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This paper presents a variational treatment of dynamic models that
furnishes time-dependent conditional densities on the path or trajectory
of a system’s states and the time-independent densities of its parameters.
These are obtained by maximising a variational action with respect to
conditional densities, under a fixed-form assumption about their form.
The action or path-integral of free-energy represents a lower bound on
the model’s log-evidence or marginal likelihood required for model
selection and averaging. This approach rests on formulating the op-
timisation dynamically, in generalised coordinates of motion. The
resulting scheme can be used for online Bayesian inversion of nonlinear
dynamic causal models and is shown to outperform existing approaches,
such as Kalman and particle filtering. Furthermore, it provides for dual
and triple inferences on a system’s states, parameters and hyperpara-
meters using exactly the same principles. We refer to this approach as
dynamic expectation maximisation (DEM).
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Introduction

This paper presents a variational treatment of dynamic causal
models formulated as differential equations. We have referred to
this scheme briefly, in the context of how the brain might make
inferences about sensory data (Friston, 2005; p825). It arose while
pursuing an agenda established by von Helmholtz, who sought a
basis for neurological energy in his work on conservation laws in
physics (Helmholtz, 1860). The treatment presented here focuses
on statistical fundaments and applications. In brief, the scheme
generalises established approaches to static models using the La-
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place approximation (e.g., Friston et al., 2007). The key aspect of
this generalisation is the solution of time-dependent conditional
trajectories or paths. The equations of motion of these trajectories
ensure that their free-energy path-integral (i.e., action) is stationary.
This means that the ensuing trajectories encode the time-varying
conditional density of the system's state. Using a generative model,
in generalised coordinates of high-order motion, finesses temporal
dependencies among the states, lead to a relatively fast analytic
scheme.

This scheme supports inference on the hidden states of dynamical
systems, their parameters and hyperparameters. It goes beyond con-
ventional Bayesian filtering and dual-estimation schemes to provide
conditional densities over states, parameters prescribing the nonlinear
mixing of states and hyperparameters governing random fluctuations.
Furthermore, it operates online and may represent the kind of in-
ferential processes operating in systems like the brain. The ap-
plications of this scheme are diverse and will be pursued in a series of
subsequent papers. Furthermore, unlike standard variational schemes,
the optimisation does not need closed-form updates (i.e., conjugate
priors) and can be applied to any model. In this paper, we concentrate
on technical aspects and theory. This treatment is rather long and
dense; however, it introduces a single scheme that can be im-
plemented with one routine,' which grandfathers most approaches to
inverting parametric models with continuous variables.

The derivations in this paper involve a fair amount of dif-
ferentiation. To simplify notation we will use f,.=06,f=0f/ Ox to
denote the partial derivative of the function f, with respect to the
variable x. We also use x=0,x for temporal derivatives. Further-
more, we will be dealing with variables in generalised coordinates
of motion, which will be denoted by a tilde; X=(x,x",x",...). These
comprise high-order time derivates and can be regarded as the
instantaneous trajectory of a variable. Note that in generalised co-
ordinates, x=x’ is not necessarily true.

This paper comprises six sections. The first reviews variational
approaches to ensemble learning under the Laplace approximation,
starting with static models and generalising to dynamic systems.

" spm_DEM.m available from http://www.fil.ion.ucl.ac.uk/spm; see

software note.
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The second describes the variational steps for model inversion. In
the third section, we look at a generic hierarchical dynamic model
and the update equations it entails. In the fourth section, we
demonstrate Bayesian inversion of some nonlinear, dynamic sys-
tems to compare their performance with standard Bayesian filtering
and, in the fifth section, system identification techniques. In the
final section, we provide an illustrative application, in an empirical
setting, by deconvolving neuronal activity from observed hemo-
dynamic responses in the brain.

Variational Bayes and ensemble learning

Variational Bayes is a generic approach to model inversion that
approximates the conditional density p(J]y,m) on some model
parameters, 9, given a model m and data y. In addition, it provides
a lower bound on the evidence (marginal or integrated likelihood)
p(y|m) of the model itself. These two quantities are used for in-
ference on the parameters of any given model and on the model
itself. Variational methods for approximating densities in statistical
physics were introduced by Feynman (1972) within the path-
integral formulation and appeared in the statistical literature in the
form of ensemble learning (Hinton and von Cramp, 1993; MacKay,
1995; Neal and Hinton, 1998, Friston et al., 2007). In ensemble
learning, an ensemble or variational density g(¢}) optimises a free-
energy bound on the log-evidence to provide an approximate
posterior or conditional density.

In what follows, we review variational approaches to inference
on static models and their connection to the dynamics of an en-
semble of solutions for the model parameters. We then reprise the
approach for dynamic systems that are formulated in generalised
coordinates of motion. In generalised coordinates, a solution en-
codes a trajectory; this means inference is on the paths or trajectories
of a system (i.e., inference on functions of time). Archambeau et al.
(2007) motivate the importance of this inference for models based on
stochastic differential equations and presents a clever approach
based on Gaussian process approximations. In the current work, the
use of generalised motion makes inference on paths relatively
straightforward, because they are represented explicitly.

Variational Bayes for static models

The log-evidence for any parametric model can be expressed in
terms of the free-energy and a divergence term

In p(ylm) = F + D(q(9)|| p(9]| y,m))
F=G+H N
G(y) = ( In p(»,9)), (
H() =—(1In ¢(0)),

The free-energy comprises an energy function of the data, G( ),
corresponding to the Gibb's or internal energy, U(y,9)=In p(y,9)
expected under the ensemble density and the entropy, /(?)),, which
is a measure of uncertainty on that density. In this paper, energies
are the negative of the corresponding quantities in physics; this
ensures that the free-energy increases with log-evidence. Eq. (1)
indicates that F(y,q) is a lower bound on the log-evidence because
the cross-entropy or divergence term, D (q¢(9)|| p(9]y,m)) is always
positive.

The objective is to compute g(9) for each model by maximising
the free-energy and then use F=In p(ylm) as a lower-bound
approximation to the log-evidence for model comparison (e.g.,

Penny et al., 2004) or averaging (e.g., Trujillo-Barreto et al., 2004).
Maximising the free-energy minimises the divergence, rendering
the variational density g(J)=p(¥|y,m) an approximate posterior,
which is exact for simple (e.g., linear) systems. This can then be
used for inference on the parameters of the model selected.
Invoking an arbitrary density, ¢(1)) effectively converts a dif-
ficult integration problem; inherent in marginalising p(y,9m) over
the unknown parameters to compute the evidence, into an easier
optimisation problem. This rests on inducing a bound that can be
optimised with respect to ¢(1J). To finesse optimisation, one usually
assumes ¢(¥) factorises over a partition® of the parameters

4(9) = Tg(#) @

This factorization usually appeals to separation of temporal
scales, or the distinction between parameters underlying determi-
nistic and stochastic effects. In statistical physics this is called a
mean-field approximation. Under this approximation, it is rela-
tively simple to show that the ensemble density on one parameter
set, ¥’ is a functional of the energy, U=In p(y,9) averaged over the
others. When there is only one set, this density reduces to a simple
Boltzmann distribution.

Lemma 1. (Free-form variational density). The fiee-energy is
maximised with respect to q(9') when

In g()=V{W)- lh Z'e
a(7)=; exp (V(9)) G)
V(ﬁi) = (U(ﬁ))q(ﬁ\,)

where 7' is a normalisation constant (i.e., partition function). We
will call V(') the variational energy, noting that its expectation
under (") is the expected internal energy. 9" denotes parameters
not in the i-th set or, more exactly, its Markov blanket. Note that the
mode of the ensemble or variational marginal maximises its
variational energy.

Proof. The Fundamental Lemma of variational calculus states that
F(y,q) is maximised with respect to q(19’) when, and only when

5(1(19‘)1'7 = 0<:>6q(19,)fi =0
[avf =F

0 () is the variation of the free-energy with respect to q(?").
From Eq. (1)

1= [q@)g@ U@’ — [ q(0)g(¥") In g(9)di" (5)
=gV () = q(¥) In g(¥) + (9 )H©")=
6q(z9’)fi = V(ﬂf) — In q(ﬁi) —In Z

(4)

We have lumped terms that do not depend on ¥ into In Z'. The
extremal condition is met when ¢, (/" = 0, giving Eq. 3). O
If the analytic form of Eq. (3) was tractable (through the use of
conjugate priors), ¢(¥') could be optimised directly, by iterative
solution of the self-consistent nonlinear equations Eq. (3) repre-
sents. This is known as variational Bayes; see Beal and Gha-

2 A set of subsets in which each parameter belongs to one, and only one,
subset.
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hramani (2003) for an excellent treatment of conjugate-exponential
models. An alternative approach to optimising g(##°) is to consider
the density over an ensemble of time-evolving solutions ¢(¥%",7) and
use its stationary solution in the limit, t—oo. This rests on for-
mulating the ensemble density in terms of ensemble dynamics.

Ensemble densities and the Fokker—Planck formulation

This formulation considers an ensemble of solutions or particles
for each parameter set. Each ensemble populates the i-th parameter
space and is subject to two forces; a deterministic force that causes the
particles to drift up the gradients established by the variational energy,
V() and a random fluctuation I'(7) (i.e., a Langevin force)’ that
disperses the particles. This enforces a local diffusion and exploration
of the energy field. The effect of particles in other ensembles is
mediated only through their average effect on the internal energy,
V(') =(U (19))(1(,,9\,), hence mean-field. The equations of motion
for each particle are

3= v () + () (6)

where, VV(1')=V(19")y is the variational energy gradient. Because
particles are conserved, the density of particles over parameter space is
governed by the free-energy Fokker—Plank equation (also known as
the Kolmogorov forward equation)

§(") = V- [Va(?") =g (&) V7 ()] (7)

This describes the change in local density due to dispersion and
drift of the particles. It is trivial to show that the stationary solution
for g(1¥",7) is the ensemble density above by substituting

4() =5 e (V ()=
Vq(¥') = q(9") V¥ (9= (8)
§(#) =0

At which point the ensemble density is at equilibrium. The
Fokker—Planck formulation affords a useful perspective on the
variational results above and shows why the variational density is
also referred to as the ensemble densitys; it is the stationary solution
to a density on an ensemble of solutions.

Variational Bayes for dynamic systems

In dynamic systems some parameters change with time. We will
call these states and denote them by u(f). The remaining parameters
are time-invariant, such that we now have states and parameters;
J—u,. Later, we will consider two parameter sets, ¥=6,1;
corresponding to parameters and hyperparameters, which specify
the deterministic and random fluctuations of the generative process
respectively.

In a dynamic setting, the ensemble or variational density g=
q(u,t)g(¥) and associated energies become functionals of time. By
analogy with Lagrangian mechanics, this induces the notion of
action; the time-integral (or, more exactly, anti-derivative) of
energy. We will denote action with a bar over the corresponding

3 je., a random fluctuation, whose variance scales linearly with time; in
statistical thermodynamics and simulated annealing, this corresponds to a
temperature of one.

energy; i.e., F U and V(9% for the free, internal and variational
action respectively. The free-action can be expressed as

F = Jdt(U (u, t19)) 4 gy — [ At I g, 0)) g0 +F(0)
F(0) = (U(9)) 45 — ( In g(9))00) )

where 8 =F. Here, U(u,t}9)=In p(3(¢),u(t)}9) is the instantaneous
energy conditioned on the parameters and U(J)=In p(¢J) is the
prior energy of the parameters. The constant of integration, F(0)
corresponds to the free-energy before seeing any data. This is also
the (negative) divergence between the conditional and prior den-
sities on the parameters and, in the absence of data, is maximised
when ¢(9)=p(V).

The free-action, or henceforth action, is simply the path-integral
of free-energy. Path-integral is used here in the sense of Whittle
(1991), who considers path-integrals of likelihood functions, in the
context of optimal estimators in time-series analysis. When g(u,?)
shrinks to a point estimator, action reduces to the ‘effective action’ in
variational formulations of optimal estimators for nonlinear state-
space models (Eyink, 1996). Under linear dynamics, the effective
action coincides with the Onsager—Machlup action in statistical
physics (Onsager and Machlup, 1953; Graham, 1978).

Here, action represents a lower bound on the integral of log-
evidence over time, which, in the context of uncorrelated noise, is
simply the log-evidence of the time-series. We now seek ¢(u,f) and
¢(9") which maximise action®. By the fundamental Lemma, action
is maximised with respect to the variational marginals when, and
only when

SguoF =0 0yunf" =0
[duf* = oF =F
_ ) (10)
6q(1}’)F: g(:)aq(ﬁ,-)f’ =0
[do'fi=F

The solution for the states is the same as in the static case;
implying that the ensemble density of the states remains a func-
tional of their variational energy V(u,f)

a(u,1) :% exp (V(u,1)) (1)
V(u, t) = <U(M, t‘ﬂ»q(ﬂ)

where 0,7 ()= V(u,t). However, following the derivations in Lemma
1, variational action replaces variational energy for the parameters

(v :% exp (V(')) (12)
7(191'): U(9) + fdt(U(%t|19)>q(u‘f)q(19‘>

These equations are intuitively sensible, because the conditional
density of the states should reflect the instantaneous energy,
whereas the conditional density of the parameters can only be
determined after all the data have been observed. In other words,
the conditional or variational energy involves the prior energy and
an integral of time-dependent energy.

Consider the density of an ensemble that flows on the var-
iational energy manifold. Because this manifold evolves with time,
the ensemble will deploy itself in a time-varying way that op-
timises free-energy and its action. Unlike the static case, it will not

4 Subject to the constraint fq(u,t)du: 1.
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attain a stationary solution because the manifold is changing.
However, the ensemble density will be stationary in a frame of
reference that moves with the topology of the manifold (assuming
its form does not change quickly). This stationarity arises by for-
mulating ensemble dynamics in generalised coordinates of motion
(c.f., position and momentum in statistical physics).

Ensemble dynamics in generalised coordinates of motion

In a dynamic context, the ensemble density g(u,f) now evolves ina
changing variational energy field, /(u,f), which is generally a function
of the states and their motion®; for example, M(u,t)=V(v,V',f). This
induces a variational density in generalised coordinates, where g(u,f)=
q(vV',t) covers position, v and velocity, v'. The use of generalised
coordinates is important and lends the ensuing generative models and
their inversion useful properties that elude conventional schemes. In
essence, generalised coordinates support a conditional density on
trajectories or paths, as opposed to the position or state of the gen-
erative process.

To construct a scheme based on ensemble dynamics we require
the equations of motion for an ensemble whose variational density
is stationary in a frame of reference that moves with its mode. This
can be achieved by coupling high to low-order motion through
mean-field effects.

Lemma 2. (Ensemble dynamics in generalised coordinates).
q(u,t) =2 exp (V(u,1)) is the stationary solution, in a moving
frame of reference, for an ensemble whose equations of motion and
ensemble dynamics are

Vv =V(u,t) +n + (1)
Vo=V (u, ), +I(1) (13)
§(u.0) = V- g0’ + V.- [Vug() — q(u) V.V (w,0)]

where u’ is the mean velocity over the ensemble (i.e., a mean-field
effect).

Proof. Substituting ¢(u,) = 5 exp (V(u,7)) and its derivatives
into Eq. (13) gives

q(u, ) = V- q(u)p/ (14)

This describes a stationary density in a moving frame of re-
ference, with velocity, u’, as seen using the coordinate transform

1)) v
q(U,\/,l‘) :q(V*]J./t,V,,t) (15)
4(U7v,7t) = 4(v7 V/’ t) - VV : q(“)H/ =0

Under this coordinate transform, the change in the ensemble
density is zero. O

The mean velocity ' is simply the average flow of particles. It is a
mean-field quantity in the sense that each particle's position is affected
by the mean velocity of all particles. Heuristically, in a frame of
reference that moves with this velocity, the only forces acting on
particles are the deterministic effects exerted by the gradients of the
variational energy, which drive particles towards its peak and random
forces, which disperse particles. Critically, the gradients and peak are
stationary in the moving frame of reference, enabling particles to
converge on a ‘moving target’. This is because the mean velocity u’ is
also the velocity of the mode (see below).

5 We will just state this to be the case here; it will become obvious why
the energy of dynamical systems depends on motion in the next section.

For a related example in statistical physics, see Kerr and Graham
(2000) who use ensemble dynamics in generalised coordinates to
provide a generalised phase-space version of Langevin and asso-
ciated Fokker—Planck equations: Langevin equations for mechanical
systems with canonical position and momentum usually limit noise
to the equations for the momentum (motion). Kerr and Graham
derive Fokker—Planck equations for mechanical systems that include
noise in the equations of motion for all the canonical variables. This
affords a more general model of systems in contact with a heat bath
that, for example, can model the rate of approach to thermal equi-
librium. See also Weissbach et al. (2002) for an example of var-
iational perturbation theory for the free-energy.

The path of the conditional mode

In static systems, the mode of the conditional density maxi-
mises variational energy (Lemma 1). Similarly, in dynamic sys-
tems, the trajectory of the conditional mode, w“(f)=/m=u.u’
maximises variational action. This can be seen easily by noting
the gradient of the variational energy at the mode is zero

8V (W 1) =06,V (n) =0
T = V) (16)

This is sufficient for the mode to maximise variational action (by
the Fundamental Lemma of variational calculus). This analysis says
that changes in variational action, ¥(u), with respect to variations of
the path of the mode are zero (c.f., Hamilton's principle of stationary
action). Intuitively, it means that the evolution of the mode follows
the peak of the variational energy as it evolves over time, such that
tiny perturbations to its path do not change the variational energy.
This path has the greatest variational action (i.e., path-integral of
variational energy) of all possible paths. In brief, coupling the
motion of states and their velocity with the mean-field term p’
creates a moving cloud of particles that enshroud the peak, tracking
the mode and encoding conditional uncertainty with its dispersion.
See Fig. 1 for a schematic summary.

The path of stationary action

Above, we assumed that the variational energy was a function
of only position and velocity. We will see later that for most
dynamical systems the variational density and its energy depend on
generalised motion to much higher orders. In this instance, the
formalism above can be extended to high-order motion to give
ensemble dynamics in generalised coordinates® u=v=v,/,v",...

<.
Il

Viut), 41" +I'(t)

vVi=V(u,t), 4+ + I =

ll/
H/ "o
o= “'"

i (17)

where the mode i = u,u’,u”,...satisfies V(i,t),=0. Eq. (17) could
form the basis for a stochastic, free-form approximation to non-
stationary ensemble densities. This entails integrating the path of
multiple particles according to the stochastic differential equations
in Eq. (17) and using their sample distribution to approximate g(u,).
We will refer to this as variational filtering and consider an
example in the next section. In this paper, we focus on fixed-form

¢ Introducing =7 may seem redundant but later u=%,7 will cover states
with distinct roles in generating data.
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Variational filtering

F(t) =V (1), + DA +T(1)

it Fy=[vviv’ ...

v(t)

£ fi) = DE()

F() =V (), +D¥ (1)

Fig. 1. Schematic illustrating the nature of variational filtering. The left panel shows the evolution of 32 particles over time as they negotiate a changing
variational energy landscape. The peak or mode of this landscape is depicted by the red line. Particles flow, deterministically towards this mode; while, at the
same time, they are dispelled by random fluctuations to form a cloud that is centred on the mode (insert on the right). The dispersion of this cloud reflects the
curvature of the landscape and, through this, the conditional precision of the states. The sample density of the particles in the insert approximates the ensemble or
variational density we require. This example comes from a system that will be analyzed in detail in the next section (see Fig. 5). Here we focus on one state in six
generalised coordinates of motion, three of which are shown in the insert. The trajectories below the insert show a path corresponding to the conditional mode
(red) and the trajectory of an approximating particle (black) that is exempt from random forces.

approximations to the ensemble density, which require only the path
of'the mode. This can by computed easily by integrating the path of a
particle that converges to the path of the true mode:

Lemma 3. (Trajectory following). For large k, the path of a par-

ticle, whose motion in generalised coordinates conforms to

(u,1),+v'
(u,1),+v"

KV
KV

(18)

v
‘}/
‘}//

converges exponentially to the mode at a rate proportional to the
constant k.

Proof. We can express the motion of this particle in terms of a
derivative operator D
u=xV(u,t),+Du (19)

This matrix operator is a block matrix, whose first leading-
diagonal contains identity matrices /

1
0

D= @I

The Kronecker Tensor product, ® replaces each element of the
first matrix with that element multiplied by the second matrix.

Because the mode satisfies the extremal condition; V(,f),=0, the
first-order expansion of the variational energy gradient, around its
mode is

(20)

This expansion enables us to characterise the local evolution of
¢, the difference between the location of the approximating particle
and the mode in generalised coordinates (c.f, a linear stability
analysis; see inset in Fig. 1). Substituting Eq. (20) into Eq. (19) and
using fl = DI from Eq. (17) gives

€ (t)e
() = eV (w, ), +D. (21)

I
a

uu

It is easy to see that the ¢ will decay exponentially to zero, for
suitably large values of k. This is because the Jacobian J(?) is
dominated by the negative-definite curvature term. The rate of
convergence to the mode is proportional to the negative real
eigenvalues of 3(7) (c.f, Lyapunov exponents). O

Summary
In this section, we have seen that inference on both models and
their parameters can proceed by optimising a free-energy bound on
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the log-evidence of data, given a model. This bound is a functional
of an ensemble density on a mean-field partition of parameters.
Using variational calculus, the ensemble or variational density
can be expressed in terms of a corresponding variational energy.
This energy is simply the internal energy In(p(y,9|m)) expected
under the Markov Blanket of each set of parameters. For dynamic
systems, we introduce time-varying states and replace energies
with actions to optimise a bound that is a functional of time. In
the absence of closed-form solutions for the variational densities,
they can be approximated using ensemble dynamics that flow on a
variational energy manifold, in generalised coordinates of motion.
These particles are subject to forces exerted by the variational
energy field and mean-field terms from their generalised motion.
Free-form approximations obtain by integrating the paths of
an ensemble. Alternatively, one can focus on the conditional
mode and ingrate the path of a single particle that maximises
variational action. This particle behaves in the same way as any
other member of the ensemble except that it is not subject to
random fluctuations. We now consider the most common fixed-
form approximation.

The Laplace approximation

As mentioned above, variational filtering (i.e., integrating an
ensemble of solutions) can approximate conditional densities on
the states with any form (see Friston, 2008). However, we will
adopt a simpler approach by assuming that the ensemble density
has a fixed Gaussian form. This reduces the problem of integrating
the paths of an entire ensemble, using stochastic differential equa-
tions (Eq. (17)), to the much simpler problem of integrating the
deterministic motion of the conditional mode (Eq. (18)). We can
then use analytic results for the covariance, to obtain the sufficient
statistics of the variational density. These results follow from the
Laplace approximation, in which the precision (inverse covariance)
is simply the negative curvature of the internal energy at the
mode. We now outline these results for general static and dynamic
cases.

Static models

Under the Laplace approximation, the marginals of the
ensemble density assume a Gaussian form g =N u', 27y with
variational parameters x' and X', corresponding to the mode and
conditional covariance of the i- th parameter set. In an attempt to
keep notation consistent, we will use ' for the conditional ex-
pectation or mean of the i-th set of unknowns and #’ for their prior
expectation. Similarly, we will use X’ and C’ for the conditional
and prior covariances and /I’ and P’ for the corresponding inverses
(i.e., precisions).

The advantage of the Laplace assumption is that the conditional
covariance can be evaluated very simply: under this fixed-form
assumption the free, internal and variational energies of static
systems are

F=U( +ZW1+H
U(@) = In p(y,9)

V() = U9, nY) +ZW/
ZEZ

W= —Zr(Z Uwz)

(In |Z‘|+p’ In 2me)

p'=dim(¥") is the number of parameters in the i-th set and U(u)
is the internal energy evaluated at the conditional mode of all sets.
As noted in Lemma 1, the conditional modes are simply those
parameters that maximise variational energy. The conditional pre-
cisions are obtained as an analytic function of the modes by dif-
ferentiating Eq. (22) with respect to the covariances and solving for
Zero

1 .
Fyi =3 Uy + I =0=
' = —Uyy

v

(23)

This is the negative curvature of the internal energy at the con-
ditional mode. Note that this solution does not depend on the mean-
field approximation but only on the Laplace approximation.
Substitution into Eq. (22) means /¥’ = 1p' and’

F=U(+H
:%Z( In |2'|+p In 2n) (24)

This gives a compact and simple form for the free-energy and
conditional precisions; and reduces the problem of inference to
finding the conditional modes of the variational energy. This
generally proceeds in a series of iterated steps, in which the
mode of each parameter set is updated. These updates optimise
the variational energy in Eq. (22) with respect to ', using the
sufficient statistics " and =" of the other sets. It is evident that
the quantities 7' represent the contribution to the variational
energy of other parameter sets. We will refer to these as mean-
field terms. We have discussed special cases of this fixed-form
scheme previously and have shown how iterative optimisation
reduces to expectation maximisation (EM; Dempster et al., 1977)
and restricted maximum likelihood (ReML; Harville, 1977) for
linear models (Friston et al., 2007; see also Fahrmeir and Tutz
1994 for a related discussion in the context of generalised linear
models).

The price paid, when using the Laplace approximation, is that
we cannot represent multimodal or discrete distributions. How-
ever, one can represent non-Gaussian densities through non-
linear transformations (we will see examples of this when
representing non-negative states and scale-parameters in the final
section). We now reprise the derivations above for dynamic
models.

Dynamic models

For dynamic models one follows the same treatment but
replacing the free-energy with action. For simplicity, we will
deal explicitly with two set of parameters, which we will call
parameters and hyperparameters, ¥=60,A. Unless stated other-
wise, all quantities and their derivatives are evaluated at the

7 In which we have removed constant terms in the entropy that do not
contribute to the free-energy.
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conditional mode. Under the Laplace assumption, the free, in-
ternal and variational actions are (c.f., Eq. (22) and using U(z):=
U(u,110,))

F=Up) +H
U= [U@)dt+U(0)+U()
V(u) = [U(u,tln® p0?) + W (e)'+Ww(e)de
V(0) = [ U, 1]0,07) + W (0)“+W (1) dt + U(0)
V(2) = [UWt|u, 2) + W () +w(0)de + U(2)
H=[}In|20)dt+] In 2% +1 In |27 (25)
+%(Np" +p'+p) In 27
W)= 3r(2U(1),,)
w(0)'= 3 (Z°U (1))
W)= (27U(),,)

X(¢)" is the conditional covariance of the states at time 0</<N.
Following the arguments for static models, the conditional pre-
cisions are the negative curvatures of U, the internal action eva-
luated at the conditional mode
0t)'=-Uu=-U(t)

uu

B 26
0= -Ugy =~ [U(t)gydt — U(0) -

"= ~Uj; =~ [U(1),dt = U(2);

Notice that the precisions of the parameters and hyperpara-
meters increase with the number of observations, as we would
expect. To evaluate these precisions we need only the modes,
which maximise variational action.

In line with conventional variational schemes, we can update the
modes of our three parameter sets in three distinct steps. However,
the step dealing with the state (D-step) must integrate its conditional
mode over time and accumulate the quantities necessary for up-
dating the parameters (E-step) and hyperparameters (M-step). We
now consider optimising the modes or conditional expectations in
each of these steps.

Dynamic expectation maximisation

The D-step

Eq. (19) prescribes the (approximate) trajectory of the con-
ditional mode, which can be realised with a local linearisation
(following Ozaki, 1992) by integrating over At to recover the
motion of the particle tracking the mode:

Aji = (exp(4r3) = DI
(1, 1), +Di= @

=V
3 =«V({,1),+D

Ozaki (1992) shows that these updates are consistent, coincide
with the true trajectory (at least for linear systems) and retain the
qualitative characteristics of the continuous formulation. Indeed,
this local linearisation is the basis of the innovation approach to
time-series modelling (see below and Ozaki and Iino 2001). For
simplicity, we have suppressed the dependency of V(u,f) on the

data. However, it is generally necessary to augment Eq. (27) with
any time-varying quantities that affect the variational energy. This
ensures that the forces that act on the mode change appropriately
over the integration time. The form of the ensuing Jacobian 3(¢) is
described in the next section.

The updates in Eq. (27) provide the conditional trajectory /i (7)
at each time point. Usually, Az is the time between observations but
could be smaller, if nonlinearities in the model render local
linearity assumptions untenable (we will see an example of this
later, when illustrating nonlinear deconvolution). Note that when
there are no variational influences and V,,=7V,,=0 this update re-
duces to a Taylor expansion of the mode's motion; i.e. g(z+Af)=
exp(AtD)i (2).

The E- and M-steps

Exactly the same scheme can be used for the E- and M-steps.
However, in this instance there are no generalised coordinates to
consider. Furthermore, we can set the interval between updates to
be arbitrarily long because the parameters are updated after the
time-series has been integrated. If At—oo is sufficiently large, the
matrix exponential in Eq. (27) disappears® giving

A = =3(0) "’
i = T (0),~ (28)
3(0) = 1V (0)gg

similarly for the hyperparameters. Eq. (28) is a conventional
Gauss—Newton update scheme, in which x disappears. In this
sense, the D-Step can be regarded as a generalisation of classical
ascent schemes to generalised coordinates that cover dynamic
systems. In practice, we retain the matrix exponential because it
provides a graceful regularisation of the ascent (see Friston et al.,
2007 for details). This can be useful when dealing with highly
nonlinear dynamic models that exhibit structural instabilities’.
These updates furnish a variational scheme under the Laplace
approximation. In practice, we find that k=1 is sufficient large to
ensure convergence in the majority of situations. To further simplify
things, we will assume Ar=1; i.e., sampling intervals serve as units
of time during model specification. With these simplifications, the
DEM scheme can be summarised as iterating until convergence

D-step (states)
for t=1:N

3 = V( )llll+D

AR = (exp (3) — D3 (V7 1),+DR)
H(t)u: _U(t)uu
end

E-step (parameters)

A’ = *V(e)oo 7(9)0
1’ = ~UT(0),

¥ Because the curvature of the Jacobian is negative definite.

° For example, if the parameters change and the system looses a fixed-
point attractor, the states generally diverge exponentially. This corresponds
to a phase-transition in the free-energy landscape, which can confound
simple ascent schemes. To counter this, we halve A7 when the objective
function fails to increase and double it otherwise.
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M-step (hyperparameters)

A (4)

L= V()T (),
m=-U(l),

- (29)

where the integrals in Eq. (25) are approximated with the ap-
propriate sums.

We will call these three updates D-, E- and M-steps to
highlight their connection with expectation maximisation
(EM; Dempster et al., 1977). Provided the internal energy is
linear in the hyperparameters, DEM is exact and there is no
formal distinction between the E- and M-steps (see Friston et al.,
2007). The D-step can be construed as a dynamic step that
effectively deconvolves states from data. The reason we call it
DEM as opposed to a dynamic variational scheme is that the
update rules optimise the variational action explicitly, using a
coordinate ascent. In a standard variational scheme, the updates
would be based on analytic solutions to Eqs. (11) and (12),
which optimise free-action implicitly. However, these closed-
form solutions have to be derived for each model and often entail
assumptions of convenience (e.g., conjugate priors). DEM does
not require these closed-form solutions (or conjugate priors) and
requires only the gradients and curvatures of the internal energy.
Having said this, for simple models, many of the DEM and
standard variational updates are formally identical, particularly in
the D- and E-steps.

Summary

In this section, we have seen how the inversion of dynamic
models can be formulated as an optimisation of free-action.
This action comprises the path-integral of free-energy asso-
ciated with changing states and a constant (of integration)
corresponding to the prior energy of time-invariant parameters
(see Eq. (25)). By assuming a fixed-form (Laplace) approxima-
tion to the conditional density, one can reduce optimisation to
finding the conditional modes of unknown quantities, because
their conditional covariance is simply the curvature of the
internal action (evaluated at the mode). The conditional modes
of (mean-field) marginals optimise variational action, which can
be framed in terms of gradient ascent. For the states, this en-
tails finding a path or trajectory with stationary variational ac-
tion. This path can be tracked using a fast gradient ascent that
supplements the flow with the conditional mode of generalised
motion.

To implement this scheme we need the gradients and curvatures
of the internal energy, which are defined by the generative model
implicit in; U(u,9)=]UGu,d9)dt+ U(). Next, we consider gen-
erative models for dynamic systems and the variational steps they
entail.

Nonlinear dynamic causal models

In this section, we apply the results of the previous section to an
input-state-output model with additive noise. This is a general
model that has many conventional models as special cases. Cri-
tically, it is formulated in generalised coordinates such that the
evolution of the states is subject to empirical priors (see Efron and
Morris, 1973 for a discussion of empirical priors in the context
of static models). This makes the states accountable to their

conditional velocity through empirical priors on the dynamics
(similarly for high-order motion). Special cases of this generalised
model include state-space models used by Bayesian filtering that
ignore high-order motion. If motion is discounted completely,
the model reduces to conventional nonlinear models under para-
metric assumptions; and the scheme becomes formally identical to
expectation maximisation.

Dynamic causal models

To simplify exposition we will deal with a non-hierarchical
model and generalise to hierarchical models post hoc. A dy-
namic causal input-state-output model (DCM) can be written
as

y i g(x,v) 4z (30)

The continuous nonlinear functions f and g of the states are
parameterised by 6. The states v(f) can be deterministic, stochastic,
or both. They are variously referred to as inputs, sources or causes.
The states x(f) meditate the influence of the input on the output and
endow the system with memory. They are often referred to as
hidden states because they are not usually observed directly. We
assume that the stochastic innovations (i.e., observation noise) z(#)
are analytic such that the covariance of Z=[z,2%,...]7 is well-
defined; similarly for the system or state noise, w(f), which re-
presents random fluctuations on the motion of the hidden states.
Note that we eschew Ito calculus because we are working in
generalised coordinates. This allows us to model innovations that
are not limited to Wiener processes (e.g., Brownian motion and
other diffusions, whose innovations do not have well-defined
derivatives).

Under local linearity assumptions, the motion of the response 7
is given by

y=gxv)+z x'=f(x,v) +w
y=gx' +gv +z X =L+ +w
Fog g X =S S

The first (observer) equation show that the generalised states
u=v.x=vy,...xx,... are needed to generate a response trajec-
tory. This induces a variational density; ¢(u,r)=¢q(V,X,f). The
second (state) equations enforce a coupling between low and high-
order motion of the hidden states ¥ and confer memory to the
system.

The conditional energy function associated with this system;
U(t)=1n p(¥|u,0,4)+1n p(u) comprises a log-likelihood and prior.
Gaussian assumptions about the fluctuations p(z)=N(Z:0,27) fur-
nish the likelihood, p(7]9)=N(5:8,E%). This is because F=g +%,

where the predicted response g=g,g’.g”,... comprises the
derivatives

g:g(xvv) f:f(xvv)

g =gx +gv S =LA (32)

‘f‘ll :‘f]‘cxﬂ _"_.f“,‘//

gJI — gxle +gvl//
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Similarly, Gaussian assumptions about state noise p(W)=N
(#:0,2") furnish a prior p(u)=p(X|¥)p(¥) in terms of predicted
motion, where p(X|¥)=N(Dx:f,&"). This is because the motion
of the hidden states is DX =/ +w, where the predicted motion is
T i

We will assume Gaussian priors, p(V)=N(:ij",C"), where 7"
are the prior expectations of the generalised causes. To simplify
things, we will assume these are flat and re-instate informative
empirical priors with hierarchical models later. We assume the
same form for priors on the parameters, p(0)=N(0:1°,C?), with
prior precision P? (similarly for the hyperparameters). Note that
Gaussian priors are not restrictive because, 3(u,0), f (,0), Z(u,L)*
and 3(u,A)" can all be nonlinear functions that embody probability
integral transforms (i.e., can implement a re-parameterisation in
terms of non-Gaussian processes). We will illustrate this in the last
section.

Generally, the covariances of the fluctuations i(u,l)z and £
(u,4)" can be functions of the states that allow for state-dependent
changes in the probabilistic context in which responses are
generated. However, we will deal with state-dependent covariances
elsewhere and assume they depend only on hyperparameters in this
paper. Fig. 2 (left panel) shows the directed graph depicting the
conditional dependencies implied by this model. Note that in
generalised coordinates there is no explicit temporal dependency
and the only constraints on the hidden states are their empirical
priors.

Energy functions
For these generative models, the actions associated with the free
F and internal U energy are

F=UWw-+H
Uzzt U(t)+% In |P0\+% In \Pk|fés()TPOg()f%s”P)‘sA
H=1>" I [Z0)"+} I |2 +] I |2/
t
U@ =Lm|d-te"mz-L m 2
(1) =35 In [II| — 5" II& S In 2z

(33)

~ [T . T=y-g e =l —y’

H:{ ﬁw} S(t):|:§X:Df—_7:| s*:ﬁi—zi

where, p=rank(ﬁ ) and we have replaced integrals with summa-
tions over time bins #=1,...,N. Constant terms in the entropy have
been omitted (c.f, Eq. (25)) because they are cancelled by identical
terms from the Gaussian priors in the free-action. The auxiliary
variables &(f) comprise prediction errors for the response and
generalised motion of hidden states, where (7) and f(z) are the
respective predictions. The precision of these predictions is en-
coded by [T, which depends on the magnitude of the random
effects. The use of prediction errors simplifies exposition and may

VD = g 0y 4 20 ¥

.{,fn :j‘(x{i:,L't'))+ wtﬁ}

SN g;u) + Eu}

DY = J}‘-'(:) +i0@

y=glxm+z y=E+%
= flxv)+w Di=f+
gﬁm% p(M) =N :n",C")
¢ 5
p(A)=N(A:n*.Ch) L p(EIF,0,4)=N(DE: F.E")
i, | g, i,
€ K 7 K
 p@ =N@:n°.C?)
g@?ﬁg".!’*\
5 i)+

Dynamic model

,'J(vm Iu”’. 19”’) - N(v{:' . 'g“”,f‘”’]

&%a‘iﬁé&a

N

Pz 4
pie W 7@ P e
! i : p(i‘z'IF'=2’,15"”)=N(Df”’:fm,f:(:’“‘)
R, T i (S,
o £z0..Lo0
1 p(xmli‘f[“ l?‘!})=N(DEE]JTF[l, ztljn‘)
} ‘ggﬁmw
g{ YR |

p(:ﬂllm.ﬂm}: N(:f" . g;m,'im;}

Hierarchical dynamic model

Fig. 2. Conditional dependencies of a dynamic (left) and hierarchical dynamic (right) model, shown as directed Bayesian graphs. The nodes of these
graphs correspond to quantities in the model and the responses they generate. The arrows or edges indicate conditional dependencies between these
quantities. The form of the models is provided, both in terms of their state-space formulation (above) and in terms of the prior and conditional
probabilities (below). In the hierarchical dynamic model, priors on the causes are replaced by empirical priors, which depend on states and parameters in

the level above.
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be used by neurobiological implementations of this scheme (i.e.,
encoded explicitly in the brain; see Friston 2005; Friston et al.,
2006).

Conditional precisions
As established in the previous section, the conditional preci-
sions are the curvatures of the internal energy

(1)'= -U(1),,
1m0 = =X, U(t) gy +P’
= - > U(t),,+P
U(t) = —~5ﬁ'§ U(t)gz _"ggﬁ? U(t)/li: 7%tr(Qi(’5'5T o z))

u

U(0),= =20 T8, U(1)gp= —7) % U(1),= —%ZV(QIEQ/E)
(34)

where the covariance, ¥ is the inverse of [T . The i-th element of the
energy gradient; U(7),;=0,;U(f) is the derivative with respect to the
i-th hyperparameter (similarly for the curvatures). We have as-
sumed that the precision of the random fluctuations is linear in the
hyperparameters, where Q,Z@Mﬁ, and 0 Uﬁ =(0. This is an im-
portant assumption that simplifies things considerably (see Friston
et al,, 2007 for details). This makes the E-step exact because
conditional uncertainty about the hyperparameters encoding pre-
cisions does not affect the variational energy of the states or
parameters.

Conditional modes

To evaluate the conditional modes, we will need the derivatives
of the prediction error with respect to the unknowns. Under local
linearity assumptions, these have the following form'®

e, T I®f, 1®f—D

v X

z |:8" 8X:| :7|:[®gv [®gx E{)[:Eu()‘u u= |:,‘::|

(35)

The form of our generative model (Eq. (31)) means that the
partial derivatives of the generalised errors, with respect to the
generalised states, comprise diagonal block matrices formed with
the Kronecker tensor product. Note the derivative matrix operator
in the block encoding £%; this comes from the prediction error of
generalised motion D¥ —f and ensures that the motion of the hid-
den states conforms to the dynamics entailed by the state equation.
€p; 1s the change in prediction error with the i-th parameter (i.e., the
i-th column of &). In computing &, have used second-order terms
mediating an interaction between the parameters and states

~ 1 ®gv0, 1 ®gx()i ~  _~T
Eu, = I® 0, I ®f).50,- E0u = 814()‘ (36)

These second-order terms are needed to quantify how the states
and parameters affect each other through mean-field effects (see
below). It is relatively simple to supplement Eq. (36) with second-
order terms involving f,, and g,, but in practice this is not neces-

1% In practice, the first block of &, can be replaced by —g, to eschew
linearity assumptions.

sary, provided that the integration intervals are sufficiently small to
conform to local linearity assumptions. In what follows, we place
the derivatives above into the three variational steps of the previous
section.

The D-step

As mentioned above, when integrating the path of the ap-
proximate mode, it is necessary to augment the states to cover
time-dependent variables that affect the variational energy; in this
case the data. This augmented system and its Jacobian are

[Z}:{V@%J - SZ{V(?),W V(I)SﬁD 7

Note that when the path of this particle converges to the mode,
the extremal conditions /(¢),=0 are met and the motion of the
highest derivatives are zero. From Eq. (29) the update is

{jﬂ = (exp(4:3) = )T {V(tﬁzD”}

V() = -1 e+ w(r)'

V()= & e+ (1),
V()= =80 5 + W (1),
V(1),,= L 1Tz, (38)
w(t)'= —Lur(2'8) ITz)
W)=y, 1% )
W (1), = —%zr(zﬂ'ggmns@

Notice that the mean-field term, W(#)* does not contribute to the
D-step because it is not a function of the states (or parameters).
This means that uncertainly about the hyperparameters does not
affect the update for the states (or parameters), which is a result of
the linear hyperparameterisation of the precision. In this non-
hierarchical model &,=/ but takes a more structured form in
hierarchical models (see below).

The E- and M-steps
A similar but simpler derivation follows for the E- and M-step
updates

AHH = —7(0)(701 7(0)0

V(0) = Y, (U(0) + W(0)") — LT P
_V(H)f): Zt(U(t)H‘i‘W([)S) —pig
V(0)go= >, (U(1)gg+ W (1)ge) — P’

(39)
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Similarly for the hyperparameters

(40)

Although uncertainty about the hyperparameters does not affect
the updates for the states and parameters, uncertainty about both
the states and parameters enters the hyperparameter update. How-
ever, the simplification afforded by a linear hyperparameterisation
of the precision means that V(1);,=U(1);; is simply the negative
precision of the hyperparameters.

These steps represent a full variational scheme. A simplified
version, which discounts uncertainty about the parameters and states
in the D- and E-steps, would be the analogue of an EM scheme. This
simplification is easy to implement by removing W(¢)’ and W(z)"
from the D- and E-steps respectively. We will pursue this in the
context of neurobiological implementations elsewhere. Removing
the mean-field effects (¢)’ from all steps would reduce the scheme
to an iterated conditional mode (ICM) version of DEM, in which
conditional uncertainty is ignored completely. We now have the
results necessary for a variational inversion of dynamic systems.
However, before demonstrating the scheme we will consider an
important generalisation that augments empirical priors on the
dynamics of hidden states with empirical priors on the causes.

Hierarchical nonlinear dynamic models

Hierarchical dynamic models (HDM) are important because
they subsume many other models. In fact (with the exception of
mixture models), they cover most parametric models that one could
conceive of; from independent components analysis to generalised
convolution models. The range and relationships among these
special cases are themselves a large area, to which we will devote a
subsequent paper. Here we simply describe the general form of
these models and their inversion.

HDMs have the following form, which generalises the (m=1)
DCM above

WD) = g (x40 4 20 (41)

v(m) : VIV + Z(m+l)

7 and g are continuous nonlinear functions of the states. The
innovations z”and w are conditionally independent fluctuations
that enter each level of the hierarchy. These play the role of ob-
servation error or noise at the first level and induce random
fluctuations in the states at higher levels. The causes v link levels,
whereas the hidden states x are intrinsic to each level. The cor-

responding directed graphical model, summarising these condi-
tional dependencies, is shown in Fig. 2 (right panel).

The conditional independence of the fluctuations means that the
HDM has a Markov property over levels, which simplifies the
architecture of attending inference schemes. See Kass and Steffey
(1989) for a discussion of approximate Bayesian inference in con-
ditionally independent hierarchical models of static data. A key
property of these hierarchical models is their connection to para-
metric empirical Bayes (Efron and Morris, 1973): consider the
conditional energy function implied by the HDM above, in ge-
neralised coordinates u®=v® /@ D @

U, f)9) = In p(3luV,9)+ In puDu®,v) (42)
o+ In p(3™)

The first and last terms have the usual interpretation of log-
likelihoods and priors. However, the intermediate terms are am-
biguous. One the one hand, they are components of the prior. On the
other hand, they depend on quantities that have to be inferred;
namely, supraordinate states and parameters. For example, the
prediction g~(u”,0®) plays the role of a prior expectation on v~{'""),
hence empirical Bayes; similarly for the hidden states. In short, a
hierarchical form endows models with the ability to construct their
own priors. This feature is central to many inference and estimation
procedures, ranging from mixed-effects analyses in classical
covariance component analysis to automatic relevance determina-
tion in machine learning formulations of related problems (see
Friston et al., 2002, 2007 for a fuller discussion of hierarchical
models of static data).

HDMs are inverted in exactly the same way as above, with the
following forms for the states and predictions

) »(1) £(x0,v0) g(xV, D)
v= x=| i |f= : = :
) (m) () ylom) g(xm) vm)
(43)

The implicit prediction errors now encompass the hierarchical
structure and priors on the causes. This means the prediction error on
the response is supplemented with prediction errors on the causes

“[£] L]l

Note that the data and priors only enter the prediction error at
the lowest and highest level respectively. At intermediate levels the
prediction errors v/~ = g(x'?,1?) mediate empirical priors on the
causes. In other words, the causes are themselves predicted by
supraordinate levels. This prediction and the ensuing constraints
are the central feature of hierarchical models. The forms of the
derivatives of the prediction error with respect to the states are''

T — I®(gvaT) I ® g,

“ETl 1en o uef)-p (43)

A comparison with Eq. (36) shows an extra D’ matrix in the
upper-left block; this reflects the fact that, in hierarchical models,
causes also affect the prediction error within their own level, as

"' The form of the partial derivatives with respect to the parameters is
unchanged.
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well as the lower predicted level. We have presented €, in this
form to highlight the role of causes in linking successive hier-
archical levels (the DT matrix) and the role of hidden states in
linking successive temporal derivatives (the D matrix). These con-
straints on the structural and dynamic form of the system are
specified by the functions g(x,v) and f(x,v) respectively. The partial
derivatives of these functions are assembled according to the
structure of the model. The key feature of these derivatives is their
block-diagonal form, reflecting the hierarchical separability of the
model

g gl
I 10
& = .. g‘(}m) 8x = g)((m)
L 0 L 0 (46)
"fv(l> ﬂ(l)
fv(m> fx<m)

Note that the partial derivatives of g(x,v) have an extra row to
accommodate the highest hierarchical level. Finally, for hierarchical
models, it is necessary to augment the D-step update (c.f., Eq. (38))
with the priors

¥ Dy D 0 0

i | = | V@0, +Du |=3() = | V(1) V(D) +D VD),

i Dij 0 0 D
(47)

This is because the priors, like the data, are time-varying quan-
tities that affect the variational energy and its gradients. ¥(?),,=
-eT.[1e v and (1), ==& T le » Where

- I®e) - I ®e, o — I &= 0
710 e 0 v 0 |

These forms reflect the fact that data and priors only affect the
prediction error at the first and last levels respectively.

(48)

The precisions and temporal smoothness

So far, we have not considered the precisions [TF()) and ﬁw(l)
in any detail, other than to note that they are functions of the
hyperparameters. In hierarchical models the precision at the first
level encodes the precision of observation noise. At the last level, it
is simply the prior precision. Independence assumptions about the
innovations at each level means that their precisions have the
following block-diagonal form

H(m)w
(49)

The intermediate levels are empirical prior precisions on the
causes of dynamics in subordinate levels. The latter comprises a
mixture of precision components that are functions of the hyper-
parameters. Usually, each component is a sparse matrix with leading-
diagonal entries, encoding the precisions of the corresponding

innovations (e.g., all the innovations within one level of a hierarchy).
To form the precisions in generalised coordinates, we take the
Kronecker tensor product of a temporal precision, S(7y), encoding
temporal dependencies and the precision over innovations

T = S(y) @ I
IrF = Zi 11 ()‘?)
similarly for /7". This assumes that the precisions (and covariances)

can be factorised, into temporal and stationary innovation-specific
parts. The matrices Q;=0;,/1 needed for the M-step are simply

(50)

_[S®@a:1(%)

wo__ O
o 0} o' = { seopn(r)| OV
See Appendix A for the particular hyperparameterisation used

in this paper.

Temporal correlations

The temporal precision encodes temporal dependencies among
the innovations and can be expressed as a function of their
autocorrelations

-1

L0 )
s={s0 o 50 (52)

Here j (0) is the second derivative of the autocorrelation function
of the fluctuations, evaluated at zero. It is a ubiquitous measure of
roughness in the theory of stochastic processes. See Cox and Miller
(1965) for details. Note that when the innovations are uncorrelated,
the curvature (and higher derivatives) of the autocorrelation
p (0)—o0 becomes large. In this instance, the precisions of the
temporal derivatives fall to zero and the variational energy is
determined by, and only by, the magnitude of the prediction errors on
the causes and the first-order motion of the hidden states. This
limiting case is assumed by conventional state-space models used in
Bayesian filtering; it corresponds to the assumption that the fluc-
tuations or innovations are independent (c.f., a Wiener process or
random walk). Although, this is a convenient assumption for con-
ventional schemes and appropriate for physical systems with
Brownian processes, it is less plausible for biological and other
systems, where random fluctuations are themselves the product of
other dynamical systems.

S(7) can be evaluated for any analytic autocorrelation function.
For convenience, we assume that the temporal correlations of all
innovations have the same Gaussian form'?. This gives

0 -1y !

W
2¥ 7 (53)

where 7 is the precision parameter of a Gaussian p(f) and increases
with roughness. Clearly, the conditional density of the temporal

12 This assumption is relaxed easily by using state and level-specific
temporal precisions in Eq. (49).
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Precision matrices in generalised coordinates and time

Fig. 3. Image representations of the precision matrices encoding temporal dependencies among a random fluctuation or innovation. The precision in generalised
coordinates (left) and over discrete samples in time (right) is shown for a roughness y=4 and seventeen observations (or an embedding order of n=16). This
corresponds roughly to an autocorrelation function whose width is half a time bin. With this degree of temporal correlation only a few (i.e., five) discrete

observations are specified with any precision.

hyperparameter 7y could be estimated along with the other
hyperparameters. We will discuss this elsewhere. Here, for simplicity,
we will assume that 7 is known.

Typically, y>1, which ensures the precisions of higher-order
derivatives converge quickly. This is important because it enables
us to truncate the representation in generalised coordinates to a
relatively low order. This is because high-order prediction errors
have a vanishingly small precision. In the next section, we will
see that an embedding order'® of n=6 is sufficient for most
systems (i.e., a representation of high-order derivatives up to sixth
order). In fact, one can truncate the representation of the causes
even further (e.g., second-order; d=2) without loosing accuracy.
This can be thought of as a further approximation, in addition to
the Laplace and mean-field approximations, under which high-
order derivatives of ¥ have a point mass at zero. For example,
when d=2, the variational density q(u,f)=q(v,v'v"xx'x"....t)
provides an analytic approximation to the time-varying condi-
tional density that is differentiable to first order. However, this
level of approximation cannot be applied to the hidden states,
because they can exhibit motion to arbitrarily high order (see

Eq. (33)).
From derivatives to sequences

Up until now we have treated the trajectory of the response
J(t) as a known quantity, as if data were available in ge-
neralised coordinates of motion. This is fine for analogue data
(e.g., in electrical or biophysical systems); however, empirical
data are often measured discretely, as a sequence, y=[y(1),...,y
(M)]”. This measurement or sampling is part of the generative

'3 We use ‘embedding order’ by analogy with attractor reconstruction and
lags in autoregressive modelling.

process, which has to be accommodated in the first level of
the model:

A discrete sequence g=[g(1),...,g(N)]” can be generated from
the derivatives g(¢) using Taylor's theorem

(ift)(j*l)
(=1
Similarly for a sequence of innovations z=E(f)z(f) with

covariance E7 S°ET and precision T7[]*T, where T=E . Under
discrete sampling, the internal energy becomes

g=EMg() E()=E®] E;= (54)

1 ~7 1 ~
Ut)=5 In [TTTT|—3(vy—g)' TTTT(y —g) + ...

- . 55
= In [T - 2T + ... 53)

This energy function is exactly the same as Eq. (33)'*, provided
F(H)=T(r)y. This is assured if £(7) is invertible; i.e., the number of
elements in the generalised response is equal to the length of
the sequence; n+1=MN. In short, discrete sequences are treated in
exactly the same way as generalised responses, by substituting
T =Ty, _

It is interesting to consider the precision, T(¢)"[I°T(f) whose
non-stationary form renders precision local in time. In other words,
a dynamic model, formulated in generalised coordinates of motion,
specifies the time-series in a local sense. A typical example is
shown in Fig. 3. This means that the D-step needs only local
sequences and can operate ‘on-line’. More formally, the precision
of measurements in the past or future falls quickly and they do not
contribute to the variational energy or its optimisation. This means
¥(1) = T(0)[y(r = 2);...;»(t +%)] can be evaluated using the n+
1=N samples closest to the current time bin.

!4 To within an additive constant.
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Summary

At this point, the reader must be getting a bit overwhelmed with
equations. However, this section has shown how the variational
principles of the previous section can be applied to a specific model
with fairly simple linear algebra. Critically, this model is about as
complicated as one could imagine; it comprises causes and hidden
states, whose dynamics can be coupled with arbitrary (analytic)
nonlinear functions. Furthermore, these states can have random
fluctuations with unknown amplitude and arbitrary (analytic)
autocorrelation functions. This means one can invert nearly any
model, given just its likelihood function and priors. There is no need
to derive bespoke update rules or use conjugate priors, all that the
scheme requires are the functions /' and g®. These functions are
then differentiated numerically or analytically to give all the
quantities needed for inversion. A key aspect of the model considered
in this section is its hierarchical form, which induces empirical priors
on the causes. These recapitulate the constraints on hidden states,
furnished by the hierarchy implicit in generalised motion. This
concludes the theoretical background. In the next section, we
examine the operational features of this inversion scheme.

Variational inversion of dynamic models

In the remaining sections, we focus on the implementation of
DEM, its functionality and how it compares with established
schemes. This functionality is quite broad because the conditional
density covers not only hidden and causal states but also the
parameters, and hyperparameters, mediating interactions among
states. This means it is a multiple estimation or inference scheme of
the sort used in blind deconvolution. Deconvolution schemes, such
as Bayesian filtering, infer only hidden states, assuming that the
parameters and covariances are known. Other schemes, employed in
system identification, estimate model parameters through general-
ised kernels or transfer functions by treating the inputs and outputs as
known (to first or second-order statistics). Blind deconvolution

Generation

entails inference on both states and parameters. These schemes solve
a dual-estimation problem; for example, Valpola and Karhunen
(2002) describe a detailed and general approach to ensemble
learning for nonlinear state-space models. Nonlinear mappings in
this model are represented using multilayer perceptron networks.
Honkela et al. (2006) extend this approach to cover continuous-time
formulations, using a variational approach with similarities to the
approach advocated here. See also Wang and Titterington (2004) for
a careful analysis of variational Bayes for continuous linear dyna-
mical systems and Serensen (2004) for a review of the statistical
literature on continuous nonlinear dynamical systems. In general,
these treatments belong to the conventional class of schemes that
assume Wiener or diffusion processes for state noise and, unlike
DEM, do not consider generalised motion.

DEM treats all model quantities as unknown. Knowledge about
any set of parameters ' is implemented with precise priors so that
deconvolution and system identification proceed using exactly the
same algorithm and code (this also applies to the identification of static
models with DEM). Strictly speaking, DEM solves triple inference
problems because it covers states, parameters and hyperparameters.

In this section, we focus on the Bayesian deconvolution of
dynamic systems to estimate hidden and causal states, assuming
that the parameters and hyperparameters are known. We start with
a simple linear dynamic model to outline the basic nature of
variational inversion and then move on to nonlinear dynamic
models that have been used previously for comparative studies of
extended Kalman and particle filtering. We then turn to
autonomous nonlinear systems and show how DEM can be used
for attractor reconstruction, even with chaotic systems. In the next
section, we focus on dual and triple estimations, when the
parameters and hyperparameters are unknown. These scenarios are
not covered by Bayesian filtering but, if we assume that the causes
are known, we can compare dual estimation of the parameters and
hyperparameters with the identification of deterministic dynamic
models using expectation maximisation (EM). To conclude, we

Inversion

Prediction error

Fig. 4. This is a schematic showing the linear convolution model used in the demonstrations of DEM in subsequent figures. This summary corresponds to a
directed Bayesian graph, in which the nodes are connected by arrows, depicting conditional dependencies. In this model, a simple Gaussian ‘bump’ function acts
as a cause to perturb dynamics among two coupled hidden states. These dynamics are then projected to four response variables, whose time courses are cartooned
on the left. This figure also summarises the architecture of the implicit inversion scheme, in which prediction errors drive the conditional modes to optimise
variational action. Critically, the prediction errors propagate their effects up the hierarchy (c.f., Bayesian belief propagation or message passing), whereas the
predictions are passed down the hierarchy. This sort of scheme can be implemented easily in neural networks and may be used by the brain (see Friston et al.,

2006 for a neurobiological treatment of this architecture).
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consider the triple estimation of states, parameters and hyperpara-
meters using the simple convolution model of this section. In the
final section, we illustrate triple estimation with a nonlinear
convolution model, in an empirical setting, using a hemodynamic
model of brain responses evoked by attention to visual motion.
These examples were chosen to show that DEM outperforms
conventional approaches, when they exist. We will try to explain
why it is superior and disclose key operational aspects of DEM.

A linear convolution model

In the examples below we will use the same model in a number
of different contexts. This linear convolution is summarised in
Fig. 4 and can be written as

y=gx,v) +z1
¥ =f(x,v) +wlh)

v=n"+z2 (56)

g(x,v) = 0Oix
S(x,v) = Ox + Ozv

We have omitted superscripts on the states because the models
considered here are single-level models. In this model, after causes
or inputs arrive, the ensuing perturbation decays exponentially to
produce an output that is a linear mixture of hidden states. Our
example uses a single input, conforming to a Gaussian bump
function, two hidden states and four outputs. This is a single input-
multiple output linear system, where

0.1250  0.1633

0, — 0.1250  0.0676 0, [70.25 1.00} 0, — [1}
0.1250 — 0.0676 —0.50 —0.25 0
0.1250 — 0.1633

(57)

These parameters were used to generate data for the examples
below. This entails the integration of stochastic differential
equations in generalised coordinates, which is relatively straight-
forward (see Appendix B). The model can be specified in terms of

the likelihood functions and priors at each level'®

Linear convolution model

Level g(x.) S &) s mn” n
m=1 0,x 0,x+05x & 16

m=2 1 0

When generating data, we used a deterministic Gaussian func-
tion v =exp(§(r— 12)?) centred on ¢=12. However, when in-
verting the model the cause is unknown and was subject to mildly
informative shrinkage priors with zero mean and unit precision.

Unless stated otherwise, we will use embedding orders of n=6
and d=2, with temporal hyperparameters, y=4 for all our simu-
lations. We will usually generate data over 32 time bins, using
innovations sampled from Gaussian densities. Note there are no
priors on the parameters or hyperparameters because we treat them
as known for the present. This model specification enables us to

15 Where scalar precisions scale the appropriate identity matrix.

evaluate the variational energy at any point in time and invert the
model, given any response data.

Deconvolution: inference on states

We start with a validation of DEM using variational filtering,
based on the ensemble dynamics of the first section. We then
examine how the accuracy of DEM changes with embedding order
and conclude with an evaluation of DEM in relation to established
Bayesian filtering techniques.

Variational filtering and DEM
Recall that DEM approximates the density of an ensemble of
solutions by assuming that it has a Gaussian form; this reduces the

causal states
& §4 T ‘ : ‘ . T
Il ] | | | Il
h | | | I h
1p---- Amm———— oot P - PR —_ r-
h 'R | i | 1
1 \.‘: | ] | 1 1
PO S ., S A U

states (a.u.)

-0.4 d | l T i v
06 : : : : : :
] 10 15 20 25 30
time {bins}
b hidden states

states (a.u.)

1 1

1 |

1 1

5 10 15 20 25
time {bins}

Fig. 5. Variational densities on the causal and hidden states of the linear
convolution model of the previous figure. These show the trajectories or
paths of sixteen particles tracking the mode of the single cause (top) and two
hidden states (bottom). The sample mean of this distribution is shown in blue
over the 32 time bins, during which responses or data were inverted.
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problem to finding the path of the mode. Variational filtering
relaxes this fixed-form assumption and integrates the paths of an
ensemble to furnish an approximating sample density. We can
compare the fixed-form density provided by DEM with the sample
density from variational filtering to ensure that the Gaussian as-
sumption is appropriate. Generally, this is non-trivial because non-
linearities in the likelihood model render the true conditional non-
Gaussian, even under Gaussian assumptions about the priors and
innovations. In our case, in generalised coordinates and with a

predicted response and error
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linear convolution model, the Gaussian form is exact and we would
expect a close correspondence between DEM and variational
filtering.

Given an observed response and model specification above, we
can evaluate the variational energy V(1)=—¢7 e+ W)’ + W(r)*
(see Eq. (38)) at any point in time and perform variational filtering
by integrating several particles according to u=V(u,t),+Du+T(%)
(see Eq. (17)). The details of this integration and the ramifications
of variational filtering will be dealt with in a separate paper

hidden states

states (a.u.)

-0.15

time {bins}

time {bins}

Linear deconvolution with
variational filtering

causal states

states (a.u.)

time {bins}

Fig. 6. Alternative representation of the sample density shown in the previous figure. This format will be used in subsequent figures and summarises the
predictions and conditional densities on the states of a hierarchical dynamic model. Each row corresponds to a level, with causes on the left and hidden states on
the right. In this case, the model has just two levels. The first (upper left) panel shows the predicted response and the error on this response (their sum corresponds
to the observed data). For the hidden states (upper right) and causes (lower left) the conditional mode is depicted by a coloured line and the 90% conditional
confidence intervals by the grey area. These are sometimes referred to as “tubes”. In this case, the confidence tubes were based on the sample density of the
ensemble of particles shown in the previous figure. Finally, the thick grey lines depict the true values used to generate the response.



K.J. Friston et al. / Neurolmage 41 (2008) 849-885 865

(Friston, 2008). Here, we use variational filtering just for cross-
validation. Fig. 5 shows the trajectories or paths of sixteen particles
tracking the mode of the single cause (top) and two hidden states
(bottom). The sample mean of this distribution is shown in blue.
An alternative representation of the sample density is shown in Fig.
6. This format will be used in subsequent figures and summarises
the predictions and conditional densities on the states. Each row
corresponds to a level in the model, with causes on the left and
hidden states on the right. The first (upper left) panel shows the
predicted response and the error on this response. For the hidden

states (upper right) and causes (lower left) the conditional mode is
depicted by a coloured line and the 90% conditional confidence
intervals by the grey area. These are sometimes referred to “tubes”.
Here, the confidence tubes are based upon the sample density of the
ensemble shown in Fig. 5. It can be seen that there is a pleasing
correspondence between the sample mean (blue) and veridical states
(grey). Furthermore, the true values lie largely within the 90%
confidence intervals.

We then repeated the inversion using exactly the same model
and response variable using DEM. The results are shown in Fig. 7

hidden states

predicted response and error

states (a.u.)
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time {bins}
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Fig. 7. This is exactly the same as the previous figure, summarising conditional inference on the states of the linear convolution model of Fig. 4. The only
difference is that here we have used a Laplace approximation to the variational density and have integrated a single trajectory; that of the conditional mode. Note
that the modes (blue lines) are indistinguishable from the variational filter modes (Fig. 6). The conditional variance on the causal and hidden states is very similar
but with one key difference; in DEM the confidence tubes have the same width throughout. This is because we are dealing with a linear system and variations in
the state have the same effect in measurement or observation space, at all points in time. In contrast, the conditional density based on the variational filter shows
an initial transient as particles converge to the mode, before attaining equilibrium in a moving frame of reference.
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using the same format as the previous figure. Critically, the ensuing
modes (blue) are indistinguishable from those obtained with
variational filtering (c.f., Fig. 6). The conditional variance on the
causal and hidden states is very similar but with one key dif-
ference; in DEM the conditional tubes have the same width
throughout. This is because we are dealing with a linear system,
where variations in the state have the same effect in measurement
space at all points in time. In contrast, the conditional density based
on the variational filter shows an initial transient as the particles
converge on the mode, before attaining equilibrium in a moving
frame of reference. The integration time for DEM is an order of
magnitude faster than for the variational filter (about 1 s versus 10)
because we only integrate the path of a single particle (the
approximating mode) and eschew the integration of stochastic
differential equations.

6 t T 1

Embedding orders

Next, we examine the dependency of inversion accuracy on the
embedding order using the same linear convolution model and
response above. Fig. 8 shows a numerical analysis of accuracy as a
function of the number of generalised coordinates of motion; n=1,
...,13. The upper panel shows accuracy in terms of the sum of
squared error on the expected causes, relative to their true values.
The embedding order of these causes was fixed at d=2. This means
that the increase in accuracy with z is mediated by a more complete
representation of the motion of the hidden states. It can be seen that
the accuracy increases as the order increases up until about six. The
lower panels show the conditional expectation (black line) and the
true cause (grey line) for n=1 (left) and n=7 (right). A useful
heuristic for these results is obtained from Fig. 3, which shows that
the precisions of the sixth and higher derivatives are essentially zero.

sum squared error (causal states)

15 . . . )
0 10 20 30 40

lime

Accuracy and
2l embedding (n)

time

Fig. 8. A numerical analysis of accuracy as a function of the embedding dimension or number of generalised coordinates of motion (n=1,...,13). The upper panel
shows accuracy in terms of the sum of squared difference between the predicted and true causes at the second level. Note that the embedding dimension of these
causes was fixed at, d=2. This means that increases in accuracy are mediated solely by a more accurate representation of the motion of the hidden states. These
results were obtained with a roughness of =4 using the linear convolution model of the previous figures. The lower panels show the conditional expectation of
the cause (black line) and the true values (grey line) for n=1 (left) and n=7 (right).
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This means that they do not contribute in any substantial way to the
free-energy and can be discounted with impunity.

Fig. 9 shows the effects of changing the embedding dimension
for the causes; d=0,...,5 on the sum of squared error for the hidden
states. These results were obtained using an embedding dimension
of n=15 for the hidden states and response. As in the previous
figure, the embedding of the hidden states did not change but they
are estimated more accurately if the embedding dimension of the
causes is increased. In this example, an embedding dimension of

sum squared error (hidden states)

d:(n=15)

log-evidence

d=3 is sufficient to maximise accuracy. In the lower panels the true
(grey) and predicted (black) hidden states are shown for d=0 (left)
and d=3 (right). These correspond to modelling just the amplitude
of the cause and its generalised motion to third order respectively.
In this case, we can also evaluate the free-energy bound on the log-
evidence (top-right panel), which reflects both accuracy and
complexity. We can do this because changing the embedding order
of the causes does not affect the embedding of the responses. This
means that we can compare F=In p(¥|d) in a meaningful way.
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Fig. 9. As for the previous figure but here detailing the effects of changing the embedding dimension for the causes (d=0,...,5) on the sum of squared error for the
hidden states (top left) and log-evidence (top right). These results were obtained for the linear convolution model of the previous figures, using an embedding
dimension of n=15 for the hidden states and data. As in the previous figure, the embedding of the hidden states did not change but they are estimated more
accurately, if the embedding dimension of the causes is increased. In this example, an embedding dimension of d=3 is sufficient to maximise accuracy. The
lower panels show the true (grey) and predicted (black) hidden states for d=0 (left) and d=3 (right).
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Bayesian filtering and DEM

In this subsection, we compare DEM with Bayesian filtering,
both conceptually and quantitatively. We start with Kalman
filtering, which is appropriate for our linear convolution model.
We then turn to nonlinear convolution models, which usually call
for extended Kalman filtering or, in the case of highly non-
Gaussian conditional densities, particle filtering. To place these
comparative analyses in context, we first review extended Kalman
and particle filtering. See Arulampalam et al. (2002) for a useful
introduction to Kalman and particle filters for online Bayesian

hidden states

tracking. Our implementations follow var der Merwe et al. (2000)
(see Appendices C and D).

Kalman filtering

Bayesian inversion in the D-step is related to Bayesian belief
update procedures (i.e., incremental or recursive Bayesian filters).
The conventional approach to online Bayesian tracking of states in
nonlinear or non-Gaussian systems employs extended Kalman
filtering or sequential Monte-Carlo methods such as particle
filtering. These Bayesian filters approximate the conditional
densities of hidden states in a recursive and computationally

051

051
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—EKF
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DEM and extended
Kalman filtering
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time
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Fig. 10. A comparative evaluation of DEM and extended Kalman filtering. These results summarise the conditional predictions of the hidden states after
deconvolution with DEM using two levels of smoothness 1/ p=0 and y=4; corresponding to DEM(0) and DEM(4). The top panel shows the results of a single
realisation for both DEM deconvolutions, extended Kalman filtering and the true values. It is immediately apparent that both DEM schemes provide more
accurate predictions than the extended Kalman filter. Furthermore, the DEM with smoothness constraints afforded a smoother prediction and is more in line with
the true values. This is because the true response was generated with relatively smooth innovations; y=4. The lower left panel shows the results of repeating
these realisations eight times. The sum of squared error (on the hidden states) over realisations is shown for the extended Kalman filter and both DEM schemes.
Note the marked improvement of DEM over Kalman filtering and the further improvement that obtains when temporal correlations are properly accommodated.
We can discount the benefits of DEM by removing causes from the model and inverting it under zero smoothness (infinite roughness). In this instance, the results
are indistinguishable from an extended Kalman filter; both being optimal under the linear model used to generate the data (lower right insert).
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expedient fashion, assuming that the parameters and hyperpara-
meters of the system are known. These schemes deal with systems
of the form

A 68)

This is a simple one-level HDM in which exogenous causes or
inputs can enter nonlinearly at the level of the hidden states. The
extended Kalman filter is a generalisation of the Kalman filter, in
which the operators of a linear state equation are replaced by the
partial derivatives of f{x,v) with respect to the states (see Appendix
C). Kalman filtering proceeds recursively in two steps; prediction
and update. The prediction uses the Chapman—Kolmogorov
equation to compute the density of the hidden states conditioned
on the response up to, but not including, the current observation

YVoi—1-
P(xt ‘wal) = fp(xl |X171)P(xtfl ‘J’Ht—l)dxzfl (59)

This conditional density is then treated as a prior on the next
observation and Bayes rule is used to compute the conditional
density of the states, conditioned upon all observations, y_,,. This
gives the Bayesian update

q(x:) = p(xily—0) Cpilx)p(xly—i-1) (60)

Critically, the conditional density covers only the hidden states.
This is important because it precludes inference on causes and the
ability to recover inputs from outputs. This is a key limitation of
Bayesian filtering, in relation to DEM. The second key difference
is that Bayesian filtering assumes that state or process noise is an
uncorrelated Wiener process. In contrast, DEM handles smooth
fluctuations gracefully because it represents the states in general-
ised coordinates. The impact of these differences is easy to de-
monstrate using the linear convolution model above.

Fig. 10 shows a comparative evaluation of DEM and Kalman
filtering'®. These results summarise the conditional predictions of
the hidden states for deconvolution with DEM using two levels of
temporal correlations 1 / y=0 and y=4; corresponding to DEM(0)
and DEM(4). The first corresponds to the assumption of un-
correlated (infinitely rough) innovations and the second to the true
correlations. The top panel shows the results of a single decon-
volution with DEM and Kalman filtering and the true values. It is
apparent that both DEM schemes provide more accurate predic-
tions than the extended Kalman filter. Furthermore, DEM with
appropriate temporal constraints furnishes a smoother prediction
that is closer to veridical values, whereas the Kalman filter over-fits
the hidden states and provides a sub-optimal solution. This is
because the true response was generated with relatively smooth
innovations; y=4. The lower panel shows the results of repeating
these realisations eight times. The sum of squared error (on the
hidden states) over realisations is shown for the extended Kalman
filter and both DEM schemes. Note the marked improvement of
DEM over Kalman filtering and the further improvement that
obtains when temporal correlations are included. These improve-
ments reflect the fact that DEM represents the causes and the form
of their influence on the hidden states, whereas the Kalman filter
does not. The subsequent improvement, when smoothness is

16 Under this linear model, extended Kalman filtering reduces to Kalman
filtering.

introduced, reflects the fact that this is a better model for the
smooth innovations used to generate the data.

Despite these results, Kalman filtering provides the optimum
solution, in a maximum likelihood sense, when the assumptions of
the underlying model hold and one is not interested in causes or
inputs. If this is the case, extended Kalman filtering and DEM
should give the same results for the linear dynamic system con-
sidered above, provided we remove the empirical priors on the
states implicit in their causes. The inset in Fig. 10 shows that they
do; the conditional expectations of the hidden states from both
schemes are indistinguishable. This convergence rests on making
the models used by DEM and extended Kalman filtering the same,
by removing serial correlations (i.e., making y=o0) and the causes
by using the model below for inversion

Linear state-space model

Level g(x,v) fx,v) 17 7"

m=1 0x 0-x & &

These examples illustrate the relationship between DEM and
extended Kalman filtering. It is not appropriate to think of Kalman
filtering and related approaches as special cases of DEM because
they have distinct derivations. DEM does not derive priors on the
present from the past, nor does it require a backwards pass as in
Bayesian smoothing. However, DEM produces the same results as
Bayesian filtering, in the special cases that Bayesian filtering is
exact (i.e., works). We now consider cases in which extended
Kalman filtering does not work.

Particle filtering

Prediction and update proceed under Gaussian assumptions in
both Kalman filtering and extended variational filtering. This is
fine for linear systems. However, in nonlinear systems the
extended Kalman filter may fail to represent non-Gaussian (e.g.,
multimodal) conditional densities required for accurate recursive
filtering. In this instance, particle filtering and related grid-based
approximations provide solutions that allow for non-Gaussian
posteriors on the hidden states. This is usually achieved by point-
mass (or particle) representations of the ensemble density as in
variational filtering. These particles are subject to stochastic
perturbations and re-sampling so that they come to approximate the
conditional density. This approximation rests on which particles
are retained and which are eliminated, where selection depends on
the energy of each particle'”.

These sequential Monte-Carlo techniques should not be
confused with the ensemble dynamics of variational filtering. In
variational filtering the particles are conserved and experience forces
that depend on energy gradients. In sequential sampling methods the
energy is used to select and eliminate particles. In comparison with
variational filtering, sequential sampling techniques appear un-
necessarily complicated. Furthermore, they rely on some rather ad
hoc devices to make them work (see Appendix D and var der Merwe,
2000). For these reasons, we will not provide any further back-
ground on them but focus on why they are used: like variational
filtering, particle filtering allows a free-form approximation to the
conditional density. This can be particularly useful in nonlinear
systems that typically have non-Gaussian posteriors.

'7 In Bayesian filtering there is only one set of unknown parameters (i.e.,
the hidden states) and the variational energy reduces to the internal energy.
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A nonlinear convolution model

In this subsection, we focus on the effect of nonlinearities with a
model of the sort that has been used previously to compare extended
Kalman and particle filtering (c.f, Arulampalam et al., 2002)

Nonlinear convolution model

Level g(x,v) fix,v) 177 " n’
m=1 %xz e’—x1n2 & et
m=2 2 %+sin(%m)

This system comprises a slow sinusoidal input or cause that
excites increases in a single hidden state. The response is a qua-
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dratic function of the hidden states. Similar (double-well) systems
have often been used to study bimodal posteriors, because the
quadric observer induces ambiguity about the sign of the hidden
state. However, in this model, the state is always positive because
the cause enters through the exponential ¢”>0. Here our focus is on
the effects of the nonlinear observer: when the input is negative and
x—0 decays to small values, the conditional density becomes very
broad. This is because variations in x produce very small variations
in the response. Conversely, when x is large, its conditional
variance is small. These nonlinear effects can confound extended
Kalman filtering because it uses local linearity assumptions to
update its predictions. DEM can finesse these effects by integrating
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Fig. 11. An example of deconvolution using the nonlinear model described in the main text. In this case, the response is always positive. As in previous figures,
the blue lines represent the conditional estimate of hidden and causal states, while the thick grey lines depict the true values. Note that in all cases the true
response lies within the 90% confidence intervals (grey area). The key thing to observe here is that when the hidden and causal states approach zero the
conditional uncertainty increases markedly. This is because variations in the states are expressed with smaller amplitude in observation space; this is a direct
reflection of the nonlinear form of this model (c.f, the fixed-width confidence intervals under linear deconvolution in Fig. 7).
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the conditional trajectory using much smaller time steps. DEM can
do this because its generative model generates paths, which can be
sampled at arbitrary times by the observation process. In contrast,
extended Kalman filtering is based on a model that generates sparse
data sequences at fixed sampling intervals.

a Conditional expectation (hidden states)
14 T T T T T T

6

0 5 10 15 20 25 30 35
time
b Conditional covariance (hidden states)
0.7 T r r r r T
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Fig. 12. This reproduces the results of the previous figure, for the conditional
density of the hidden states, in terms of the time-dependent mode (upper
panel) and conditional variance (lower panel). Here, we provide a
comparative evaluation with extended Kalman and particle filtering. It can
be seen that all three techniques properly show a non-stationary conditional
covariance. The key differences among the three schemes are expressed in
the conditional modes. It can be seen that particle filtering and DEM deliver
almost indistinguishable estimates and that these are veridical; with
maximum departures from the true values when the states are small.
Critically, the extended Kalman filter is unable to deal with the nonlinearities
in this model and overestimates the values of the hidden states when they are
large. This is because the implicit integration between one observation and
the next does not have access to generalised motion (DEM) or the free-form
density associated with particle filtering.

Nonlinear deconvolution
4
10 T T T

w
..

Sum of squared error

EKF PF DEM

Fig. 13. Sum of squared errors following nonlinear deconvolution of the
model considered in the previous figure. The accuracy here was assessed in
terms of sum of squared error between the true and predicted hidden states,
for three schemes (extended Kalman filter-EKF, particle filtering-PF and
dynamic expectation maximisation-DEM). These results show that the
relative failure of extended Kalman filtering is seen over multiple
realisations. The performance of DEM was slightly better than that of
particle filtering. Both were very substantially better, on average, than
extended Kalman filtering; note that the sum of squared error is plotted on a
log scale.

Comparative evaluations

We generated a 32 time-bin response, using the nonlinear
convolution model above and inverted it using DEM. For these
simulations we used nearly independent innovations; y=1024
and four time bins per sample; i.e., At = ‘—11. The results are shown
in Fig. 11. As in previous figures, the blue lines represent the
conditional estimate of hidden and causal states, while the grey
lines depict the true values. In all cases the true values lie within
the 90% confidence intervals (grey area). The key thing to
observe here is that when the hidden and causal states approach
zero, the conditional uncertainty increases markedly (c.f., the
fixed-width confidence intervals under linear deconvolution in
Fig. 7).

We then inverted the same model and response using extended
Kalman and particle filtering (as described in Appendices C and
D). Fig. 12 shows the ensuing conditional densities of the hidden
states, in terms of time-dependent modes (upper panel) and
conditional variances (lower panel). It can be seen that all three
schemes properly identify a non-stationary conditional covariance,
with DEM exhibiting more sensitivity to inflated conditional
uncertainty, when the hidden states approach zero. The key
differences among the three schemes are evident in the condi-
tional modes. It can be seen that particle filtering and DEM de-
liver almost indistinguishable estimates and that these are
veridical; with maximum departures from the true values when
the states are small. Critically, the extended Kalman filter is un-
able to deal with nonlinearities and overestimates the values of the
hidden states, when they are large. This is because the implicit
integration between one observation and the next does not have
access to generalised motion (DEM) or a free-form density (par-
ticle filtering).
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We repeated this whole procedure eight times to assess the
relative accuracy of the three schemes over multiple realisations.
Accuracy was assessed in terms of the sum of squared error
between the true and predicted hidden states. The results in Fig. 13
show that the performance of DEM was slightly better than that of
particle filtering. Both were substantially better, on average, than
extended Kalman filtering. In fact, to plot the differences clearly,
we had to use a log scale. In the next section, we turn to systems
whose evolution is governed entirely by nonlinear interactions
among the hidden states. Here, representing generalised motion
becomes critical and in this example both extended Kalman
filtering and particle filtering fail completely, in comparison to
DEM.

true and predicted response

60
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time

An autonomous nonlinear model

In the final example of inference on states, we consider
deconvolving the hidden states from the output of an autonomous,
nonlinear dynamical system specified as

Autonomous nonlinear model

Level g(x,v) fx,v) 177 m"
m=0 X1 +Hx,+x3 18x; — 18x; & e'®
46.92x) — 2x3x1 — X2
2)(1)(2 - 4X3

This is an instance of the famous Lorenz attractor and exhibits
deterministic chaos as the path of the hidden states diverges
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Fig. 14. Deconvolution of an autonomous (Lorenz) system. The upper panels show the true (dashed line) and predicted (solid line) responses (left) and hidden
states (right) for a realisation of a system based upon a Lorenz attractor. The DEM scheme used starting values of the hidden states that were different from those
used to generate the data. Despite this, after a few time steps, the estimated trajectory converges to the true trajectory. In contrast, when the starting conditions are
randomized for the equivalent deconvolution with both particle filtering and extended Kalman filtering (bottom panels) there is a complete failure to track the
trajectories: although particle filtering (solid line) appears to ‘hang-on’ longer than extended Kalman filtering (dashed line).
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exponentially on a butterfly-shaped manifold, embedded in three
dimensional state-space. There are no inputs in this system; the
dynamics are autonomous, being generated by nonlinear interac-
tions among the states and their motion. In this example, the
outputs are simply the sum over the states at any point in time, plus
an innovation with unit precision and y=64. We specified a small
amount of noise on the states but this was negligible in relation to
the flow induced by the state equation.

We generated 128 samples from this model using At = % and
initial conditions x=[0.9,0.8,30]". We then tried to recover the

attractor
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hidden states from the univariate response using DEM, extended
Kalman and particle filtering. Critically, we used an initial con-
dition of x=[1,1,16]" that differed from the true starting value.
Chaotic systems of this sort show a sensitivity to initial conditions,
which presents an interesting challenge for inversion schemes,
when the initial conditions are unknown. The upper panels of
Fig. 14 show the true (dashed line) and predicted (solid line)
responses (left) and hidden states (right) using DEM. After a few
time steps, the estimated trajectory converges to the true trajectory.
In contrast, both particle filtering and extended Kalman filtering
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Fig. 15. The simulations of the previous figure were repeated four times, using different starting conditions and different random innovations. The ensuing
responses were deconvolved using DEM, particle and extended Kalman filtering. We summarised the resulting trajectories in terms of the first two hidden states
and plotted the trajectories against each other in their corresponding state-space. The true trajectories are shown on the upper left and the corresponding
predictions from DEM are shown on the upper right. Again, one can see that despite perturbations to the initial conditions, the estimated trajectories converge
quickly to the true trajectories. This is not the case for particle filtering or extended Kalman filtering (bottom panels), where the conditional trajectories fail to

track the two trajectories and succumb to the systems attractor.
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(bottom panels) fail to track the true trajectories; although particle
filtering (solid line) appears to ‘hang-on’ longer than extended
Kalman filtering (dashed line).

The simulations in the previous figure were repeated four times
using different initial conditions and different innovations. We
summarised the resulting trajectories in terms of the first two
hidden states and plotted their trajectories against each other in
their corresponding state-space. The true trajectories are shown on
the upper left and the corresponding predictions from DEM are
shown on the upper right (Fig. 15). Again, one can see that, despite
perturbations on the initial conditions, the estimated trajectories
converge quickly to the true trajectories. This is not the case for
particle filtering or extended Kalman filtering (bottom panels),
where the conditional trajectories fail to track the two trajectories
and succumb to the system's attractor.

It may seem gratuitous to include this example; however, the
ability to invert models with autonomous dynamics is relevant
when dealing with nonlinear neuronal-mass models that can ex-
hibit bifurcations and deterministic chaos. For example, these
models are prevalent in theoretical studies of epilepsy (Breakspear
et al., 2006) and may furnish useful forward or generative models
of empirical data (e.g., seizure activity in the EEG).

Summary

These examples have shown that DEM provides veridical
approximations to the conditional density on the states of dynamic
models; even under nonlinearities (i.e., nonlinear convolution mo-
dels and those showing chaotic dynamics). When models have a
simple linear state-space form with uncorrelated innovations, DEM
and Kalman filtering give the same results. For nonlinear models,
in which extended Kalman filtering fails, DEM gives the same
results as particle filtering. DEM can even cope with autonomous
systems were both conventional fixed-form and free-form Ba-
yesian filters fail. The principal advantage that DEM has, over
conventional schemes, is that it uses conditional densities on
hidden states producing responses and their causes and both are in
generalised coordinates of motion.

Beyond deconvolution

This section considers parameter and hyperparameter estimation.
We will focus on the linear convolution model of the previous section
and ask whether it is possible to estimate the states and parameters
(and hyperparameters) simultaneously, knowing only the functional
form of the model generating data. There are relatively few examples
of inversion schemes that cover three sets of unknowns; a prominent
exception is the Variational Kalman Smoother (Ghahramani and Beal,
2001), which uses a mean-field approximation, not dissimilar to
DEM. Another important approach is the innovation method (Ozaki
and Iino, 2001). These schemes furnish maximum likelihood
estimates of the parameters and states using local linearization (LL)
methods; LL finesses the integration of stochastic differential
equations and is not unrelated to the Kalman filter. Specifically, the
LL method has two components: 1) local discretisation of continuous
stochastic differential equations over time steps (which can be
variable) and ii) inference on parameters using the likelihood, which is
obtained via the innovations from a Kalman filtering step. Jimenez
and Ozaki (2006) extend the original innovation approach of Ozaki
for nonlinear cases. A good review of LL-based inference and
identification methods, including a comparative study, can be found in
Jimenez et al. (2006). Unlike DEM, the Variational Kalman Smoother

and innovation methods assume uncorrelated (Wiener process)
innovations and do not cover generalised coordinates. Before dealing
with triple estimation problems and joint inference on parameters and
states, we will compare DEM with the equivalent scheme for
parameter estimation in the absence of uncertainty about the states;
namely EM.

Dual estimation

In EM there are only two sets of unknown quantities. When
identifying a system through its parameters, this means that the
causes must be known and the dynamics must be deterministic. In
other words, the state noise has to be sufficiently small to enable
prediction of the hidden states from the known causes. It is fairly
straightforward to estimate the parameters and hyperparameters of
deterministic dynamical systems with known inputs. This is because
one can treat the time-series as a finite-length data sequence that
is completely specified by the inputs and parameters. In Friston
(2002) we described such a scheme for deterministic systems that is
almost identical to DEM but eschews the D-step (and generalised
coordinates).

To compare DEM and EM we generated data as before with a
Gaussian bump function input, minimal state noise (IT"V'=¢'¢) and
moderate levels of observation noise (7" =¢%). We then inverted
the linear convolution model below, using precise and veridical
priors on the causes to suppress uncertainty about the states.

Linear convolution model for dual estimation

Level g(x,v) fix,y) [F " n’ W P oy P

m=1 0;x Ox+ exp(1?) exp(1") 0 e o0 e
03\)

m=2 e '° exp (i(tf 12)2>

Note that the model now has priors on the parameters and
hyperparameters because these are unknown quantities. The priors
on the parameters are uninformative shrinkage priors, with a small
precision. The priors on the hyperparameters, sometimes referred
to as hyperpriors are similarly uninformative. These Gaussian hy-
perpriors effectively place lognormal hyperpriors on the precisions
of the innovations because the precisions are exp(4°) and exp(1").
See Appendix A for more details. At the second level, the causes
are dominated by the Gaussian prior because the stochastic
component has very low variance (i.e., [T**=¢').

For reasons that will be clear later, we only treated two of the
parameters as unknown; one parameter from the observation
function (the first) and one from the state equation (coupling the
first hidden state to the second). These parameters had true values
of 0.125 and —0.5 respectively (Eq. (57)). Fig. 16 summarises the
results after convergence of DEM (about sixteen iterations). Note
that the causes have very tight confidence tubes because we used
very informative priors. Although we used virtually no system
noise, its precision was estimated to be about IT!""=¢*, which
subtends a narrow confidence tube (c.f,, Fig. 7).

Comparative evaluation

The same dual estimation was implemented using expectation
maximisation (EM), which effectively uses the true states because
it used the true cause under deterministic dynamics. The true and
conditional estimates of the state and observer parameters are



K.J. Friston et al. / Neurolmage 41 (2008) 849-885 875

summarised in the lower left of Fig. 16 in terms of their expectation
and conditional 90% confidence intervals (red bars) for DEM
(grey) and EM (white). The EM estimates are slightly overcon-
fident in that true values lie outside the 90% confidence intervals. It
can be seen that the DEM estimates have a greater conditional
variability and are closer to the true values. This is a systematic
difference between DEM and EM: we repeated the simulations for
eight independent realisations. The resulting conditional expecta-

predicted response and error

tions are displayed over the true values in Fig. 17 and speak to a
bias-variance trade-off between the two schemes. DEM provides
more variable conditional estimates but they are unbiased.

Note that EM does not have a mean-field partition that covers
the states. This induces conditional dependencies between the two
parameters which may explain its bias and shrinkage towards the
prior expectation of zero. In DEM, the parameters of the observer
and state equations are conditionally independent. This is because
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Fig. 16. As for Fig. 7; summarising the result of dual estimation using the linear convolution model. In this case, we used the known cause as a prior to suppress
uncertainty about the hidden states. This allowed us to estimate the parameters and hyperparameters of the system with both DEM and EM. The hyperparameters
correspond to the precision of random fluctuations in the response and the hidden states. The free parameters correspond to a single parameter from the state
equation and one from the observer equation that govern the dynamics of the hidden states and the response respectively. For a comparative evaluation, the same
dual estimation was implemented using expectation maximisation (EM). The true and conditional estimates are summarised on the lower left in terms of their
expectation and conditional 90% confidence intervals (red lines). It can be seen that the DEM estimates have a greater conditional variability but are closer to the

true values.
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Parameter estimates for DEM and EM
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Fig. 17. We repeated the analysis described in the previous figure for eight
independent realisations of the linear convolution model. This figure
summarises the conditional expectations of the parameters of the state and
observer functions for EM and DEM. These results are displayed over the
true values (bars). These results suggest that there is a bias-variance trade-off
when using EM and DEM. DEM provides more variable conditional
estimates but they are much less biased than those obtained using EM. Note
that EM does not have a mean-field partition that covers the states; this
induces conditional dependencies between the two parameters which may, in
part, explain this bias in the estimators and shrinkage towards the prior
expectation of zero.

the random effects on the states and causes are conditionally
independent under the mean-field approximation. The state-
parameters only affect the prediction error on the motion of the
states, while the observer parameters affect only the prediction
error on the responses. In contrast, in EM, changes in the state-
parameters are expressed in the response through the hidden states
and induce conditional dependencies among all parameters. In this
case, there was a negative conditional correlation between the two
parameters.

Triple estimation

In our final simulations, we combine inference on the states,
parameters and hyperparameters in a triple estimation procedure that
exploits all three DEM steps. We generated data from the linear
convolution model as above and inverted the following model

Linear convolution model for triple estimation
Level g(x,v) fix,v) 1 " w o7’ PPy P

0 e® o0 ¢1°

m=1 0Ox Ox+603v  exp(X) exp(1™)
m=2 1 0

This is exactly the same as the previous model but the tight
informative priors on the causes have been replaced with
uninformative shrinkage priors. Fig. 18 shows the conditional
densities on the states and parameters after convergence of the
DEM scheme (after about 32 iterations). Remarkably, the inversion
has recovered the states and parameters. EM cannot do this;

therefore, the true and conditional estimates of the parameters are
provided for DEM only (lower right). It can be seen that the true
value of the causal state lies within the 90% confidence interval
and that we could infer with substantial confidence that the cause
was non-zero, when it occurs.

Summary

There are no generic schemes that can solve this triple
estimation problem; although one could argue that bespoke
variational update schemes based on Eq. (11) and Eq. (12) could
be derived (c.f., the treatment provided in Beal and Ghahramani
2003 for static systems). However, these would not be generic in
the same sense as DEM. This is because DEM does not need
model-specific updates (or the integrals implicit in Eq. (11) and
Eq. (12)) to optimise the free-energy bound. DEM uses a coor-
dinate ascent, under a mean-field approximation, that can be
applied to any model. This point can be reiterated by noting that all
the examples in this paper were inverted using just one routine,
whose arguments are the model specification and the response (see
software note). In fact, this routine can be used to invert any dynamic
or static model under parametric assumptions. We will deal with this
in another paper on a hierarchical model specification and show that
many conventional analyses, ranging from ordinary least squares to
independent component analysis, can be formulated as special cases
of DEM. We now close with an example that gets closer to the sort of
application we had in mind.

An empirical application to hemodynamics

In this, the final section, we illustrate DEM by inverting a
hemodynamic model of how neuronal activity in the brain
generates data sequences in functional magnetic resonance imaging
(fMRI). This example has been chosen because inference about
brain states from non-invasive neurophysiologic observations is an
important issue in cognitive neuroscience and functional imaging.
Furthermore, generalisations of this model, to cover multiple brain
regions, are used routinely in the dynamic causal modelling of
neuronal interactions. The inversion of these models enables
inference about parameters that control coupling among brain areas
(see Friston et al., 2003; Penny et al., 2005). Even the inversion of
single-area models has received considerable attention (e.g.,
Gitelman et al., 2003; Buxton et al., 2004). There are several
compelling applications of the innovation method in neuroimaging
that have focussed on neural mass models of the electroencephalo-
gram (Valdes et al., 1999; Sotero et al., 2007) and, more recently,
hemodynamic time-series (Riera et al., 2004; Sotero and Trujillo-
Barreto, in press). See also Deneux and Faugeras (2006) who
present a careful analysis of identifiability, using the nonlinear
model of fMRI data described below.

As noted by Johnston et al. (2006): “The most comprehensive
model to date of the BOLD effect is formulated as a continuous-
time system of nonlinear stochastic differential equations”.
Johnston et al. (2006) present a particle filtering method for the
analysis of the BOLD system and demonstrate it to be both
accurate and robust in estimating the hidden physiological states.
Conversely, Jacobsen et al. (2006) provide a careful and thorough
inference on the model parameters, using a Metropolis—Hastings
algorithm for sampling their posterior distribution. We combine
both objectives, using DEM to estimate not only the states but the
parameters and hyperparameters of the system generating those
states.
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Fig. 18. As for the previous figure but in this instance we estimated the parameters, hyperparameters and the cause by treating it as an unknown quantity.
This is an example of triple estimation, where we are trying to infer on the states of the system as well as the parameters governing its causal architecture.
EM cannot do this; therefore the true and conditional estimates of the parameters are provided for the DEM scheme only (lower right). It can be seen that
the true value of the causal state lies within the 90% confidence interval and that we could infer with substantial confidence that the cause was non-zero,

when it occurs.

The hemodynamic model

The hemodynamic model has been described extensively in
previous communications (e.g., Friston 2002). It completes the
Balloon—Windkessel model (Buxton et al., 2004; Mandeville et al.,
1999) and is based on a large amount of neurophysiology and
biophysics. In brief, neuronal activity causes an increase in a
vasodilatory signal /; that is subject to auto-regulatory feedback.
Blood flow 4, responds in proportion to this signal and causes
change in blood volume /3 and deoxyhemoglobin content, /4.
The observed signal is a nonlinear function of volume and de-

oxyhemoglobin. These dynamics are modelled by the differential
equations

hy =30 0, — x(hy — 1) = 1(h — 1)
hy="h —1

fl} = ‘L'(hz *F(h )

) (61
h4 = T(th(hz) F(h3)h4/h3)

In this model, the vasodilatory signal is elicited by a mixture of
neuronal inputs, v; scaled by parameters, 6; which encode their
relative contribution to hemodynamic signals. Outflow is related



878 K.J. Friston et al. / Neurolmage 41 (2008) 849-885

Table 1
Priors on free biophysical parameters

Description Prior
k Rate of signal decay/s = o 0.65 exp(0,) p(0,) = N(OHIF)
% Rate of ﬂow-depe.ndent e.hmmatlon = 0.41 exp(0,) p(OZ) =N (O,¥)
T Rate hemodynamic transit/s = 1.02 exp(d,) p(6:) =N (07¥)
o Grub.b’s exponent = . 0.32 exp(6,) p(0,) = N(O,l—lé)
@ Resting oxygen extraction fraction = 0.34 exp(6,,) p(0,)=N(0,%)
0; Effect of the i-th neuronal input = 0; p(0;) =N(0,1)
Fixed biophysical parameters

Description

7 Blood volume fraction 0.04
ky Intravascular coefficient T
k> Concentration coefficient 2
I3 Extravascular coefficient 2¢-0.2

to volume F(hs)=hY* through Grubb's exponent o. The relative
oxygen extraction E(h) :é(l —(1=¢)"") is a function of
flow, where ¢ is a resting oxygen extraction fraction. A description
of the parameters of this model is provided in Table 1.

There are many ways to formulate and use this model.
Typically, if one was interested in the biophysical parameters,
known experimental inputs could enter as informative priors on the
causes to enable efficient estimation of the parameters. Conversely,
if one was interested in the underlying neuronal and hemodynamic
states, one might use fixed parameter values to assure an efficient
deconvolution. To make things interesting, we will infer on both
parameters and states by reprising the triple estimation of the
previous section but now in the context of a nonlinear (i.e.,
generalised) and more complicated convolution model. We will
model experimentally controlled causes, v; explicitly and use the
known experimental design to place priors on them.

We will also use this model to illustrate how non-Gaussian
densities can be modelled under the Laplace approximation,
through nonlinear transformations: all the hemodynamic states are
clearly non-negative quantities. One can accommodate this by
assuming that In/; has a normal posterior; i.e., the states have non-
negative lognormal densities. This is easy to implement with the
transformation; x;=In h;<h;=exp(x;). Under this transformation
the differential equations above can be written

. 6/’!, 6xi
hi — -
Ox; Ot

= hpt; = fi(h,v) (62)

This allows us to formulate the model in terms of the hidden
states x;=In 4; under Gaussian assumptions

Hemodynamic convolution model
Level g(x,v)  f(x,v) vy p

m=1 VO(kl Z@,‘V,‘ — K(hl — 1) — A(hz — 1)/]11 eXp(/'Lz) 64 0 6‘716
(I=h)+ | (h —1)/h>
fo(1—hy | | 2y — F(hs)) /by
h3)+hks | T(hE(hy) — F(h3)ha/h3)/hs
(1=h3))+
c(Bt)

The priors on the parameters are detailed in Table 1. We also
use lognormal priors on the hemodynamic parameters because they

are non-negative rate-constants or fractions. For example, although
the conditional density of 0,=Ink is Gaussian, the conditional
density of x is lognormal.

The model above represents a multiple-input, single-output
model with four hidden states and unknown parameters. Five
parameters control the hemodynamics, while the remaining para-
meters control the effect of causes on the vasodilatory signal. In
this example, we treat the precision of observation noise as un-
known but assume that state noise has precision, ¢*, which corre-
sponds roughly to random fluctuations with the same magnitude of
evoked changes in hidden states (i.e., a standard deviation of
e 2~14%). Priors on the causes v; were relatively informative (unit
precision; ¢®=I) with expectations #, based on experimental
manipulations (see below).

This example also illustrates how confounds or time-varying
effects, c(f,f) can be modelled. These response components are not
functions of'the states but are parameterised. In this example, c(f3,)=
BC(t), where C(¢) corresponded to a discrete cosine temporal basis-
set modelling instrumental drifts in the data that were of no inter-
est. We used eight cosine components to remove or model low-
frequency drifts over the 360 sample time-series. The parameters of
these effects S were estimated in the E-step as described in Appendix
E. To illustrate the ensuing inversion, DEM was applied to a single
time-series from a visually responsive brain region, measured during
a visual attention study with three experimental causes.

Data and results

Data were acquired from a normal subject at 2 T using a
Magnetom VISION (Siemens, Erlangen) whole body MRI system.
Contiguous multi-slice images were obtained with a gradient echo-
planar sequence (TE=40 ms; TR=3.22 s; matrix size=64 x 64 x 32,
voxel size 3x3x3 mm). Four consecutive hundred-scan sessions
were acquired, comprising a sequence of 10-scan blocks under five
conditions. The first was a dummy condition to allow for magnetic
saturation effects. In the second, Fixation, subjects viewed a fixation
point at the centre of the screen. In an Attention condition, subjects
viewed 250 dots moving radially from the centre at 4.7°/s and were
asked to detect changes in radial velocity. In No attention, the
subjects were asked simply to view the moving dots. In last
condition, subjects viewed stationary dots. The order of the con-
ditions alternated between Fixation and photic stimulation. In all
conditions subjects fixated the centre of the screen. No overt
response was required in any condition and there were no actual
speed changes.

The data were analysed using a conventional SPM analysis
(http://www.fil.ion.ucl.ac.uk/spm) and a time-series from extra-
striate cortex was summarised using the principal local eigenvari-
ate of a region centred on the maximum of a contrast testing for the
effect of visual motion. The three potential causes of neuronal
activity were encoded as box-car functions corresponding to the
presence of a visual stimulus, motion in the visual field and at-
tention. These stimulus functions constitute the priors on the three
causes in the model. The associated parameters, 0; encode the
degree to which these experimental effects induce hemodynamic
responses. Given we selected a motion-selective part of the brain;
one would anticipate that the conditional probability that 6,
exceeds zero would be large.

Conditional expectations and 90% confidence regions for the
causal and hidden states are shown in Fig. 19. The dynamics of
inferred activity, flow and other biophysical states are physiolo-
gically plausible. For example, activity-dependent changes in flow
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Fig. 19. As for the previous figure but now detailing the identification of a much more complicated convolution model. This nonlinear deconvolution was based
upon empirical fMRI data caused by varying the cognitive set and visual stimuli a subject was exposed to. In this instance, there is one response (upper left), four
state variables (upper right) and three causes (lower left). We used the experimental design to place priors on the causes but also allowed them to have stochastic
components. The parameters, whose conditional estimates are shown on the lower right, couple the causes to the first hidden state and reflect how each induces a
hemodynamic response. A more detailed summary of the hemodynamics is shown in the next figure.

are around 14%, producing about a 4% change in fMRI signal. The
conditional estimates of the parameters, 0;:i=1,...3, are shown on
the lower right. As anticipated, we can be almost certain that
neuronal activity encoding motion induces a response. Interest-
ingly, both visual stimulations per se (and perhaps attention) elicit
responses in this area but not to the same degree.

A more detailed summary of the hemodynamics is shown in
Fig. 20. This figure focuses on the first 120 time bins and plots the
hemodynamic states in terms of 4#;=exp(x;) instead of x;. Each time
bin corresponds to 3.22 s. In the upper panel (a), the hidden states
are shown, overlaid on periods (grey) of visual motion. These
hidden states correspond to flow-inducing signal, flow, volume and
deoxyhemoglobin (dHDb). It can be seen that neuronal activity (a

mixture; X0,v; of the three causes of the previous figure), shown in
the lower panel (b), induces a transient burst of signal (blue), which
is suppressed rapidly by the resulting increase in flow (green). The
increase in flow dilates the venous capillary bed to increase volume
(red) and dilute deoxyhemoglobin (cyan). The concentration of
deoxyhemoglobin (involving volume and dHb) determines the
measured response. Interestingly, the underlying neuronal activity
appears to show an onset transient that is rapidly corrected to give a
rebound response a few seconds later. This seems to be a sys-
tematic feature that is evident in nearly all the epochs shown. Note
that the conditional densities of the hemodynamic states and para-
meters are non-Gaussian (i.e., lognormal), despite the Laplace
assumption entailed by DEM. This is an example of the how the
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Fig. 20. These are the same results shown in the previous figure but focussing on the first 120 time bins. Each time bin corresponds to 3.22 s. In the upper
panel (a), the hidden states are shown, overlaid on periods (grey bars) of visual stimulation. These hidden states correspond to flow-inducing signal, flow,
volume and deoxyhemoglobin (dHb). It can be seen that neuronal activity (a mixture of the three causes of the previous figure, weighted by their
corresponding parameter estimates), shown in the lower panel (b), induces a transient burst of signal (blue), which is rapidly suppressed by the resulting
increase in flow (green). The increase in flow dilates the venous capillary bed to increase volume (red) and dilute deoxyhemoglobin (cyan). The
concentration of deoxyhemoglobin (involving state variables volume and dHb) determines the measured response. Interestingly, the underlying neuronal
activity appears to show an onset transient that is rapidly corrected to give a rebound response a few seconds later. This seems to be a systematic feature
that is evident in nearly all the epochs shown.

inversion of nonlinear models can be used to invert models with
non-Gaussian densities.

Summary

It is perhaps remarkable that so much conditional information
about the underlying neuronal and hemodynamics can be extracted

from a single scalar time-series, given only the functional form of
its generation. This speaks to the power of generative modelling, in
which constraints on the form of the model and other biophysically
informed priors allow one to focus data on interesting model
parameters or hidden states. This focus is enabled by inversion
schemes of the sort introduced in this paper. One might argue that
the functional form itself is the most interesting aspect of study. In
a subsequent paper, we will illustrate model selection with DEM.
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This allows one to explore model space by using the free-action in
Eq. (33) as a lower-bound approximation to the time-integrated
log-evidence or marginal likelihood for each model (Berger, 1985;
see also Penny et al.,, 2004). This instance of Bayesian model
selection provides a principled way to optimise the model and its
functional form per se and test hypotheses about one model, in
relation to another, using their relative marginal likelihoods.

To date, dynamic causal models of neuronal systems, measured
using fMRI or electroencephalography (EEG) have used known,
deterministic causes and have ignored state noise (see Riera et al.,
2004 and Sotero and Trujillo-Barreto, in press for important
exceptions). One of the motivations for the variational treatment
presented in this paper was to develop an inference scheme for
both the parameters of neuronal systems and their states. The blind
deconvolution of a single region above is a simple example of this
and will be extended to cover networks of multiple regions in
subsequent work. Another interesting approach to modelling
neuronal dynamics rests on coupling different scales in wavelet
space. In these models, the dynamics at each scale are determined
by a coupled ensemble of nonlinear oscillators, which embody the
principal scale-specific neurobiological processes (Breakspear and
Stam, 2005). These models may be usefully treated within the
inversion framework discussed above.

Conclusion

We have presented a variational treatment of dynamic models
that furnishes the time-dependent conditional densities of a
system's states and the time-independent densities of its para-
meters. These obtain by maximising the variational free-energy and
action of a system respectively. The ensuing action represents a
lower-bound approximation to the model's marginal likelihood or
log-evidence, integrated over time. This is required for model
selection and averaging. The approach rests on formulating the
optimisation in term of stationary action, in generalised coordinates
of motion. The resulting scheme can be used for online Bayesian
inversion of nonlinear dynamic causal models and eschews some
limitations of previous approaches, such as Kalman and particle
filtering. We refer to this approach as dynamic expectation
maximisation (DEM) because it uses a coordinate ascent on the
action, which, by appeal to the same arguments used for
expectation maximisation, is guaranteed to converge. This explicit
optimisation of a bound avoids difficult integrations associated
with conventional variational schemes and allows one to use
models that do not have closed-form updates.

Variational vs. incremental approaches

The variational approach to dynamic systems presented here
differs in several ways from incremental approaches such as ex-
tended Kalman filtering and related approaches. The first distinction
relates to the nature of the generative models. The variational
approach regards the generative model as mapping between causes
and responses, which are functions of time. In contradistinction,
incremental approaches consider the mapping to be between scalar
quantities. In this sense, the variational treatment above can be
regarded as a generalisation of model inversion to cover mappings
between functions, where the functions happen to be of time.
Incremental approaches simply treat the response as an ordered
sequence and infer the current state using previous estimates. This
creates a problem for incremental approaches because the under-

lying causes and responses are analytical functions of time, which
provide constraints on inversion that cannot be exploited. For
example, most incremental approaches assume uncorrelated random
components (e.g., a Wiener process for system noise). However, in
reality, these random fluctuations are almost universally the product
of ensemble dynamics that are smooth functions of time. The
variational approach accommodates this easily with generalised
coordinates of high-order motion and a parametric form for the
temporal correlations.

The second key difference between conventional filtering
techniques and DEM is the form of the ensemble density itself.
In conventional procedures this covers only the hidden states,
whereas the full variational density should cover both the hidden
and causal states. This has a number of important consequences.
Perhaps the simplest is that extended Kalman filtering cannot be
used to deconvolve the inputs to a system (i.e., causes) from its
responses. A more subtle difference is that Kalman filtering cannot
handle non-Gaussian causes gracefully. Conversely, non-Gaussian
innovations are modelled simply in DEM with a nonlinear trans-
formation of Gaussian causes. For example, in the nonlinear con-
volution model above, the causes exp(v) are effectively lognormal
perturbations.

A third difference between variational and incremental treat-
ments lies in the nature of causal inference that is supported. DEM
inverts generative models that are formulated as causal systems
using differential equations. Causal here means that the response is
a function of states in the past; more exactly the system's gene-
ralised convolution kernels have support on, and only on, the past.
This means that the conditional density pertains to states that cause
responses in a control theory sense. This is why we refer to DEM
as a scheme for the inversion of dynamic causal models. This is not
the case for dual-estimation procedures based on state-space
models parameterised in terms of transition matrices (Appendix C)

f. = exp(4t) (63)

See Biichel and Friston (1998) for an example in neuroimaging,
based on variable parameter regression and Kalman filtering. The
variational density on the parameters of f{t)) ensures that inference is
on a causal model. However, inference on the parameters of f, does
not. This is because there are no constraints on these parameters
which enforce causality. A simple heuristic here is that if f, is
negative, the underlying dynamic causal model is not defined,
because Inf, = Atf, does not exist. This is important because there are
many schemes that employ state-space models (e.g., extended
Kalman filtering, multivariate autoregression models, hidden
Markov models, efc.) that use causal rhetoric (e.g., Granger
causality), which should not be confused with true causality. A
further disadvantage of conventional state-space models is that the
causal system may have only one free parameter but the number of
elements required to specify f, can be arbitrarily large, depending on
the number of states.

Beyond filtering

Clearly, DEM is more than just a fixed-form filtering scheme; it
applies to models with unknown states and parameters. Critically,
the principle of stationary action that governs the evolution of the
conditional mode of the states is recapitulated for all quantities
responsible for generating data. These include parameters and hy-
perparameters. We have illustrated this using expectation maximisa-
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tion as a reference. Although we have focused on three mean-field
marginals, it is easy to extend the scheme to cover any mean-field
partition. The distinction between an M-step and an E-step is that
the latter ignore mean-field effects from other sets of parameters. In
our case, we ignored uncertainty in the hyperparameters when
estimating the conditional density of the parameters (but we did not
ignore uncertainty about the states).

We have not been able to address many important issues in this
(long) paper. Key omissions include the nature and implementation
of variational filtering, which DEM approximates under the La-
place assumption; the inversion of hierarchal static models with
DEM; the use of DEM for model selection, automatic relevance
determination and exploration of model space; and biophysical
implementations of DEM and extensions to cover action on data.
The latter is an interesting issue and considers the optimisation of
free-energy through active re-sampling of data (Friston et al.,
2006). This may involve extending the notion of generalised
coordinates to cover space as well as time. This extension is also
relevant for the analysis of data that are functions of space; for
example, continuous images. In this case, the generalised response
becomes a tensor with rank greater than one and dimensions
corresponding to the embedding order; i.e.

y v Oy ...
() = 5fy - J(xi1) = 5fy 0:0xy ) (64)

for data that are functions with domain, x. These issues will be
dealt with in subsequent communications (although some are
covered in software demonstrations; see software note).

Sofiware note

The variational scheme above is implemented in Matlab code
and is available freely from http://www.fil.ion.ucl.ac.uk/spm. A
DEM toolbox provides several demonstrations from a graphical
user interface. These demonstrations reproduce the figures of this
paper (see spm_DEM.m and ancillary routines).
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Appendix A. Hyperparameterisation and hyperpriors

Our demonstrations used implicit lognormal hyperpriors. This
was implemented by parameterising the precisions under Gaussian
hyperpriors using

1(7) = exp(7)9; (A1)

similarly for [1(1}"). Here, the leading-diagonal elements of the
user-specified components ©Q; encode which innovations share the
same precision. Under this form, the hyperparameters, A7 and A}
become log-precisions. This hyperparameterisation ensures positive

semi-definitive precisions because the implicit scale-parameters
exp(4;)>0 are non-negative. This enables us to retain the compu-
tational simplicity of the Laplace approximation, while precluding
improper precisions. This is a further example of how nonlinear
parameterisations can convert a Gaussian model into a non-
Gaussian model. Strictly speaking, extra terms are entailed in the
D- and E-steps because 0,11 # 0 (see the appendix of Friston et al.,
2007). However, these terms are small and are omitted for
simplicity.

Appendix B. Integrating a stochastic DCM in generalised
coordinates

Under local linearity assumptions, the motion of the generalised
response y is given by

x'=f(x,v)+w
X=fx' + v +w
xH/ :‘f)‘cxl/ +.f;}‘// + 1;{/

y=gx,v)+z
y=gx +gVv + z

! i A2
y : gxxll _"_gv‘// + z ( )

or, more compactly, Dy =Dg+DZ and D¥ =/ +1v. This allows us to
integrate the system, under local linearity assumptions, given initial
values for the states and innovations in generalised coordinates.

v Dg, Dg. D v
| T IARE:
z D z
W D w
gx:1®gx fx:1®ﬁ€
0 g &) (]
- ! Q)
v = x = m V= :
i 0 0 [ ]
0 fv(l> fx(l) [ x( ]
f= g | K " 0
L 0 0 L 0 |
(A.3)

In principle, we could generate time-series of any length given a
sufficient embedding order and initial values. However, in practice,
it is more expedient to use a low-order embedding (say n=6) and
replace the trajectories of the innovations at each time-interval with
Z (1)=1(t)z,.y, Where z;.y is a random sequence of innovations that
has been convolved with the appropriate smoothing kernel
(similarly for w(z)).

Appendix C. Extended Kalman filtering

This appendix provides a pseudo-code specification of the
extended Kalman filter based on var der Merwe (2000) and
formulated for models of the form:

AT (A4)


http://www.fil.ion.ucl.ac.uk/spm

K.J. Friston et al. / Neurolmage 41 (2008) 849-885 883

Eq. (A.4) can be re-written, using local linearisation, as a
discrete-time state-space model. This is the formulation treated in
Bayesian filtering procedures (assuming Az=1)

Ve =8gX +2z;
X =fox 1 +wi

g, = g(x),
fo= eXp (f(xt)x) (AS)

z, = z(¢)
wit = [ exp (fit)(fv(t — 1) + w(t — 1))dt

The key thing to note here is that process noise w, — is simply a
convolution of the exogenous causes, v(#) and innovations, w(#). This
is relevant for Kalman filtering and related nonlinear Bayesian
tracking schemes that assume w,_ | is a well-behaved noise sequence.
We have used the term process noise to distinguish it from system
noise, w(?) in hierarchical dynamic models. This distinction does not
arise in simple state-space models. The covariance of process noise is

(wiw!') = [exp(fit)Qexp(fi7) de=Q (A.6)

assuming that temporal correlations can be discounted and that the
Lyapunov exponents of f, are small relative to the time-step. Here
Q=£,2@T+ (D" i5 the covariance of the underlying fluctuations
from exogenous inputs and system noise. Note, system noise w(z) on
the states enters as an independent component of process noise. We
use this in our implementation of extended Kalman filtering
presented here in pseudo-code and implemented in spm_ekf.m (see
software note)

for all t
Prediction step

x; = fyx
S =Q+ .2 f]

t—17x

Update or correction step

K==xgl(Z+gxgl)”
XX+ K(y - g(x,))
2i—(I - Kg,)%y (A7)

end

where X=X"" is the covariance of observation noise. The Kalman
gain matrix, K is used to update the prediction of future states, x,
and their conditional covariance, X7 given each new observation.
We actually use x,=x, -1 +(fy—1D)f ¢ _I/(x,,l). This is a slightly more
sophisticated update that uses the current state as the expansion
point for the local linearisation (see main text and Ozaki (1992)).

Appendix D. Particle filtering

This appendix provides a pseudo-code specification of particle
filtering based on var der Merwe et al. (2000) and formulated for
state-space models described above (Appendix C). In this pseudo-
code description, each particle is denoted by its state xI7. These states
are updated stochastically from a proposal density, using a random
variate w7 and are assigned importance weights ¢'! based on their
likelihood. These weights are then used to re-sample the particles to
ensure an efficient representation of the ensemble density.

for all t
Prediction step: for all i

xy] = fx)cl[[ll + wl

¢=y-— g()C@)
g = eXp<f%éTZ’lé)

Normalise importance weights

U
>iql

Selection step: for all i

xy] Hxy] (A.8)

end

where wtl is drawn from a proposal density N(0,Q) and x/«—x!
denotes sequential importance re-sampling. The indices r are
selected on the basis of the importance weights. X=X and
Q=£3@% 15" are defined in Appendix C. In our implementa-
tion (spm_pf.m) we use multinomial re-sampling based on a high-
speed Niclas Bergman Procedure written by Arnaud Doucet and
Nando de Freitas.

7]

Appendix E. Confounds

It is simple to model confounds by adding them to the first level
of the model

y=glx,v)+c(p,t)+z
X=f(x,v)+w (A9)

For example, ¢(,¢) could represent drift terms with a known form
but unknown amplitude. These could be modelled with c¢(f3,¢)=cf(¢)
where C(f) is a suitable basis set encoding the temporal form. The
time-invariant parameters 5 are generally treated as fixed-effects
(i.e., with uninformative priors). These parameters are absorbed into
the system parameters by simply augmenting the error derivatives so
that Au’—Au® AuP in the E-step (Eq. (39)), where

. gy =—Topcon | 2—[2,2] po_, [P’
= | 4 R Pi—
o l: sb’ =0 :l 89144)[8(%7 0} 0

(A.10)

and co.,y = [c(B,t —%);...;c(B, 1 +%)] denotes a local vector of
confounds evaluated at 1”. Note that in hierarchical models only the
first level error derivatives are affected by confounds. Uncertainty
about f3 does not enter inference on the states in the D-step because
the states and confounds do not interact. However, the conditional
expectation of the confounds is removed from the response variable,
before computing the prediction errors and their derivatives

7= T(0)(vo:n — Con) (A.11)

otherwise, the DEM scheme is identical.
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