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Abstract
Using Diffuse Optical Tomography (DOT) we detected activation in the somatosensory cortex and
frontal brain areas following tactile (brush) and noxious heat stimulation. Healthy volunteers received
stimulation to the dorsum of the right hand. In the somatosensory cortex area, tactile stimulation
produced a robust, contralateral to the stimulus, hemodynamic response with a weaker activation on
the ipsilateral side. For the same region, noxious thermal stimuli produced bilateral activation of
similar intensity that had a prolonged activation with a two-peak similar to results have been reported
with functional MRI. Bilateral activation was observed in the frontal areas, oxyhemoglobin changes
were positive for brush stimulation while they were initially negative (contralateral) for heat
stimulation. These results suggest that based on the temporal and spatial characteristics of the
response in the sensory cortex, it is possible to discern painful from mechanical stimulation using
DOT. Such ability might have potential applications in a clinical setting in which pain needs to be
assessed objectively (e.g. analgesic efficacy, pain responses during surgery).
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INTRODUCTION
Central nervous system processing of pain in humans has been studied extensively with
neuroimaging techniques (for reviews see (Peyron et al. 2000; Apkarian et al. 2005). The first
studies were carried out utilizing positron emission tomography (PET) (Jones et al. 1991;
Talbot et al. 1991) and later with functional MRI (fMRI) (Davis et al. 1995; Apkarian et al.
1999; Becerra et al. 1999). Several studies have reported robust activation in the primary
somatosensory cortex (S1) in experimental models of pain (Apkarian et al. 2005) and in clinical
pain conditions (Becerra et al. 2006; Maihofner et al. 2006). However, a significant number
of studies do not consistently observe activation in S1 (Bushnell et al. 1999; for reviews, see
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Peyron et al., 2000; Apkarian et al., 2005). Some of the reasons for the lack of consistent
activation in S1 have been attributed to cognitive modulation, inhibitory processes, and
methodological differences (Bushnell et al. 1999).

Nevertheless, neuroimaging results indicate that it is possible to identify signature
characteristics in cortical activation that differentiates noxious from innocuous stimuli. Coghill
and colleagues demonstrated with PET that pain is a distributed bilateral process, while for
non-noxious heat stimulation, only contralateral activation is observed (Coghill et al. 1999).
In addition, other investigators have found temporal differences for noxious and non-noxious
cortical responses (Becerra et al. 2001; Chen et al. 2006). These studies seem to indicate that
the temporal response to noxious stimuli in S1 is distinct from innocuous stimuli; pain seems
to produce a prolonged or biphasic response usually extending beyond the duration of the
stimulus whereas innocuous stimuli produce a response similar to other evoked hemodynamic
responses.

The involvement of frontal structures in pain processing in humans has been studied by several
groups. A putative role for these cortical regions has been linked to mapping external space
and surrounding, short term memory, planning response to external stimuli (Maihofner et al.,
2004); cognitive and emotional responses (Lorentz et al., 2002); and the placebo response
(Wager et al., 2004). In disease (chronic pain) frontal regions have altered activation responses
(Witting et al. 2006) as well as morphological changes (Apkarian et al. 2004).

In this study, we sought to detect the hemodynamic response in somatosensory cortex as well
as in frontal brain areas to innocuous mechanical and noxious thermal stimulation utilizing
Diffuse Optical Tomography (DOT) in healthy volunteers. We wished to determine whether
robust signals could be measured using this approach and whether or not signals in
somatosensory regions could be differentiated based on their duration or pattern. For example
we have previously reported a biphasic BOLD response to noxious heat with fMRI that is not
observed to mechanical or non-noxious thermal stimuli (Becerra et al., 1999, 2001). In addition,
given the ability of DOT to measure changes in multiple cortical regions, we also wished to
determine if we could measure changes in frontal regions that might provide additional
information on emotional processing of pain in a similar manner to that reported for fMRI,

METHODS
Subjects

9 healthy volunteers were recruited through local advertisements, all were right-handed males
of 18–40 years in age. Subjects with a history of neurological trauma, neurological or
psychiatric disorders, or diabetes were excluded. Subjects were also excluded if they were
taking any psychoactive medications or were unable to keep their head still for a period of 360
consecutive seconds. Written informed consent was obtained from all subjects according to
the guidelines established by the Massachusetts General Hospital Institutional Review Board
who reviewed and approved this study.

Equipment
The equipment has been described in detail elsewhere (Franceschini et al. 2006). Briefly, a
multichannel continuous wave optical imager (CW5, TechEn Inc., Milford, MA) was used to
emit the two wavelengths of light, 690nm and 830nm. These two wavelengths are used to
measure changes in cortical deoxyhemoglobin (HbR) and oxyhemoglobin (HbO)
concentration via differential absorption characteristics of the two wavelengths of light by these
two molecules. The head probe used in this study consisted of 26 sources and 26 detectors
(Figure 1A). Source fibers emitting the 690nm wavelength were paired off with those emitting
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the 830nm wavelength to form an “optode.” The main probe was arranged with one central,
anterior-posterior row of 6 optodes per hemisphere. Each row of optodes was flanked on either
side by a row of 6 detectors strategically placed 3 cm away from the sources in order to measure
activation at cortical depth. Additionally, 2 optodes were placed on the forehead in order obtain
prefrontal cortex activation. These two source optodes were similarly flanked on either side
by single detectors.

During the experiment, subjects were connected to a physiological monitor for continuous
monitoring of heart rate (pulse oximeter, Norin Medical Inc, Plymouth, MN), respiratory rate
(strain gauge belt, Sleepmate/Newlife Technologies, Resp-EZ, Midlothian, VA) and blood
pressure (in-house, custom-made device). Subjects remained sitting in a reclined position for
the duration of the experiment. Lights were turned off in the room during data acquisition to
minimize signal contamination from ambient light sources.

Paradigm
Tactile (brush) stimuli were delivered manually to each subject’s hand using a soft toothbrush.
Prior to the experiment a 3×3 cm2 area of the dorsum of the right hand was marked for stimulus
(brush or heat) delivery. Care was taken to consistently deliver the stimulus to the same location
on the hand and to apply the same amount of pressure each time. The same investigator applied
the stimuli to all subjects. A 3×3 cm2 thermode (TSA-2001, Medoc Inc., Haifa, Israel) was
used to deliver the painful 46 °C thermal stimuli. This equipment has been utilized in other
fMRI pain experiments (Becerra et al. 2001). The thermal probe was lowered down onto the
hand of the subject upon prompting and removed at the end of each stimulus. The probe was
always applied with a similar force (pressure) predetermined at the beginning of the experiment
with a scale to be around 2 pounds. For both brush and heat the paradigm consisted of 26 stimuli
of 5 second duration over 6 minutes with a jittered inter-stimulus interval (ISI) of 6–13 seconds
and average ISI of 8.5 seconds (Figure 1B). The paradigm was applied twice for each stimulus
type. Prompts to apply stimuli were presented audibly via headphones to the investigator.

Subjects were asked at the end of the thermal scan to rate the pain intensity of the stimuli in a
Lickerts 11point-scale (0 no pain, 10 maximum pain).

Data Analysis—Analysis was carried out using the open source software Homer (available
at http://www.nmr.mgh.harvard.edu/homer) which is implemented in Matlab (Mathworks,
Natick, MA). The analysis has been described in detail elsewhere (Franceschini et al. 2006).
Here, data was corrected for motion artifacts using principal component analysis in a similar
manner to the procedure previously outlined in Wilcox et al and Zhang et al., 2005 (Wilcox et
al., 2005;Zhang et al., 2005). Single trial averages (STA’s) were calculated for each detector
for the oxy- (HbO) and deoxyhemoglobin (Hb) changes detected

The resulting data was displayed spatially for each detector and the signal corresponding to
the somatosensory cortex was identified on the contralateral hemisphere to the stimulated side
(detectors around source 4, see Figure 1). The farthest posterior response used was the Source
5- Detector 5 pairing, and the farthest anterior response taken was the Source 3- Detector 3
pairing. For simplicity, this activation is referred in the manuscript as S1 activation. The signal
corresponding to ipsilateral S1 was identified as the mirroring ipsilateral source-detector
pairings corresponding to those considered to be S1 on the contralateral side.

Hemodynamic Model Decomposition and Group Statistical Analysis—Average
HbO STA for brush and heat in S1 depicted potentially monophasic (brush) and biphasic (heat)
responses, respectively (Figure 3). Individual responses to brush and heat were fitted non-
linearly using a one or two gamma response model, respectively. Gamma functions included
a delay factor (tau) as presented in the equation (1) below:
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(1)

The non-linear fit was carried out using Matlab. The fit parameters were used to calculate Time
to peak (TTP) for brush and heat responses:

(2)

Group statistics were obtained by the following approach: For brush, individual HbO changes
to the 26 stimuli were fitted linearly with an explanatory variable (EV) constructed from the
temporal profile of the stimuli convoluted with a standard hemodynamic response (gamma
function with delay of 6 s and standard deviation of 3s, see Becerra et al., 2001). For heat,
following our previous fMRI study, two EV’s were used (one delayed 10 seconds from the
other, see Becerra et al., 2001).

Parameter estimates (PE) and residual variances for each EV were carried on to perform group
level analysis.

Group results were obtained using a fixed effects approach as described in Beckmann et al.
(Beckmann et al., 2003); briefly, to calculate the group average each individual parameter
estimate is weighted by the inverse of the residual variance (hence, subjects with large variances
might have their contribution attenuated even if they have large PEs). For group activation
comparisons (i.e., contralateral vs. ipsilatearal), a pair-wise approach was used.

A corrected p value (0.05/26 detectors= 0.002) was used as threshold for statistical significance.

RESULTS
Subjects

Nine subjects were recruited to the study. All nine data sets for the brush stimuli were kept,
while one data set for the thermal stimuli was eliminated due to an excessive number of motion
artifacts. Subjects with data included in the results were 29 ± 6 years of age.

Pain Scores
None of the subjects perceived brush stimulation as painful (average rating 1.6±1.0). Subjects
rated the painful stimuli as 5.0±2.1 that is considered moderately painful. None of the subjects
prematurely terminated the experiment because of excessive pain.

Brush Stimulation
The single trial average responses after applying PCA filtering to the data are displayed in
Figure 2A for one subject. Clear activation is detected in the contralateral S1 (left hemisphere)
to the stimulus side. Ipsilateral activation was also observed but not to the same extent then
the contralateral response (Figure 2As). In all subjects, frontal activation had significant larger
artifacts.

Figure 3A depicts average S1 group activation to brush as detected in the HbO signal
contralateral (red) and ipsilateral (orange) to the stimulus. In addition, the HbR signal is
depicted in the same figure (contralateral-blue, ipsilateral-green). Average group activation in
frontal areas is displayed in Figure 3C. The group activation was statistically significant
(p<0.002) for both contralateral and ipsilateral activation in S1 and frontal areas. Comparing
the contralateral response vs. the ipsilateral one, the difference was significant for S1 (P<0.002)
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but not for frontal areas (p=0.06). For both frontal and S1 areas, brush stimulation elucidated
a single hemodynamic response.

Heat Stimulation
Noxious stimulus elicited moderately painful sensations. The single trial average responses
after PCA filtering for all detectors are shown in Figure 2B for one subject. S1 activation was
observed bilaterally to the same level of activation, a similar result obtained with other
neuroimaging techniques (Hansson and Brismar 1999; Tracey et al. 2000; Sutherland and Tang
2006). It is important to note that systemic effects were ruled out for each subject through the
use of a head probe that maps a large area of the cortex. Responses used for averaging were
localized to their respective ROIs and did not occur ubiquitously across all of the detectors.

Activations in S1 (Figure 3B) as detected in the HbO signal contralateral (red) and ipsilateral
(orange) are very similar in size and temporal profile. Both responses seem to display two
waves or phases (early and late). A pattern observed previously with fMRI (Becerra et al.
2001; Chen et al. 2006). Frontal activation was different in its temporal profile (Figure 3D)
with an initial contralateral negative change in HbO. Group results indicated significant
contralateral and ipsilateral activation (p<0.002) in S1 and only late phase in the frontal areas
(ipsilateral: p<0.002). Comparing contralateral vs. ipsilateral activation, the difference was
found not significant in S1 and frontal areas (p=0.16).

Time to Peak
Non-linear fit results for one response for brush and two responses for heat are displayed in
Figure 4. The TTP for brush and the first (early) heat response were 6.42±0.50 and 5.49 ± 0.68
s, respectively, and were not significantly different from each other. The second (late) response
to heat had a TTP of 12.60±0.83 and it was significantly different from brush or the early heat
response. These timings agree well with previously observed activation in S1 (Becerra et al.,
2001; Cheng et al., 2002).

DISCUSSION
Our results indicate a robust signal in somatosensory cortex to mechanical and painful stimuli
can be measured. However, the temporal and spatial characteristics of the hemodynamic
responses to these two stimuli are markedly different from each other and in alignment with
previous fMRI results (Becerra et al., 2001; Chen et al., 2002). Furthermore, a positive change
in frontal areas to brush stimuli but an early negative change to heat stimuli was also observed.
Collectively, these results might indicate that it is possible to discern differences in the pattern
of activation between painful and non-painful stimuli based on the spatial and temporal
characteristics utilizing DOT.

Activation in the Somatosensory Region
Studies of sensorimotor cortical activation following innocuous stimulation have reported both
unilateral (Hoshiyama et al. 1997; Suzuki et al. 2004) as well as bilateral SI activation (Jantsch
et al. 2005; Nihashi et al. 2005; Sutherland and Tang 2006). Furthermore, some studies indicate
bilateral activation with a prominent component contralateral to the stimulus (Hansson and
Brismar 1999; Franceschini et al. 2003) while others have found inhibition of ipsilateral
activation (Hlushchuk and Hari, 2006). Taken together, these results seem to indicate that
contralateral activation is routinely detected while concomitant ipsilateral is not sought, is
activated at a lower level, or even suppressed. Several of these were carried out with electrical
stimulation of a main nerve (Hoshiyama et al. 1997; Suzuki et al. 2004; Nihashi et al. 2005;
Sutherland and Tang 2006). As a result, multiple fiber subtypes (innocuous and noxious
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specific subtypes) are stimulated and the observed responses may include nociceptive-related
activation.

Our results, however, point to a robust activation to a pure dynamic mechanical stimulation
with no noxious component on both hemispheres with a larger response contralateral to the
stimulated side. These results seem to validate studies employing electrical stimulation as non-
painful sensory with a significant contralateral activation and a weaker ipsilateral response.

Activation in primary somatosensory cortex to pain has not been consistently observed with
fMRI (Bushnell et al. 1999). Potential reasons are cognitive modulation, inhibitory processes,
and experimental differences (Bushnell et al. 1999). In studies reporting activation in the
somatosensory cortex, pain produces activation mainly contralateral to the stimulated side as
detected by several imaging modalities (for a review, see (Apkarian et al. 2005)). Other pain
studies using fMRI have also reported bilateral activation following unilateral stimulation
(Tracey et al. 2000; Derbyshire et al. 2004; Wager et al. 2004). In addition, a clinical fMRI
study found bilateral representation in the somatosensory cortex (Fabri et al. 2006) and contact
heat produces bilateral evoked potentials in humans (Chen et al. 2006). In fMRI studies in
subjects with chronic pain (allodynia due to complex regional pain syndrome), only
contralateral activation of SI was observed (Maihofner et al. 2006) which may be due to
inhibitory processes affecting the ipsilateral cortex or a methodological issue. One implication
of our study is to determine measures in chronic pain patients using DOT since the lack of
bilateral activation may provide a useful clinical marker that may reverse with optimal
treatment.

We are unaware of any reports of brain activation following pain with DOT in adults. There
are a few reports of cortical pain responses in human newborns (Bartocci et al. 2006; Slater et
al. 2006) where pain was induced as a result of routine clinical procedures (e.g., venipunctures).
Consistent bilateral activation was reported in one study (Bartocci et al. 2006), while the other
(Slater et al. 2006) found inconsistent ipsilateral activation. The differences may be attributed
to technical issues as well as experimental differences between both studies (Bartocci et al.,
studied subjects that underwent venipuncture in the hand (Bartocci et al. 2006) while Slater et
al. studied subjects undergoing heel sticks (lancet) (Slater et al. 2006)). In non-human primate
studies intrinsic optical signals were used to evaluate pain responses in anesthetized squirrel
monkeys (Tommerdahl et al., 1998). Painful stimuli that were produced using a contact
thermode with temperatures ranging from 48–52°C on the palmar surface of the contralateral
hand resulted in a large amplitude reflectance decrease in somatosensory area 3a which was
subsequently confirmed by anatomical cytoarchitectural microscopic evaluation in serially
sectioned brain slices.

Basis for Bilateral Sensory Pathway Activation—Aside from the functional data for
human activation indicating bilateral activation in the SI cortex, other studies have indicated
specific pathways that may provide a basis for these. Such pathways may be direct, such as the
spino-thalamic cortical pathway (Dong et al. 1978; Burstein et al. 1996; Willis and Westlund
1997) and others may be indirect, such as cortico-cortical pathways or cortical-subcortical
pathways. ‘Bilateral’ representation at the level of the cortex may also be due to bilateral
receptive fields terminating in the spinal cord or brainstem.

Projections from the spinothalmaic tract originating in laminae 7–10 have bilateral receptive
fields and respond to a variety of cutaneous stimuli (Hodge and Apkarian 1990) the termination
of these is predominantly in the lateral and medial thalamus and smaller projections to the
intralaminar nuclei. The lateral thalamus has a significant projection to the SI cortex. One
imaging study suggests the predominant response to noxious pain stimulation is the
contralateral thalamus (lateral thalamus) and SI showed contralateral biasing of activation in
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response to the stimulus (Bingel et al. 2003). However, other study suggests that nociceptive
information reaches distinct thalamic subnuclei eliciting a bilateral cortical response (Tsuji et
al. 2006). Interhemispheric connections of the primary somatosensory cortex are reported in
rodents and monkeys (Iwamura et al. 1994; Krubitzer et al. 1998). In support of an
interhemispheric transfer of sensory information, neurons with bilateral receptive fields of the
hands in monkeys, were not present following contralateral lesioning of the postcentral gyrus
(Iwamura et al. 1994). In addition to pain, tactile stimulation of the hand results in bilateral SI
activation (Hansson and Brismar 1999); this was around 20% less than the contraleral effect,
which was similar to that observed in our study for brush stimuli. Anatomical studies of corpus
callosum connections indicated relatively sparse connections for the glabarous hand and foot
compared with the face and trunk (Killackey et al. 1983). Thus, in humans multiple pathways
for noxious information may exist that activate bilateral regions in the cortex (Tsuji et al.
2006).

Temporal Characteristics of Activation—As depicted in Figures 3A and 3B, the
hemodynamic response to heat is double peaked compared to the brush response. The early
peak in the heat respond resembles the brush response, this could be explained in part as a
consequence of the experimental procedure; the thermode was lowered on the hand during
stimulation, hence, a sensory (touch) component was present in addition to a thermal one. The
second peak might reflect the sensation of pain; there are several lines of evidence to support
this: experiments to determine heat pain discrimination found that heat pain tends to summate
over time (Oshiro et al. 2007) accordingly a late response in S1 is expected. Becerra et al.
(2001) reported responses to a similar painful stimulus and to a non-noxious thermal stimulus
(Becerra et al. 2001), the innocuous stimulus produced only one early peak in the hemodynamic
response while the noxious heat produced two, these results suggested that the late peak was
uniquely associated with pain. Chen et al. (2002) recorded pain perceptions for painful heat
stimulation, they also reported a biphasic noxious heat response with fMRI and found good
correlation of pain perception and late activation in S1 (Chen et al. 2002).

It is also possible to ascribe in part the biphasic pain response to the recruitment of emotional/
cognitive brain structures since expectation, anxiety, aversion play an important role in pain
(ref). Such recruitment should also be observed directly in cognitive structures (frontal regions)
and were detected in these experiments (see below). Subcortical emotional regions are not
observable with DOT and hence cannot be discussed here.

Activation in the Frontal Region
In this study we observed significant activation in the frontal regions of the brain. Activation
in this study was bilateral to brush and predominantly ipsilateral to the pain stimulus. Frontal
lobe function in pain is considered to be important in cognitive and emotional processing
(Lorenz et al., 2003), including the preparatory processing in sensorimotor function (Bonnard
et al., 2004) and the placebo response (Wager et al., 2004). Postoperative use of transcranial
stimulation over this area reduces the requirement of opioids analgesics (Borckardt et al.,
2006). It is thus involve in both pain processing and pain modulation. In this study, the location
of the probes measured changes in the dorsal and lateral prefrontal cortex (DLPC). Functional
and other imaging studies of pain have suggested an important role of this area of the brain in
both acute (Svensson et al., 1997; Becerra et al., 1999; Becerra et al., 2001) and chronic pain
conditions (Grachev et al., 2000; Apkarian et al., 2004). A number of projections that are
received by the prefrontal cortex originate in visual, auditory, parietal and cingulate regions,
as well as subcortical regions such as the amygdala (Barbas, 2000) and hypothalamus (Rempel-
Clower and Barbas, 1998). In addition frontal lobe sends inputs to subcortical (Shibata and
Naito, 2005) and brainstem nuclei, particularly the periaqueductal gray (Hardy and Haigler,
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1985). Of note, however, is that the ventral and medial prefrontal regions seem to contribute
to this more so than lateral prefrontal regions.

The prefrontal cortex is also involved in analgesia, both placebo induced (Wager et al.,
2004), and control over pain (Wiech et al., 2006). Finally, in fMRI studies of analgesics,
including morphine, a decrease signal changes on prefrontal regions (Becerra et al., 2006) and
anesthetic such as propofol produce similar decreases in the frontal regions (Kaisti et al.,
2002).

Frontal activation was found to have a different valence for brush (positive) and heat (negative)
stimuli, similar results have been found in fMRI experiments (Becerra et al, 2001;). This may
reflect the contribution of the region to interpreting neutral/pleasant vs. unpleasant stimuli. Its
negative change might indicate inhibitory processing taking place as it has been demonstrated
with optical imaging (Devor et al., 2007). Taken together with the activation observed in the
sensory cortex, the use of DOT allows for the measures of both sensory and emotional
components of pain.

CONCLUSIONS
DOT may provide a useful objective measure of pain in a number of clinical conditions
including the response to analgesics, the response in patients who cannot communicate (e.g.,
during surgery for analgesic efficacy while under anesthesia), neonatal/pediatric patients, or
patients who are unable to communicate (e.g., coma, stroke). Since DOT measures neural
activity in cortical regions with known function, the ability to measure changes in response to
pain may provide a mobile, relatively cheap, accessible method for objective measures of pain
rather than rely on clinical evaluation of a patient’s response to pain (e.g., physiological
response in the operating room). A multicortical measure allows sensory-motor (e.g,. SI, MI
and premotor cortex) and non-sensory (e.g., dorsolateral prefrontal cortex) systems to be
evaluated in the context of useful measure to determine the effects of analgesic and anesthetics
on blockade of a painful stimulus.
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Figure 1. Experimental setup
(A) Localization of source and detectors utilized to measure DOT signals in frontal and sensory
cortices. (B) Brush and heat scans consisted of 26 stimuli, with jittered interstimulus intervals
(ISI) of 6–13 s with an average ISI of 8.5 s. Stimuli were applied for 5 s. See text.
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Figure 2. Average detectors responses for Brush (A) and Heat (B) stimulation for one subject
Detectors positioned over the sensorymotor cortex are highlighted depicting oxyhemoglobin
(red) deoxyhemoglobin (blue) and total (green) hemodynamic changes. Responses have been
processed to remove artifacts and correlates of no interest. See text.
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Figure 3. Average response across subjects
Responses to Brush (A) and Heat (B) stimulation in S1 Cortex Region: Brush produced a larger
contralateral response than the ipsilateral side. Thermal stimulation produced a biphasic
bilateral response, observed also in fMRI studies
Responses to Brush (C) and Heat (D) in Frontal Cortex Region: Bilateral activation to brush
was observed while Heat produced a negative contralateral response. See text. Key: HbO:
contralateral:red, ipsilateral: orange; Hb: contralateral: blue, ipsilateral: green.
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Figure 4. Time-to-Peak
Time to peak from non-linear fits results in a similar TTP for brush and heat early response.
The second, late heat response is significantly delayed. See text.
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