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Abstract
How the brain processes sensory input to produce goal-oriented behavior is not well-understood.
Advanced data acquisition technology in conjunction with novel statistical methods holds the key to
future progress in this area. Recent studies have applied Granger causality to multivariate population
recordings such as local field potential (LFP) or electroencephalography (EEG) in event-related
paradigms. The aim is to reveal the detailed time course of stimulus-elicited information transaction
among various sensory and motor cortices. Presently, interdependency measures like coherence and
Granger causality are calculated on ongoing brain activity obtained by removing the average event-
related potential (AERP) from each trial. In this paper we point out the pitfalls of this approach in
light of the inevitable occurrence of trial-to-trial variability of event-related potentials in both
amplitudes and latencies. Numerical simulations and experimental examples are used to illustrate
the ideas. Special emphasis is placed on the important role played by single trial analysis of event-
related potentials in experimentally establishing the main conclusion.
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Introduction
Invasively-recorded local field potential (LFP) and scalp-recorded electroencephalography
(EEG) are widely used electrophysiological measures for investigating the neural mechanisms
of cognition. In an event-related paradigm, single trial LFPs or EEGs are traditionally modeled
as the linear superposition of a stimulus-locked waveform called event-related potential (ERP)
and ongoing activity. Ensemble average is performed to obtain the average ERP which we will
henceforth refer to as AERP. Subtracting the AERP from each single trial yields the ongoing
brain activity which is further analyzed by time-frequency and functional connectivity methods
(Kalcher and Pfurtscheller 1995). The problem with this simple approach is that it does not
account for the influence of latency and amplitude variability of the evoked potential across
individual trials. In particular, removal of the AERP from individual trials leaves a mixture of
ongoing and evoked activities, and the analysis of those ongoing activities in the frequency
range overlapping with that of the evoked potential is significantly affected. Truccolo et al.
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(Truccolo et al. 2002) have shown that statistical measures such as power spectral density and
coherence evaluated as a function of time by a sliding window approach can exhibit temporal
modulations that are artifacts due to the trial-to-trial variability of cortical evoked responses.

Granger causality has emerged in recent years as a useful tool to investigate the directions of
neuronal interactions (Hesse et al. 2003; Brovelli et al. 2004; Roebroeck et al. 2005; Seth
2005; Lungarella and Sporns 2006). It can yield insights not possible with other techniques.
For example, a time-frequency analysis of Granger causality promises to shed light on the
debate regarding whether stimulus-response association is mediated by a pure feed-forward
process (Fabre-Thorpe et al. 2001; Thorpe and Fabre-Thorpe 2001) or by an elaborate
reciprocal computation involving multiple cortical areas (Ullman 1995; Grossberg 1999; Liang
et al. 2000). To achieve a temporal function of Granger causality we fit multivariate
autoregressive (MVAR) models to ongoing activity time series in short sliding windows (Ding
et al. 2000). One requirement is that the time series in each window be generated by a zero-
mean stationary stochastic process. Here zero-mean is defined with respect to an ensemble of
realizations (trials). Since the AERP is the ensemble mean of the observed multi-trial data, the
removal of AERP from single trial data meets the zero-mean requirement. However, the
difference between the individual trial's ERP and the AERP remains in the data, and this
difference is not uniform in time (Truccolo et al. 2002), leading to the violation of the
stationarity assumption. In this paper, we show that Granger causality, like power and
coherence, is adversely affected by the trial-to-trial variability of cortical evoked responses. In
particular, without being cognizant of such adverse effects, the analysis result can easily be
misconstrued as lending support to the view that stimulus processing in the brain involves
reciprocal computation (Liang et al. 2000).

The main conclusion is established by several lines of evidence. First, based on the statistical
meaning of Granger causality, we present arguments that predict the outcome of combining
the simple AERP removal with the sliding window method in the presence of trial-to-trial
evoked response variability. Second, numerical simulations mimicking actual
neurophysiological recordings are created. We test the prediction on the simulated data where
the correct answers are known. Third, we test the prediction on LFP data acquired from a
monkey performing a visuomotor task. A novel single trial analysis method named Analysis
of single trial evoked response and ongoing activity (ASEO) is used to separate the evoked
response from the ongoing activity on a trial-by-trial basis (Xu et al. in press). This allows us
to demonstrate that the observed temporal modulation of Granger causality may not reflect
temporally resolved feedforward and feedback stimulus processing but may be the result of
incomplete removal of evoked activity which varies from trial to trial.

Methods
MVAR model and Granger causality estimation

Granger causality is based on the idea of prediction. For two simultaneously measured jointly
stationary time series, one series can be called causal to the other if we can better predict the
second by incorporating past knowledge of the first (Wiener 1956; Granger 1969). Granger
causality analysis can be performed in the time-domain as well as in the frequency-domain.
We summarize the basic steps here. For more details see Ding et al. (2006). Let Wt = [Xt,
Yt]′ be a two dimensional stationary time series, where the prime denotes matrix transposition.
Under fairly general conditions, Wt could be represented by the following bivariate
autoregressive process:
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(1)

where Ai are 2 by 2 coefficients matrices. Equation (1) can be recast in component form,

where ε2t and η2t are uncorrelated over time with contemporaneous covariance matrix Σ:

With finite data the above infinite series representation must be truncated to finite order. The
correct model order is usually determined by minimizing the Akaike Information Criterion
(AIC) (Akaike 1974). Standards techniques, such as the Levinson, Wiggins, Robinson (LWR)
algorithm, can be used to estimate Ai and Σ (Ding et al. 2000). Once an autoregressive model
is adequately determined, i.e. Ai and Σ are known, we obtain the spectral matrix as

where  and A0 is the identity matrix.

The total interdependence between Xt and Yt at frequency ω is defined as

The causal influence from Yt to Xt at frequency ω is defined as
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where .

Likewise, the causal influence from Xt to Yt at frequency ω is defined as

where . These spectral functions can be integrated over the
entire frequency domain to obtain their respective time-domain counterparts.

ASEO single trial analysis
A number of techniques for the trial-by-trial estimation of event-related potentials have been
developed, including the Woody matched filter method (Woody 1967), the frequency domain
maximum likelihood method (Jaskowski and Verleger 1999; de Munck et al. 2004), the wavelet
method (Demiralp et al. 1999), the fragmentary decomposition approach (Melkonian et al.
2001), and Bayesian inference based methods (Truccolo et al. 2003; Knuth et al. 2006). The
Analysis of Single-trial Evoked response and Ongoing activity or ASEO method differs from
the past approaches in that it models the evoked responses and the ongoing activity
simultaneously (Xu et al. in press). As shown in equation (2), the starting point of the ASEO
method is the Variable Signal Plus Ongoing Activity (VSPOA) model of single trial time series
recordings (Truccolo et al. 2003; Chen et al. 2006),

(2)

where xr (t) (r = 1, 2, ··· R and t = 0, 1, ··· T − 1) is the observed LFP or EEG discrete-time
signal of the rth trial (R and T being the number of trials and the number of data samples for
each trial, respectively), sn (t) (n = 1, 2, ··· N) is the unknown ERP component waveform (N
being the total number of components) with a trial-to-trial variable amplitude scaling factor
and latency shift given by βrn and τrn, respectively, N is the total number of components, and
zr (t) is ongoing activity which includes all the non-phase-locked signals and is assumed to be
a zero mean AR random process,

(3)

where ak (k = 1, 2, ··· K) is the kth unknown AR coefficient, K is the AR model order, and er
(t) is a white noise with zero-mean and variance σ2 to be estimated from data.

By applying the discrete Fourier transform (DFT) to (2), we obtain its frequency-domain
representation as,
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where Xr (ω), Sn (ω) and Zr (ω) stand for the Fourier transforms of xr (t), sn (t) and zr (t),
respectively. We know that Zr (ω) for different values of r and ω are independently and
identically distributed (i.i.d.) circularly symmetric complex Gaussian random variables with
zero-mean and unknown variance f (ω) where

is the power spectral density (PSD) of the ongoing activity in (3).

The negative log-likelihood function of the LFP or EEG data is:

(4)

Minimizing (4) with respect to Sn (ω), βrn, τrn, ak and σ2 yields the maximum likelihood
estimates of the unknown parameters. However, in general, the minimizer of (4) cannot be
produced in closed-form. Consequently, the ASEO algorithm used an iterative approach to
solve this problem. The algorithm includes two main steps, the Frequency-step or F-step and
the Time-step or T-step, which are iterated. In the F-step, using the most recently available
estimate of the PSD of the ongoing activity, the waveforms of the ERP components Sn (ω) and
their single-trial latency shifts (τrn) and the amplitude scaling factors (βrn) are estimated in the
frequency domain by the maximum likelihood method. In the T-step, the AR model parameters
of the ongoing activity are estimated in the time domain based on the most recently estimated
ERP parameters using an approximate maximum likelihood method. These two steps are
iterated until no further improvement is seen in the estimated quantities.

Estimation of ongoing activity
In this work we contrast two ways of extracting the ongoing activity zr (t) during the time
period in which sensory stimulus is being processed. The traditional way is to calculate AERP
by averaging xr (t) with respect to the trial index r and then subtract the AERP from xr (t). We
refer to the result obtained this way as the residual. It is clear from equation (2) that this residual
is a mixture of ongoing activity and event-related potentials (Truccolo et al. 2002). The other
way, which is a more principled way according to the VSPOA model in equation (2), is to

estimate the event-related potentials  on a trial-by-trial basis and subtract it
from xr (t).
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Experimental data
Experiments involved a highly trained macaque monkey performing a visual-motor pattern
discrimination task at the Laboratory of Neuropsychology, National Institute of Mental Health
(Bressler et al. 1993; Ledberg et al. 2007). Animal care was in accordance with institutional
guidelines. Event-related local field potentials (LFPs) were simultaneously recorded from
multiple surface-to-depth bipolar teflon-coated platinum electrodes, chronically implanted in
the cerebral hemisphere contralateral to the monkey's preferred hand. Data from up to 16
channels (sites) were analog filtered (-6 dB at 1 and 100 Hz, 6 dB per octave falloff) and
digitized at 200 samples/second. The monkeys initiated each trial by depressing a lever with
the preferred hand. Data collection began about 90 ms prior to stimulus onset and continued
until 500 ms post-stimulus. Each stimulus consisted of four dots arranged as a (left- or right-
slanted) line or diamond on a display screen. Monkeys responded (Go condition) to one visual
pattern type (line or diamond), and withheld response (No-Go condition) to the other. Only Go
trials from a striate channel and a prestriate channel are considered in the present study.

Results
Theoretical consideration

To establish the specific manner in which trial-to-trial variability of event-related potentials
adversely affects the time-frequency analysis of Granger causality, we consider a simple
conceptual model. The goal is to generate predictions that can be tested on both simulated and
experimental data. Figure 1(a) and (b) show event-related potentials simulated by sinusoids
from two channels. By construction, channel 2 (Fig. 1(b)) lags behind channel 1 (Fig. 1(a)) by
20 ms, and the amplitudes of the two channels are assumed to be correlated on a trial-by-trial
basis. Physiologically, one may view channel 1 as arising from a primary sensory area while
channel 2 from an association area. To calculate Granger causality between these two channels,
we follow the traditional approach by first obtaining the AERP through averaging and then
subtracting AERP from each trial to produce the residual data (Figures 1(c) and 1(d)), which
are then subjected to a sliding window analysis. For the 50 ms window between the two solid
lines, the strong activity in channel 1 temporally precedes that in channel 2. Since these
activities are correlated, we will see a causal influence from channel 1 to channel 2 by the
definition of Granger causality. As the window is moved to between the dashed lines, the
opposite occurs. Specifically, the temporal precedence of strong activity in channel 2 over that
in channel 1 will result in a causal influence from channel 2 to channel 1. In general, as the
analysis window is moved through the entire trial, one may observe multiple episodes of causal
influence reversals, depending on the morphology of the ERPs. Such intricate temporal patterns
of Granger causality modulations are clearly artifactual and are the result of three factors. First,
the event-related potentials from two different channels are of a similar shape and have a
distinct temporal offset. Second, the two event-related potentials have correlated trial-to-trial
variability. Third, the time-frequency analysis of Granger causality is carried out by employing
a small moving window. It is worth noting that an analysis with a long time window extending
over the entire evoked response will result in a predominantly unidirectional driving from
channel 1 to channel 2.

Simulation
We first tested the above theoretical prediction on simulated data. The event-related potentials
were produced by one cycle of 12 Hz sinusoidal waves which were then combined with ongoing
activities. The single-trial amplitudes of the sinusoidal wave for the first channel were drawn
independently from a uniform distribution between 2 and 12. The single-trial amplitude for the
second channel was the amplitude of the first channel plus standard Gaussian noise. This
ensures that the amplitudes of the two channels are correlated. For added realism we also
included single-trial latency shifts for the ERP components and they were uniformly distributed
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random variables between 0 and 10 ms. An ensemble of 500 trials of LFPs, each with 120 data
points, was generated. At a sampling rate of 200 Hz, each trial was 600 ms long, 100 ms of
which occurred prior to stimulus onset (0 ms). As in the conceptual example, the ERP for the
first channel started about 50 ms after the stimulus onset, while the ERP from the second
channel was delayed by about 20 ms. The ongoing activity for both channels was Gaussian
white noise processes with zero mean and 0.05 standard deviation. These two noise processes
were uncorrelated with each other. Figure 2 (a) and (b) showed the 500 simulated realizations
(trials) (channel 1 (a) and channel 2 (b)).

Following the traditional approach, the AERPs for both channels were calculated and removed,
and an analysis window of 50 ms in duration moving with a 10 ms increment was applied to
the residuals. Figure 2(c) showed the power as a function of time and frequency for channel
1. Consistent with the analysis of Truccolo et al. (Truccolo et al. 2002), increased power in the
band of 10 to 20 Hz coincided with the occurrence of the event-related potential and is the
consequence of the mixture of ongoing activity and ERPs left in the residual by the AERP
removal method. Choosing the middle of the frequency band underlying the power burst we
estimated Granger causality at 15 Hz as a function of time and the result was shown in Figure
2(d). From the construction of the signals, it is clear that the ongoing activities from these two
processes were independent and the event-related potential in channel 2 is a time-delayed
version of that in channel 1. The figure, however, revealed an intricate causal influence pattern
where channel 1 first exerted a causal influence on channel 1 starting around 80 ms post
stimulus, which was followed by a reciprocating causal influence from channel 2 to channel 1
starting around 100 ms. Further causal interactions ensued between 110 ms and 140 ms. This
alternating causal influence pattern was as predicted by the conceptual model and the three
essential factors for its occurrence were present here by construction. We note that the
reciprocal causal influence pattern seen here is not the property of the selected frequency.
Similar findings existed for the time–domain Granger causality which was obtained by
integrating spectral Granger causality over the entire frequency domain (0-100 Hz).

Experiment
Two channels of LFP recordings, one from the striate cortex (channel S) and the other from
the prestriate cortex (channel P) were considered. The superposition of 1429 trials of LFPs was
shown in Figure 3(a) and (b). Figure 3(c) displayed the AERPs from both channels. It is clear
that the two AERPs are of a similar shape and there is a delay of about 15 to 20 ms between
them. Physiologically, the striate cortex precedes prestriate cortex in the anatomical
organization of the visual system (Felleman and Van Essen 1991). Thus, the delay may reflect
the latency difference in stimulus information arrival at the two recording sites. The residuals
after AERP removal for channel S and P were shown in Figure 3(d) and (e), respectively.
Choosing a 50 ms window and sliding this window 10 ms each time, the coherence function
at 15 Hz was evaluated on the residuals and was shown in Figure 3(f). The strong coherence
between the two channels in the interval from 80 and 180 ms, according to Truccolo et al.
(Truccolo et al. 2002), is attributable to the correlated single trial responses from the two
channels. These observations suggest that the three factors discussed in the context of the
conceptual example were present in this experiment, and we thus predicted that reciprocal
causal influences existed between channel S and channel P, with channel S initiating the
exchange. Figure 3(g) confirmed this prediction by showing Granger causality at 15 Hz as a
function of time. Again, the frequency chosen here was not a determining factor. Similar results
were found for the time-domain Granger causality.

Unlike the simulation example, the true answer in experimental data was not known a priori.
To establish that trial-to-trial variability of event-related potentials underlined the observed
temporal modulation of causal influences, we applied the ASEO method to extract the event-
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related potential on a trial-by-trial basis. Two components were modeled (N=2 in equation (2))
(Xu et al. in press). Here the value of N was chosen in the following way. First, inspection of
AERP revealed two major components (Fig 3(c)), one being a negative potential peaking
around 100 ms and the other being a positive potential peaking between 200∼300 ms. Second,
ASEO was applied with this initial choice of N=2 to separate ERPs from ongoing activity. The
accuracy of the estimation was assessed by comparing the average of single trial ERPs with
that of the raw LFP recordings (see below). Third, nearby N values (N=1 and N=3) were used
to check whether N=2 yielded optimal performance. Figure 4 (a) and (b) showed 1429 trials
of recovered single trial event-related potentials for both channels. Ongoing activities
recovered by removing event-related potentials on a trial-by-trial basis were displayed in Fig.
4(c) and (d). It is worth noting that the LFP data in Fig. 3(a) and (b) are the linear superposition
of the single trial event-related potentials in Fig. 4(a) and (b) and the ongoing activities in Fig.
4(c) and (d). To assess the veridicality of the ASEO method, in Fig. 4(e), ensemble averages
(AERPs) of the raw LFP data in Fig. 3(a) and (b) were compared with ensemble averages of
recovered single trial ERPs in Fig. 4(a) and (b). The excellent agreement between the two
averages was taken as evidence that the ASEO method accurately extracted single trial event-
related potentials from raw LFP time series data.

After the separation of evoked responses from ongoing activity we proceeded to obtain two
additional results. First, coherence and Granger causality at 15 Hz as functions of time was
calculated on the ongoing activity (Fig. 4(c) and (d)) and shown in Fig. 5(a) and (b),
respectively. It can be seen that both coherence and Granger causality were greatly reduced in
the period of 80 to 180 ms post stimulus onset compared with those shown in Fig. 3(d) and (e).
Second, to further demonstrate that the alternating pattern of causal influence in Fig. 3(g) is
the consequence of trial-to-trial variability of the ERPs, we analyzed the single-trial event-
related potential data in Fig. 4(a) and (b) in a way similar to that used to analyze the conceptual
model in Fig. 1, where simulated single-trial ERPs were considered. After the ensemble
averages were calculated for the data in Fig. 4(a) and (b) they were removed from the individual
traces to yield residuals. This is analogous to the steps leading from Fig. 1(a) and (b) to Fig. 1
(c) and (d). The residuals in this case represented the differences between individual trials'
ERPs and their ensemble AERP. As expected, a moving window analysis performed on the
so-obtained residuals revealed a reciprocal causal influence pattern as shown in Fig. 5(c). These
findings suggested that the patterns in Fig. 3(g) were largely the result of trial-by-trial correlated
variability of two event related potentials with a time offset between channels S and P.

Discussion
The classical approach to cognitive neuroscience views the event-related potential as the signal
and the ongoing activity as noise to be eliminated with averaging. Extensive research over the
past two decades shows that this view is overly simplistic. Ongoing processes, rich in
oscillation and synchronized activity, provide another powerful index of cognitive operation
(Singer 1993; Herrmann and Knight 2001; Liang et al. 2002). In light of this revelation, how
to recover the ongoing activity during the post-stimulus time period is a question of practical
importance. The naïve method of simply removing ensemble average (AERP) from single trial
recordings is not always viable. Truccolo et al. (Truccolo et al. 2002) has performed detailed
analysis to demonstrate that power as well as functional connectivity measures such as
coherence can exhibit temporal modulations that is artifactual caused by the trial-to-trial
variability of event-related potentials. Without being cognizant of this underlying reason one
may erroneously attribute physiological significance to such temporal modulations.

In this work we extend the previous work to the domain of Granger causality analysis. Granger
causality has emerged in recent years as a leading empirical method for determining the
direction of neural information transmission among different brain areas (Ding et al. 2006).
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Applied to ongoing activity in the absence of sensory stimulation, it has revealed insights into
the organization of large-scale cortical networks not possible with other methods (Brovelli et
al. 2004; Chen et al. 2006). Currently, attempts are being made to examine cortical sensorimotor
processing with this method. The accurate recovery of ongoing activity during the post-
stimulus time period, however, presents a challenge. In this paper, we showed, with both
simulated and experimental data, that trial-to-trial variability of stimulus-elicited event-related
potentials can adversely impact a time-frequency analysis of Granger causality. In particular,
the temporally alternating patterns of causal influence between a lower and higher sensory
areas, while artifactual, may be misconstrued as evidence contributing to the debate regarding
the manner with which the brain processes sensory input leading to motor output (Ullman
1995; Grossberg 1999; Liang et al. 2000; Fabre-Thorpe et al. 2001; Thorpe and Fabre-Thorpe
2001). Three factors are identified as essential in generating the observed temporal modulation.
First, the event-related potential from one channel leads that from the second channel, and
these potentials have similar waveforms. Second, the amplitudes and/or latencies from the two
event-related potentials are correlated. Third, a small moving window is employed for the time-
frequency analysis of Granger causality. Being cognizant of these factors and their effect on
Granger causality analysis is crucial in the proper interpretation of experimental data. It should
be noted that if a time window long enough to encompass all the main components of the ERP
trace is utilized, the temporal alternation pattern in Granger causality will be replaced by a
predominantly unidirectional driving from the early evoked activity to the late evoked activity,
a result that is again artifactual.

ERP studies became feasible in the 1960s with the advent of computer technology. From the
outset, the trial-to-trial variability issue was being noticed, and sometimes made use of. In
conjunction with simple stimulus-response paradigms, Morrell and Morrell (Morrell and
Morrell 1966) proposed to divide the total collection of trials into subensembles according to
the level of response time (RT). Averages were performed for each subensemble and the
resulting ERP waveforms were then compared. This technique, referred to as subensemble
averaging, opens the possibility of examining the brain's activation patterns as a function of a
behavioral variable (e.g. RT) and is still in use today (Liang et al. 2002). The first method
dealing with evoked potential data on a single-trial basis was Woody's adaptive matched filter
technique (Woody 1967). Here, a grand average (AERP) is first performed and a component
of interest is identified whose waveform is used as a template. Cross correlation between this
template and the single-trial time series is calculated over a pre-specified time interval that is
stepped through the entire trial to yield latency and amplitude for each trial. While the original
goal is to get a better ERP by adjusting for latency variability, recent work has shown that
latency and amplitude on a trial-by-trial basis can be interesting physiological variables in their
own right (Truccolo et al. 2003; Knuth et al. 2006). Since these early studies numerous other
statistical methods for estimating single trial ERPs have appeared (Jaskowski and Verleger
1999; Melkonian et al. 2001; Truccolo et al. 2003; de Munck et al. 2004; Knuth et al. 2006).
For the purpose of this work a proper model of single trial recordings is an important starting
point. Recognizing that the ERP is comprised of time-resolved components and these
components can vary with respect to one another from trial to trial, Truccolo et al. (2003) and
Knuth et al. (2006) have developed the differentially Variable Component Analysis (dVCA)
method, based on the VSPOA model in equation (2). The dVCA method is formulated in the
time-domain and treats the ongoing activity as white noise. The Analysis of Single-trial Event-
related potential and Ongoing activity (ASEO) (Xu et al. in press) used here is a further
improvement over the dVCA method in that it is formulated in the spectral domain, which
allows for a more accurate estimate of latency, and treat the ongoing activity as an
autoregressive process to be estimated from data. The effectiveness of this method has been
demonstrated in Xu et al. (in press), and is also evidenced in Fig. 4(e), where the AERPs
calculated from the raw LFP data are seen to be nearly identical to that calculated by averaging
the single trial ERPs estimated by ASEO. The work presented here shows that the use of an
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effective single trial method is essential in experimentally establishing that trial-to-trial
variability of event-related potentials underlies the observed temporal patterns of Granger
causal influences.

In the absence of stimulation the state of the brain is characterized by ongoing neural activity.
The distinction between the analysis of this state and that of the stimulus processing state has
not escaped the notice of an early pioneer. In an article entitled “The theory of prediction,”
which laid the conceptual foundation of the modern Granger causality estimation, Wiener
(1956) wrote: “Or again, in the study of brain waves we may be able to obtain
electroencephalograms more or less corresponding to electrical activity in different parts of
the brain. Here the study of the coefficients of causality running both ways and of their
analogues for sets of more than two functions may be useful in determining what part of the
brain is driving what other part of the brain in its normal activity. This is the key phrase, as the
method does not intrinsically involve the introduction of artificial stimuli into different parts
of the brain. The danger of introducing such stimuli is that by their intensity and brusqueness
they may tear new paths through the brain which are followed by its normal activity and which
may be considered in a certain sense artifacts.”
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Figure 1.
A conceptual model. (a) and (b): 500 trials of simulated data from channel 1 and 2, respectively.
(c) and (d): residuals after subtracting the ensemble averages. Two analysis windows are
delineated by the interval between the two solid lines and that between the two dashed lines.
Vertical axis: arbitrary unit.
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Figure 2.
500 realizations of simulated data from channel 1 (a) and channel 2 (b). Both latency variability
and amplitude variability are considered. Vertical axis: arbitrary unit. (c) Time-frequency plot
of power for channel 1. (d) Granger causality at 15 Hz as a function of time. Dashed line:
channel 1 → channel 2. Solid line: channel 2 → channel 1.
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Figure 3.
(a) and (b): single trial LFPs from channel S (striate cortex) and channel P (prestriate cortex),
respectively. The amplitudes are normalized. (c) AERPs for channel S (solid line) and channel
P (dashed line). (d) and (e): residuals obtained by removing AERP from single trial LFPs. (f)
Coherence at 15 Hz as a function of time between the two channels using the residuals after
AERP removal. (g) Granger causality at 15 Hz as a function of time between the two channels
using the residuals after AERP removal. Dashed line: channel S → channel P; solid line:
channel P → channel S.
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Figure 4.
Single trial event-related potentials for (a) channel S and (b) channel P extracted by the ASEO
method from data in Fig. 3(a) and (b). (c) and (d): ongoing activities obtained by removing
single trial event-related potentials in Fig. 4(a) and (b) from data in Fig. 3(a) and (b). (e): AERPs
from data in Fig. 4(a) and (b) (red) plotted together with AERPs (black) from data in Fig. 3(a)
and (b) for channel S (solid line) and channel P (dashed line).
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Figure 5.
(a): Coherence at 15 Hz as a function of time between channels S and P using the ongoing
activity in Fig. 4(c) and (d). (b): Granger causality at 15 Hz as a function of time between
channels S and P using the ongoing activity in Fig. 4(c) and (d); dashed line: channel S → P;
solid line: channel P → S. (c): Granger causality at 15 Hz as a function of time for data in Fig.
4(a) and (b). Dashed line: channel S → P; solid line: channel P → S.
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