as well as information about that data; e.g.,
the assignment of nodes to anatomical regions of interest (henceforth ROIs). The clients that
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conduct the data analysis are compatible with all major operating systems (e.g., Microsoft
Windows, UNIX variants or Apple Mac OSX).

3.2 Server
3.2.1 Data Representation—In our implementation, each experiment is assigned a single
database, and each database can contain a varying number of data tables. The guiding principle
in designing such databases is to separate the fMRI data tables that store functional data for
volume voxels or surface vertices (e.g., BOLD data) from the tables that hold descriptive
information about these voxels or vertices.

The fMRI data for each individual participant are stored in a table (or tables) that holds all data
for that participant, i.e., for all voxels (in the volume domain) or nodes/vertices (in the surface
domain), for all conditions.1 If the data are signal estimates from a statistical analysis, such
tables will have [N(voxels) * M(conditions)] cells. If the data are the raw TS, the table will
have [N(voxels) * M(TRs or time points)] cells. For example, in an experiment with two
conditions, where each hemisphere is represented as a flat surface map consisting of 196,000
vertices, data would be stored in a table with 196,000 rows, and two columns.

Theoretical descriptions (classifications) of the data that are used for filtering and selection
purposes during analysis, are stored in different tables in the database (see Figure 2). These
tables are used to classify voxels or surface nodes according to criteria that are of theoretical
interest. For example, one such table could associate each voxel with an anatomical brain
region. Such a table would contain two columns; one for the voxel number, and one for the
brain region descriptor (label or number). In this case, the classification can record as many
values as needed in the researcher’s anatomical parcellation system. Tables can also record
whether a voxel is part of a region that has certain functional properties, e.g., whether it is
implicated in emotional processing as determined by an independent “localizer” task, whether
its intensity passes a certain reliability criterion, whether it was found active in a certain
previous study, or any other classification that is of interest to the researcher (Figure 2).

Note that some of these filters may be linked to specific participants whereas others are not.
For example, due to differences in brain structure, assignment of voxels to their anatomical
regions will often be performed on an individual basis so that the relation between voxels and
anatomical labels would be unique for each participant (e.g., as established via automatic
parcellation: Desikan et al., 2006; Fischl, Sereno, & Dale, 1999). By contrast, classifying voxels
according to whether or not they were active in a previous experiment on a group level would
be represented in one table that would be applicable to all participants in the study. Finally,
some classifications, such as whether a voxel demonstrated reliable intensity in a given
condition, could be described the group or individual participant level. This decision depends
on whether a research wants to select voxels active at the group level, or those active for each
participant on an individual basis (even though these are likely different voxels). In the latter
case it would be necessary to identify separately for each participant which voxels were active
in each experimental condition.

Once the descriptor tables have been constructed, researchers can rapidly select data according
to highly specific criteria that implement one or more constraints in any logical combination.
For the database in Figure 2, it is trivial to select voxels that meet criteria such as being in the
left inferior frontal gyrus, having a t-value that is greater than a certain criteria in one or more

1We use the term “fMRI data” to refer to two types of data. One is the actual TS data, i.e., the sequences of signals from a single voxel
that are measured over the entire course of an experimental run. These data are typically mean normalized and analyzed by regression
models. The second type of data are the signal estimates that are the result of statistical analyses (e.g., beta values estimated from regression
or deconvolution analyses).
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experimental conditions, or having been classified as active in a prior study. Because relational
databases are designed to resolve such complex queries, it is straightforward to combine any
such criteria in a query. Consider the following query that can be constructed using a single
statement to extract voxel-data for a focused analysis: for each participant, extract data of
voxels in the left superior temporal gyrus that are part of an active cluster at group level in the
audio condition, or had a reliable t-value in that condition at the individual-participant level.
This sort of query may be particularly useful when trying to establish regularities at the group
level while at the same time accounting for inter-individual differences that exist in the location
of activation peaks (cf. Patterson et al., 2002).

3.2.2 Server Implementation—The database server software that we use is the MySQL
database engine, which is freely available on the Web (http://www.mysql.com/), and can be
installed on UNIX variants, Apple’s Mac OSX platform or Microsoft Windows. This database
system has extensive documentation, use publications, and graphical interface management
tools that allow it to be rapidly mastered by non-specialists. Tables can be created via graphical
interfaces or command line tools, and loaded from text files. The database supports the
Structured Query Language (SQL; Eisenberg, Kulkarni, Melton, Michels, & Zemke, 2004)
that is used to specify what information is to be pulled from the database. Access to the database
is typically achieved via Internet protocols, so that remote data can be accessed given proper
security permissions, but for development purposes, a command line mode is also available.
In our work, each experiment is assigned a unique database -- a collection of data tables that
contain both functional data and theoretical classifications of those data as described above.
The database can also be function as a job-dispatch manager and manage the parallelization
of jobs to the computing nodes (see Appendix). This makes it possible to run one script
repeatedly, while assuring that each instance of the script is initialized with different runtime
operation parameters.

3.2.3. Database Security and Controlled Collaboration—Security policies on DBMS
control what operations each user can perform on the data. Because the database is accessible
over the network, a user’s account consists of both a user name (to which a password is
assigned) and a collection of hosts (i.e., terminals) from which that user can access the database.
This combination assures that certain users will be able to access the database from any host,
given that a password is provided, whereas others will be able to access it only from certain
hosts.

Different users or groups of users can be given different rights to the data, and this is the typical
approach for an fMRI study. The researcher who collected the data will likely receive all
permissions to the database and remote colleagues will likely be granted more limited
privileges. For example, such users should not be able to delete tables from the database, or to
change their structure.

Because databases are designed with data sharing as a design principle, DBMS offers a
powerful and flexible permission scheme. In MySQL, the privileges granted to an account can
apply to an entire database, specific tables in the database, or even specific columns in a table.
Certain users could view data in all tables in the database, whereas others could be limited to
a few tables. The most basic procedures for which security would be implemented include
rights to select (i.e., access) data, update data, or delete data. In many research labs, such
security is mandated to protect the identity of subjects or patients.

Databases also offer flexible mechanisms for separating between data that are to be shared and
those that are not. For various reasons, researchers are very careful with the portions of the
data they share with others (cf. Ascoli, 2006), and managing the sharing of neuroimaging data
is a nontrivial problem (e.g., Smith et al., 2004). To illustrate, a researcher might want to store
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the data of 50 participants in a database table for purposes of his or her own analyses, but share
only those data belonging to the subset of participants (e.g., 20 participants) whose data have
been published. In a database, this is easily enabled by creating a “virtual table” (technically
called a “view”) that is in itself a result of query, but that appears as a table when querying the
database. In this case, the view named “limited.20ss.table” would be the result of a query
selecting all data belonging to the relevant 20 participants. Other users will interact with this
view as if it were a table and analyze it according to their interest (e.g., ‘select all data from
limited.20ss.table where condition1.tvalue > 4′). Views make it possible to share data without
needing to make additional custom-tailored copies of the data to suit different types of sharing.
Also, when data in the primary tables are updated, these changes are immediately seen in the
views (see, Gray, 2005, for advantages of views in the context of scientific research).

3.2.4. Standards, Conventions, and Local Practices—Given that the type of system
described here is aimed at individual researchers or research labs, local practices will ultimately
determine the structure of databases and table-naming conventions, and the nature of the
metadata maintained. Though adopting a common standard aids in data sharing, in a system
of the order we are describing, sharing is carried out on a peer-to-peer level (i.e., by having
research centers establish direct contact), rather than via a central data warehouse that holds
numerous datasets.

The development of general representation schemes that can accommodate different types of
fMRI analyses and their associated data types is a matter of ongoing research (e.g.,
OntoNeuroBase, Temal et al., 2006). Intensive work has also been conducted by the BIRN
project (http://www.nbirn.net) to develop a logical model for documenting results of statistical
analyses using XML (Keator et al., 2006). This model provides a framework for storing
metadata about functional scans, functional data, and various annotations. However, it is a non-
trivial task to establish a domain ontology for neuroimaging that would be readily adopted by
a large number of research labs and aid data interoperability. On the theoretical level, one would
need to establish a set of data types and characterize how these types relate to one other. Even
then, it is unclear whether in practice such a general scheme would be adopted by researchers;
e.g., different research centers would need to agree on a common nomenclature for naming
cortical regions, possibly within a larger context of a hierarchy of brain structures (e.g.,
NeuroNames, Bowden & Martin, 1995). In absence of such agreements, any such
implementation would need to incorporate flexibility, such as accommodating multiple
anatomical labelings for the same data (cf. Keator et al., 2006, for such an implementation).

In reality, the description of the data in many centers is likely to be quite idiosyncratic and even
project-specific. What is important is that the database structure be accurately described, and
that this description be publicly available. Once the analysis is completed and the data
submitted to a central repository (e.g., fMRIDC), standard metadata conventions could be
applied to the data (see, e.g., Gardner, 2003, for standards in central and peer-to-peer
repositories).

Rather than developing a general storage scheme, during our 2.5-year experience with DBMS-
driven analysis of fMRI data we instead opted to construct database schemes for different usage
cases. Some schemes, as the one described in section 3.2.1 and Figure 2, are quite detailed.
Other schemes, supporting relatively simple analyses, contain only two tables. For example, a
database set up to support analysis of a block-design experiment with three conditions
(analyzed in the surface domain) would have the following fields in each table, where each
field corresponds to a column in the table:

table 1 (individual participant data): hemisphere, participant_id [1...n], node_id
[1...196,000], cond1_beta [signal estimate in condition1], cond2_beta, cond3_beta.
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table 2 (group level descriptor): node_id, roi_id [anatomical region in common space],
reliable_cond1 [reliable by FDR on group level, y/n], reliable_cond2, reliable_cond3.

A conceptually similar study using an event-related design would have a similar table structure,
except that instead of one signal estimate per each condition, the table would store the data for
the estimated impulse response function (IRF) in each condition; e.g., if the IRF is estimated
by 7 data points, these would be stored as cond1_tr1beta...cond1_tr7beta, and so on.

If the study were extended to include two groups of participants presented with the same stimuli
under different task instructions (that is, in two separate experiments), a between-participants
factor (task) would be coded in an additional column in tables 1 and 2, as follows:

table 1 (individual participant data): task, hemisphere, participant_id, node_id,
cond1_beta, cond2_beta, cond3_beta.

table 2 (group level descriptor): task, node_id, roi_id, reliable_cond1, reliable_cond2,
reliable_cond3.

This last example illustrates how data from multiple experiments can be stored in the same
table or database when such a scheme is useful for answering the theoretical question at hand.
Schemes for TS analyses can also be developed, and we detail a few in Section 4.

Data from separate databases can be cross-referenced or joined in a single query, if those
separate databases reside on the same server. This makes it possible to extract data from one
study on the basis of results derived in another study. To illustrate, signal estimates could be
selected only for voxels that were reliable in a certain condition in a prior study (certain
commercial DBMS, e.g., MS SQL Server, also enable queries that access databases residing
on different servers). This also makes it possible to create on the fly (via SQL queries) newly
‘joined’ tables from data collected in two different experiments.

The example cases we have discussed above were rapidly implemented by individuals at the
graduate- and undergraduate-student level, with minimal oversight by more experienced users.
These use cases show that while each study may dictate its own table organization, some
general principles are emerging, such as the separation of data themselves from the descriptors
of the data, which allows filtering of data from one experiment on the basis of constraints from
another. Implementing similar systems in research centers would likely involve a similar
process, in which experience with the system will lead to commonalities in schema design and
the emergence of ‘prototypical’ schemes.

3.2.5. Data Storage Requirements—The data storage requirements associated with
storing fMRI data in DBMS depend on a number of factors, including the number of
participants, and the types of data being stored (statistical estimates such as beta coefficients,
and/or entire TSs). Here we report the storage requirements for two types of example datasets
when stored in a database vs. when stored in imaging file formats. The first dataset consists of
signal estimates in three experimental conditions for each voxel in the volume domain (73,000
voxels per each participant). The second consists of TS data (1620 acquisitions) for each vertex
in the surface domain (196,000 surface vertices per hemisphere, per participant, making for
more than 3*108 data points per participant).

The first dataset required ∼37 MB when stored in the database (the database included indexes
on two columns for faster data selection, which slightly increase its size). On the traditional
hierarchical file system, it required ∼3.5 MB when stored in a compressed binary format
(BRIK.gz), or ∼10 MB when stored in a non-compressed binary format (BRIK). In both the
database and the BRIK files, the data were stored as a floating-point numeric type with
precision of five decimal places. The command line utilities we routinely use are part of the
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AFNI suite and can perform voxel-based analysis on compressed BRIK.gz files thus benefiting
from the smaller storage requirements.

The second dataset contained surface vertex data and consisted of several large TS files, one
per each participant’s hemisphere, each stored as a separate table. Each file required ∼3,600
MB when stored in its typical form, which is as a text file (in AFNI, surface-based analyses
take text files as input rather than binary files). Each corresponding database table was ∼1,250
MB in size (with an index on one of the columns) when stored in the database.

When considering storage requirements, it is important to note the following: First, databases
offer compression options, and in MySQL, such compression achieves between 40-70%
reduction in data size, but entails making a table read-only. The data sizes we report above are
for uncompressed data. Second, storing data in compressed formats can be associated with
increased processing time during data access because of the requisite decompression and
recompression. Working with compressed files (e.g., BRIK.gz) via a graphical interface (e.g.,
the AFNI interface) can also be associated with reduced responsiveness of the interface (see,
http://afni.nimh.nih.gov/pub/dist/src/README.compression). Thus, implementing
compression in either file-based or database environments should be carefully considered
depending on the particular demands of each project. For instance, projects whose analysis has
ended are good candidates for compression.

3.2.6. Interfaces with Imaging Workflow—The workflow of a typical imaging analysis
consists of a large number of processing stages, often beginning from reconstructing data from
k-space files, and culminating in thresholding. Our work to date has mainly utilized DBMS
capabilities for one part of this workflow; namely, group analyses of the sort described in
Sections 3.2.1 and 3.2.4. Here we consider other potential interfaces between DBMS and
typical stages in imaging analysis (we follow a typical processing workflow as outlined by
Smith, 2002).

The initial stages of image analysis typically involve reconstruction of k-space data into
functional TS runs. These TS data often undergo a number of transformations before they are
analyzed statistically (e.g., alignment, temporal and spatial smoothing, mean adjustment etc’).
Because the TS is only analyzed statistically after these steps are completed, there is no strong
reason to keep the intermediate data representations in a database as these are rarely needed
following pre-processing. They can be stored offline (e.g., on backup tape), or in so-called
‘near-line’ solutions such as relatively slow network-mounted storage repositories.

Whether or not the final TS will be stored in a database depends on the research question.
Storing the TS in the database affords convenient execution of sophisticated analyses of TS
data such as structural equation modeling (cf., Skipper et al., 2007a, for an example use), and
flexible selection of TS subsets on the basis of categorizations of those data (as discussed in
section Section 4.6). Yet, oftentimes TS data are not the domain of inquiry per se, but are only
used for establishing the relative sensitivity of each voxel/vertex to each experimental
condition, using standard regression based approaches. Here, there is no strong rationale for
storing the entire TS data in a database, but there is good reason to store the signal estimates
in each voxel for each experimental condition, as these are the basis for the subsequent second-
level group analysis. In any case, the voxels’ coordinates can be stored alongside the statistical
values (in the future, this could potentially allow existing command line utilities to interface
with database-stored data in the same way they currently operate on flat files).

Importing data from the file representation into the database entails creating a table, and
populating it with data from a text file. The following two MySQL commands create a table
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with three columns, reflecting the assignment of anatomical regions-of-interest (ROIs) to
voxels for each subject, and load data into that table from a text file (vox2roi.txt):

create table vox2roi (subject int, voxels int, roi int);

load data local infile ‘vox2roi.txt’ into table vox2roi fields terminated by ”;

Database queries can be performed more quickly if the fields (columns) by which data are
typically selected have associated ‘indexes’. In this example, it is expected that users would
want to select nodes on the basis of some a priori ROI classification; in this case, faster data
selection could be achieved if the table is created with an index on the ROI column:

create table vox2roi (subject int, voxels int, roi int, index (roi));

Once individual data have been registered to common space and stored in the database, group-
level analyses of various types can be performed, and the results of such analyses can be stored
in the DBMS in the form of information about each voxel.

After group-level statistics have been established for each voxel or surface vertex, they are
typically followed by mathematically motivated thresholding procedures. Thresholding
controls for the Family-Wise Error (FWE) associated with the multiple statistical tests
performed on the data, and with the fact that the data are not independent due to spatial filtering.
Spatial filtering is often explicitly introduced in the workflow to increase signal to noise, but
is also introduced implicitly during any number of spatial transformations of the data, e.g.,
motion correction, alignment to common space, or volume-to-surface mappings. Some
thresholding methods such as random field theory (Worsley et al., 1996) or Monte-Carlo
simulations of active cluster extent (Forman et al., 1995) estimate the smoothing in the dataset
in each axis (i.e., the smoothing kernel specified in terms of full-width half maximum, FWHM),
and use this estimate in simulations that establish voxel- or cluster-level thresholds. Currently,
these utilities do not operate on database-stored data, and so the estimation of the smoothing
kernel and the subsequent clustering could only be performed once the group level results have
been converted to a compatible file format. Other thresholding methods, such as those based
on permutations (e.g., Nichols & Holmes, 2002) or on false-discovery rate (e.g., Genovese,
Lazar, & Nichols, 2002) do not rely on pre-assessment of FWHM. Assessment of FDR is
currently available as an “R” package, and permutation methods are easily implemented, and
benefit from the capabilities of distributed computing (see Stef-Praun et al., 2007).2

Given the importance of being able to visually assess and report the results of imaging analyses
(whether in 3D space of cortical surfaces) it is important to know how the results of analyses
such as the ones reported here can be graphically displayed. While “R” has graphical output
functions, these are quite generic and not customized for the complex display of brain imaging
data that often involves visualization of anatomical data and functional overlays. It is also
reasonable to assume that researchers would want to display the results of their group- or
individual-level analyses in the same space (and interface) from which the input data originated.
In some circumstances, the analysis results can be saved and immediately loaded into the
graphical interface (e.g., the SUMA software can load single column text files representing
whole-brain activity and display this information directly on a cortical surface image). In other
cases, the results of the analyses must be imported to a native file format (e.g., using AFNI’s
3dUndump). There are also two “R” packages specifically aimed at fMRI analysis that can be
used to load, save and graphically display anatomical and functional data stored in ANALYZE

2All the thresholding methods mentioned account for spatial smoothing (blurring) in the data. In certain cases, it could be important to
spatially filter the data with different smoothing kernels and apply the same analysis to the resulting datasets. In such cases, DBMS offer
a convenient way to store multiple versions of individual-level data smoothed with different kernels. These sorts of analyses could be
important when it is known that a large smoothing kernel reduces sensitivity to finding activity in certain anatomical regions (Buchsbaum
et al., 2005).
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and AFNI file formats (Marchini, 2002; Polzehl & Tabelow, 2007). While we have not used
these packages in our data analysis workflow, they offer the future prospect of being able to
analyze data in a distributed manner and plot the results from within “R”.

3.3 Clients
In the simplest implementation, both the client and the server can be installed and run on the
same machine, whether for purposes of testing or actual data analysis. However, to make full
use of the distributed processing capabilities, client software is usually run on a number of
computers separate from the host running the database. The client sends a query to the database
and receives in return a table (i.e., the set of rows) that satisfies the query (see Appendix for
instructions on how to download and invoke an example “R” script that demonstrates this
functionality).

3.3.1 Client Implementation—In our approach, clients are implemented in the statistical
language “R” (http://www.r-project.org), a free, publicly licensed statistical environment
similar to the commercial software S/S+ (http://www.insightful.com). “R” is compatible with
Microsoft Windows and various UNIX based platforms such as Linux or Mac OSX. Similar
to other mathematical programming languages, scripts written in the “R” language can access
and query relational databases via standard database protocols using SQL.

A simple data analysis script for a cross-participant contrast between two conditions might
consist of a small number of steps, e.g.:

1. Retrieve data from the database for a certain range of voxels (e.g., voxels numbered
1-100) [SQL Query].

2. From the returned data, select the data for the voxel #1 [Internal R array].

3. Conduct a statistical test on the data in that voxel (ANOVA, paired sample T-Test)
[Internal R procedure].

4. Store the result in a temporary array; select the next voxel (step 2) [Internal R
procedure].

5. Upon finishing, write the result-array to a file [Internal R procedure] or to the database
[SQL Query].

The ability to analyze a large number of spatial units also makes DBMS-based approaches
applicable to domains such as voxel-based morphometry (Ashburner & Friston, 2000). In such
methods, where data is sampled at a high spatial resolution, the number of analysis units can
exceed 1.5 million (given in-plane resolutions of 1×1 or better).

One advantage of using “R” for data analysis is that the retrieved data are directly accessible
for examination and manipulation. “R” provides over 600 distinct packages for analyzing and
plotting statistical data, covering domains such as Bayesian, multivariate and TS analysis, PCA,
ICA, and nonparametric methods. (See the “R” reference manual: http://cran.r-project.org/doc/
manuals/fullrefman.pdf). Using these packages we have implemented analyses of fMRI data
including, (a) standard analysis of variance (ANOVA), (b) clustering of voxels on the basis of
Beta values, (c) tests of whether the hemodynamic response peaks at different time points under
different experimental conditions, (d) correlations between hemodynamic response functions
in different experimental conditions, (e) Post-hoc contrasts, (f) analyses of functional
connectivity, (g) generation of data for permutation tests, (h) voxel-wise correlations between
voxel intensities and behavioral data, and (i) reverse correlation methods (Section 4).

Hasson et al. Page 12

Neuroimage. Author manuscript; available in PMC 2009 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.3.2 Client’s Suitability for Distributed Computing Environments—The
availability of multiple computing nodes holds the promise of speeding up fMRI data analysis
by distributing the computational load. For some analytical procedures, such a speed-up is
virtually a necessity due to their intensive computational demands. Randomization methods in
statistics represent a classic example of combinatorial explosion, and in fMRI analysis, such
a procedure is the basis of statistical analyses using permutation tests (e.g., Bullmore et al.,
1999; Nichols & Holmes, 2002), in which new datasets are created to assess whether an
experimental dataset has characteristics that differ from those found by chance. In such cases
the bulk of the analysis is in generating the permutations and performing clustering on each
permutation, rather than in running the statistical test itself, making this task optimal for
distributed computing. We have shown (Stef-Praun et al., 2007) how permutation-based
statistical analysis of fMRI data can be sped up using Grid computing technologies in which
multiple computing clusters parallelize both the generation and clustering of permutated
datasets.

Client-server based systems are particularly well suited for parallel computing, as the clients
are independent of each other, and exploit the availability of computing cycles by breaking up
large analysis jobs into smaller jobs and running those jobs simultaneously (parallelizing a
single job onto multiple processors can also be implemented, but this issue is outside the current
scope; see Li & Rossini, 2001, for more discussion). However, achieving distributed analysis
using multiple clients does not necessitate having access to a computing cluster or Grid
facilities. At small scales, it is feasible to launch a number of “R” processes on computers in
a local lab to attain similar functionality.

4. Detailed Example: Reverse Correlation analysis
Here we present a detailed implementation (by JIS) of a reverse-correlation analysis using the
system described above. Reverse-correlation is an objective method for associating properties
of a stimulus with fluctuations in a TS, in this case with regional fluctuations in the blood
oxygenation level-dependent (BOLD) response. In this specific implementation, the database
is queried for nodes in given anatomical regions in which activity exceeds a set threshold, and
the TS of these nodes is returned from the database for further analysis. The analysis requires
that the parcellation of each individual’s cortical anatomy into regions has been completed
such that each node’s data in the database is associated with a symbol (a number) that uniquely
identifies an anatomical region. The number of values comprising the TS corresponds to the
number of functional brain acquisitions in the study. Within each region, the TSs from the
returned nodes are averaged into a single “mean” TS for that region. The fluctuations in the
TS are then examined with respect to the timeline of the stimuli presented in the experiment
to evaluate which properties of the stimuli correlate with the signal fluctuations.

4.1 Background
We have shown that the ventral premotor cortex (PMv) plays a role in using observable mouth
movements to aid speech perception (Skipper, van Wassenhove, Nusbaum, & Small, 2007b).
The analysis described here examined the impact of observable hand movements on
comprehension (detailed results will be reported elsewhere). Participants listened to stories
(Aesop’s Fables) when a storyteller was either not visible, visible but made no gestures, visible
and made meaningful gestures associated with the stories, or visible but made non-meaningful
self-adaptive hand movements (e.g., scratching or adjusting clothing). The present analyses
tested hypotheses about the effect of hand movements on PMv activity (Skipper, Nusbaum,
Josse, Goldin-Meadow, & Small, 2006). Peaks in the BOLD TS from PMv were predicted to
correspond to meaningful gestures when the gestures were visually related to the story content.
In contrast, peaks in the TS from PMv were not predicted to correspond to non-meaningful
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hand movements in these stories. Finally, it was predicted that hand movements would not
correspond to peaks in primary auditory and visual cortices.

4.2 Data Processing Steps Prior to Database Import
Preprocessing stages were conducted prior to loading the data into the database and included:
(a) inflating anatomical volumes to a surface representation and aligning them to a template
of average curvature using FreeSurfer (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale,
1999); (b) automatically parcellating the surface of each participant into anatomical regions
using FreeSurfer (Fischl et al., 2004); (c) importing the resulting parcellation into the SUMA
software package (Saad, Reynolds, Argall, Japee, & Cox, 2004) and (d) warping the resulting
data to a standard mesh (Argall, Saad, & Beauchamp, 2005). Following these steps, all
subsequent data analyses were performed on the nodes in the surface domain rather than voxels
in the volume domain.

We mapped two types of data from the volume domain to the surface representation (cf. Saad,
Reynolds, Argall, Japee, & Cox, 2004, for details of mapping procedure). These data were: 1)
each participant’s TS for each voxel (i.e., the signal intensity in a single voxel over time,
sampled at each functional image acquisition) and 2) the statistics derived from regression
analyses performed on the individual participant data. These latter statistics were obtained by
regressing waveforms of the predicted hemodynamic response in each experimental condition
against the TS data, thereby establishing the sensitivity of each voxel to each experimental
condition. Preprocessing of the raw TS consisted of removing artifactual spikes, removing
linear and quadratic trends, and mean normalization. After interpolation to the surface, these
two types of data for each hemisphere, for each participant, were imported into separate tables
in the database as described in section 4.3.

4.3 Structure of the Database
Given the typical way neuroimaging data are organized within file systems, it is simple to
organize data tables in a DBMS so that their structure corresponds to this organization. While
creating such analogous structures may not be the optimal configuration for a database schema
(as we will discuss subsequently) it is functional and transparent, facilitating use by researchers
with relatively little database experience. This was the approach taken here, in the first database
schema design effort by one of the authors (JIS) with extensive experience in file-based fMRI
analysis. The database Gesture was created in MySQL. This database contained 77 tables (five
for each of the 15 participants and two global tables). Specifically, for each of the 15
participants, two tables were associated with each hemisphere: one for the analyzed functional
data (beta coefficients) and one for the raw TS data, and the fifth table identified the region
associated with each node. Two additional tables contained information relevant to entire
group, and stored the baseline values for each participant and which experimental condition
was associated with each functional volume acquisition.

4.4 Analysis Procedures
“R” was used to carry out the reverse-correlation analysis on a computing cluster, utilizing up
to 80 computing nodes at a time. The first part of the procedure established representative TSs
for the regions of interest (for each condition) and the second part of the procedure performed
the reversed-correlation analysis. Each computing node was assigned a group of ROIs for
analysis (for exploratory purposes, 84 anatomical ROIs were examined in total). The core
parallel computation process consisted of repeated database queries that selected, for each
participant, the TS of voxels that were reliably active in at least one of the four experimental
conditions (T = 3.32, p < .001). This query was performed for each participant, for each
anatomical ROI, in both the left and right hemispheres (given that there were 15 participants
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and 84 ROIs in each of the two hemispheres, the query was run 2520 times). A specific
instantiation of a query (in pseudocode) would be:

Select all_timeseries_data from particpant1_leftHemisphereData for surface nodes
that are (a) part of ROI_82 AND (b) have a t-value greater than 3.321 in at least one
of the four experimental conditions.

Note that this query returns information from the table containing participant 1′s left
hemisphere TS data (particpant1_leftHemisphereData) on the basis of constraints from two
different tables: the table assigning nodes to ROIs, and the table storing for each node the t-
valued for the four experimental conditions.

The returned TS data were partitioned (binned) by condition, generating a TS for each of the
four conditions. For each such TS, time points with extreme values (signal change > 10%)
were replaced with the median signal value. For each participant the TS was normalized against
the baseline estimation for that participant. Then, a mean TS was established for the entire
group by averaging over participants. The resulting TSs reflected activity in an ROI during
each condition.

Finally, for each TS we automatically identified local maxima and minima in the fluctuating
signal and correlated them against the properties of the stimuli presented on the screen (Figure
3). The TSs were first decomposed by placing gamma functions of variable heights and widths
with similarity to the shape of the hemodynamic response at maxima in the TS (grey curves in
Figure 3) as determined by the second derivative of the TS (Rundell, 1990). Half of the full
width half maximum (FWHM/2) of the gamma functions determined which of the aligned
stimulus attributes were associated with maxima in the hemodynamic response. The distance
between the FWHM/2 of two temporally adjacent gamma functions determined which stimulus
attributes were associated with minima in the response.

4.5 Results and Discussion
We found that in PMv, meaningful gestures resulted in peaks in the TS when those gesture
described the content of the stories, and valleys in the TS when the hands were still (Figure
3A). But, this relationship did not hold for non-meaningful gestures (Figure 3b). Furthermore,
gestures were not associated with peaks in primary auditory or early visual cortex, indicating
that the PMv responded to the linguistic meaning and the semantic content in the gestures rather
than to lower level acoustic or visual properties of the stimuli. The analysis above was
implemented in a distributed manner on a local cluster of 128 nodes (256 processors), in which
each cluster node was assigned ROIs for analysis, and the analysis utilized up to 80 computing
nodes simultaneously.3 The speedup afforded by partitioning the job enabled allowed us to
understand the results more quickly and consider and devise new questions and hypotheses.

4.6 An Alternative Data Representation Scheme
The database structure outlined in section 4.3 includes many tables because each participant’s
data were assigned a set of 5 tables. This scheme may therefore be impractical for studies
involving a large number of subjects. A more efficient scheme can capture the same data in
four tables, independent of the number of subjects, and affords queries that have greater or
equivalent power (see Figure 4).

3The use of multiple nodes could introduce overhead due to the load on the DBMS. We examined this issue using a representative 10-
minute group-level analysis job in which each computing node issued two database queries per minute (jobs were executed on a computing
cluster at the Argonne National Laboratory, and queried a database at the University of Chicago). The measurements indicated that the
time per job remained constant whether 5, 10, 20, 30, 40 or 50 jobs were conducted in parallel. The mean job time per computing node
(in sec +SE) were: 5jobs: 496 (14); 10jobs: 460 (12); 20jobs: 470 (9); 30jobs: 465 (7); 40jobs: 479 (8); 50jobs: 472 (6). Thus, for this
representative analysis, use of even 50 computing nodes did not substantially increase overhead.
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Simple data queries can be performed by using just the upper two tables in the figure
(Vertex_Descript and Readings). These two tables are sufficient to extract the entire TS of
vertices that satisfy functional or anatomical criteria or both (e.g., select the timeseries_signal
of vertices whose cond1_Tval > 5 and whose roi=5). The lower two tables in the figure allow
more sophisticated queries. The first table, Participant_TS_Descript, marks the trial-order
sequence received by each participant (e.g., some participants would be presented with the
auditory-alone condition prior to the auditory-face condition and for others the order was
reversed). Each trial-order assignment sequence is marked by a unique identifier in the
timeseries_descriptor field. The second table, TS_Descript_Spec, specifies the condition
presented at each functional acquisition for each trial order sequence, e.g., whether the first
acquired image was associated with the presentation of a meaningful gesture or with a less
related adaptor movement. Using the information in these two latter tables, it is possible to
extract only those points in the TS associated with a given condition for each vertex or region
(e.g., for vertices in roi=5, select the data acquired when gestures were presented).

This type of scheme is particularly useful for analyses of natural stimuli: for example, we were
interested in the types of words or gestures presented during each acquisition. However,
descriptors of a TS can also include details such as whether a sentence or phrase has started or
ended at a TR or any other descriptor of interest for which a TS subset should be extracted.
Indeed, any dimension of interest in the stimuli could be coded. For example, in the domain
of vision, one might code the properties of the video frames, such as the amount of visual
change between frames. Each stimulus dimension could be resampled to the time scale of the
imaging procedure (i.e., the TR was 2 seconds) and entered into the database as tables.
Alternatively, the TS could be resampled to match the stimuli. The fMRI TS could then be
mined on a voxel or ROI basis for a relevant stimulus or combination of stimulus dimensions
and their correspondences to local maxima or minima in the TS.

5. Discussion
The framework we have described here is one that allows both individual users and larger
research centers to store data in a way that can be queried efficiently, from both local and
remote sites, and that affords distributed statistical analysis of those data. Flexible sharing via
‘view’ mechanisms and flexible security are also inherent features of the system. We have
provided details of the server and client implementation, and explained potential interfaces
between such DBMS-based systems and other stages of a typical imaging analysis workflow.

5.1 Merging Distributed Computing Resources with DBMS for Imaging Analysis
The two technologies at the core of this framework are relational database management systems
that store data, making them available for remote access, and a distributed computing
architecture (cluster or Grid computing) that is used for parallel distributed data analysis. Each
technology offers its own distinct advantages, but the strength of the system is in the synergy
between the two. DBMS oriented systems do not necessitate large scale distributed computing
to aid in imaging analysis. Even when used in a non-distributed setting, the ability to access
selected aspects of data from remote locations that is offered by DBMS (e.g., re-analyzing a
certain ROI data from abroad) is beneficial to everyday work. Similarly, distributed computing
does not ipso facto necessitate DBMS to enable faster statistical analysis. One could construct
a framework in which large files are analyzed via distributed computing nodes, with ultimate
collation of completed results. One implementation of such a file-based solution would be to
propagate the entire dataset to each computing node and implement the types of analyses we
have described above (in sections 3.2.1, 4.4, 4.6) using the data-selection mechanisms currently
offered by command line procedures in imaging analysis packages, and efficient use of ‘mask’
files when necessary (e.g., when using data from other experiments as filtering constraints).
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Another file-based implementation would be to select just the data needed for any given
statistical analysis and propagate those data to the computing nodes in a way that allocates a
different part of the dataset to each computing node. This implementation entails a ‘pre-
filtering’ step, during which a ‘mask’ of the required data is created by applying a certain filter.
In this approach, the requested subset of data is constructed de-novo from various flat files in
order to optimize each analysis (some imaging analysis software contain functions for
optimizing access to large data sets and selecting subsets of the data, e.g., RUMBA’s
librumba, http://www.rumba.rutgers.edu/projects.php). In contrast to such implementations, a
DBMS make it possible to set up a single arrangement of the data (i.e., a database scheme)
which affords numerous types of queries, while at the same time serving the client with just
the subset of the data that is of interest in the specific analysis, and does so without touching
the rest of the data. Furthermore, as we have shown, DBMS naturally allow for data selection
over networks (e.g., when conducting concurrent analysis of the same data by more than one
research center). While specialized file-systems can also allow such access, the implementation
of network file systems specifically designed for distributed computing is non-trivial. Thus,
using DBMS in the context of distributed computing for image analysis affords a relatively
easy way for distributed data analysis. As we have outlined here, file-based solutions could
potentially afford similar features, but to the best of our knowledge, such schemes have yet to
be developed.

5.2 Target Population
Who would benefit from storing imaging data using DBMS? On the basis of our experience,
two distinct populations could benefit from such representations. The first are individual
researchers for whom DBMS-based storage enables the execution of multiple complex
analyses on the same dataset and direct and convenient access to the data. The ability to select
highly specific cross sections of data from remote computers over the Internet is also an
advantage for this target population, and greatly aids in collaboration and replication. Our
experience shows that undergraduates, graduate students and post-doctoral students (without
background in computer science), as well as technical staff, can rapidly master the basic syntax
of SQL and “R” programming.

The other target population comprises the larger research centers that would likely use the
DBMS based system in the context of a distributed computing environment (whether
computing clusters or distributed Grid sites). The framework offers this population a
convenient method for storing and sharing data, as well as conducting advanced statistical
analyses in a distributed manner. While we have emphasized benefits for analysis of imaging
(fMRI, PET) data, the approach described can be extended to researchers interested in other
types of data. As we have described, the bulk of database use takes place once those processing
tasks more tightly linked to image analysis per se have been completed (e.g., filtering,
registration, removal of volume acquisitions associated with artifacts). Thus, the analysis of
database-stored data could potentially be extended to other types of structural data such as
VBM or DTI, once those have been processed with tools specifically dedicated to those types
of data.

Finally, we consider the role of new technologies in generating new methods of scientific
inquiry in the community, and the likelihood that new target populations would emerge because
of the availability of such systems. For example, the ability to analyze easily the same dataset
and to share analysis-code seamlessly across individuals could foster cooperation between
small groups of individuals that transcends the traditional cooperation methods that exist today,
and that are based on cooperation between research groups. Thus, one individual could store
the data in a DBMS, and 3-4 colleagues would analyze the dataset in parallel pursuing specific
and diverging theoretical questions.
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5.3. Summary
The increasingly complex research questions addressed by fMRI research impose non-trivial
demands on computational infrastructures. Already, these infrastructures need to support
management of massive amounts of data in a way that affords rapid and precise data selection,
to allow collaborative research, and to do so securely and with minimum management
overhead. Here we have presented one approach to overcoming current limitations, which is
based on freely available (open source) database management systems that support distributed
data analysis using cluster or Grid computing resources. We have described how such a system
is practically implemented, and have shown via a concrete example the advantages offered by
such systems during the analysis of imaging data. Implementing such systems in research
centers is likely to facilitate cooperation between research centers and aid researchers in gaining
a better understanding of their data.
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Appendix
We have made available an “R” script that can be downloaded and executed locally by
individuals interested in evaluating a system of the sort described in the manuscript. When
executed, the script will connect to an example database we have set up and conduct some
simple queries and statistical analyses. Individuals considering implementing MySQL and “R”
may want to download the script and make changes to it. The “R” script and instructions can
be found at http://www.fmri.uchicago.edu/db/db.instructs.html. Running the script requires
installing “R” on the local machine with two packages that enable database access. The website
also contains documentation of the job dispatch mechanism described in section 3.2.2

Users with some experience with Mac OS X or UNIX variants should be able to install R and
initialize the script without much problem, following the instructions included on the web
address above. However, we do not recommend installing the R client with the database access
modules on Microsoft Windows for testing purposes, because installation of the database
access package on Microsoft Windows may demand compilation of software on a windows
computer (in case the binary package does not install properly), which is somewhat of a lengthy
process and requires specialized knowledge.
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Figure 1. Sharing and analyzing data using databases
fMRI data collected at one center (the Data Source) is stored on a Master database, and is
replicated to a collaborator, as well as to a 100-node computing cluster. Collaborators can either
analyze the data locally, or query data from the master database. The computing cluster holds
two copies of the data using two separate DBMS servers, to serve 100 clients simultaneously.
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Figure 2. Example of database scheme for storing data from an fMRI experiment
Each titled table reflects a table in the database and the information it maintains. Separate tables
store the time series data and signal estimates (green). The database returns the data of voxels
satisfying a certain criteria. If no criteria are specified, the data for all voxels is returned. Criteria
are specified as constraints based on the filter tables (orange). Some filters are linked to
individual participants (single-participant filters) whereas others are linked to the entire group
of participants in the experiment (group-level filters).
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Figure 3. Results of a reverse correlation analysis performed using a database and Grid computing
Orange lines are the hemodynamic response in the ventral premotor cortex during (A) the
gesture condition and (B) the self-adaptor gesture condition, in which gestures were
uninformative with respect to story content. Grey lines are the gamma functions fit to each
maxima in the response. These were used to objectively determine which stimulus aspects
produce maxima and minima (see text). Blue arrowed lines point to maxima while black
arrowed lines point to minima. Meaningful gestures were far more likely to occur at maxima
in the response than in minima, whereas non-meaningful self-adapting hand movements are
as likely to occur at maxima as minima.
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Figure 4. Example of database schema for storing time series data from an fMRI experiment
The database schema affords selecting the time series of any given set of voxels on the basis
of the voxel’s estimated signal intensity or anatomical location. In addition, for each voxel it
is possible to select either the entire time series, or just those time points in the series where
specific experimental condition or conditions occurred.
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