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Abstract

Independent component analysis (ICA) is becoming increasingly popular for analyzing functional
magnetic resonance imaging (fMRI) data. While ICA has been successfully applied to single-subject
analysis, the extension of ICA to group inferences is not straightforward and remains an active topic
of research. Current group ICA models, such as the GIFT (Calhoun et al., 2001) and tensor PICA
(Beckmann and Smith, 2005), make different assumptions about the underlying structure of the group
spatio-temporal processes and are thus estimated using algorithms tailored for the assumed structure,
potentially leading to diverging results. To our knowledge, there are currently no methods for
assessing the validity of different model structures in real fMRI data and selecting the most
appropriate one among various choices. In this paper, we propose a unified framework for estimating
and comparing group ICA models with varying spatio-temporal structures. We consider a class of
group ICA models that can accommodate different group structures and include existing models,
such as the GIFT and tensor PICA, as special cases. We propose a maximum likelihood (ML)
approach with a modified Expectation-Maximization (EM) algorithm for the estimation of the
proposed class of models. Likelihood ratio tests (LRT) are presented to compare between different
group ICA models. The LRT can be used to perform model comparison and selection, to assess the
goodness-of-fit of a model in a particular data set, and to test group differences in the fMRI signal
time courses between subject subgroups. Simulation studies are conducted to evaluate the
performance of the proposed method under varying structures of group spatio-temporal processes.
We illustrate our group ICA method using data from an fMRI study that investigates changes in
neural processing associated with the regular practice of Zen meditation.
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Introduction

Independent component analysis is becoming increasingly popular for analyzing functional
neuroimaging data. Compared to the conventional analysis tools such as general linear model
(GLM), a key advantage of ICA is that it is a data-driven approach and does not rely on a priori
model of brain activity. Therefore, ICA is applicable to cognitive paradigms where prior
knowledge of the expected brain time course is not available. ICA could also be used as an
exploratory tool to identify and distinguish various types of signals.

ICA has been successfully applied to single-subject fMRI analysis (Beckmann and Smith,
2004; McKeown et al., 1998; Petersen et al., 2000). However, the extension of ICA to group
inferences is not as straightforward as in the case of GLM because ICA does not have a pre-
specified design matrix, and both the time courses and the spatial maps need to be estimated
for each subject (Calhoun and Adali, 2006). Several methods have been proposed to perform
group ICA analysis on fMRI data aggregated across multiple subjects. Calhoun et al. developed
the GIFT approach (Calhoun et al., 2001), which consists in an initial data-reduction through
PCA for each subject, followed by the temporal concatenation of the reduced data across
subjects, and a final ICA decomposition of the concatenated data. Back-construction and
statistical comparison of individual maps is performed following the ICA estimation. More
recently, Beckman and Smith (2005) proposed a tensor probabilistic ICA (PICA) that factors
the multi-subject data as a trilinear combination of three outer products, representing the
loadings in the temporal, spatial and subject domains, respectively. Tensor PICA is derived
from parallel factor analysis (PARAFAC) (Harshman and Lundy, 1984) and it is a natural
extension of the two-way product factoring of the single subject ICA, which factors the data
as a combination of two outer products of loadings in the temporal and spatial domains. Other
group methods that have been proposed include the approach by Svensén and colleagues
(Svenseén et al., 2002), which concatenates multi-subject fMRI data in the spatial domain and
extracts independent components with subject-specific spatial maps associated with common
time courses across subjects. Schmithorst and Holland also proposed a group ICA method,
which performs PCA reduction and ICA decomposition on the data averaged across subjects
(Schmithorst and Holland, 2002).

Among the existing methods, the GIFT and tensor PICA are the most frequently used for
performing group ICA analysis of multi-subject fMRI data. These two methods share several
similarities: both methods are spatial ICA approaches, i.e., they assume statistical
independence of the spatial maps of the extracted components and both methods provide
estimation of group spatial maps by performing ICA on the aggregated group data. On the
other hand, the GIFT and tensor PICA have important distinctions. A major difference lies in
the structure of the group spatio-temporal processes that is assumed in the ICA decomposition.
The tensor PICA approach decomposes the multi-subject fMRI data as a trilinear combination
of three outer products representing group spatial maps, group time courses and subject
loadings. That is, subjects are associated with the same set of group spatial maps and time
courses but differ in the magnitude of loading on the group spatio-temporal processes. The
GIFT decomposition of the data, on the other hand, implies group spatial maps and subject-
specific time courses. Furthermore, the estimation and statistical inference procedure for the
GIFT and tensor ICA model are also distinctive and are tailored to their specific model
structure. The GIFT approach belongs to the classical noise-free ICA framework which
assumes that data are completely characterized by the estimated sources and the mixing matrix.
Based on the noise-free assumption, the GIFT reconstructs a subject’s spatial map from the
group ICA estimation by multiplying the inverse of the block of the mixing matrix
corresponding to the subject with the observed data from the subject. The statistical inference
for spatial activation is then performed through a “random effects” inference on the individual
maps. The tensor PICA approach is a probabilistic ICA approach which assumes the observed
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data is the combination of a set of statistically non-Gaussian sources aggregated through the
mixing matrix and additive Gaussian noises. Voxel-wise Z-scores are calculated by dividing
the estimated spatial maps by the noise standard deviation. The Z-scores are then modeled with
the Gaussian/Gamma mixture where the Gaussian component represents the background noise
and the Gamma distribution models brain activation. The statistical inference for spatial
activation is performed through calculation of the posterior probability for activation based on
the mixture model for the voxel-wise Z-scores.

Since the existing group ICA models assume different group structures in the ICA
decomposition and their estimation and statistical inference procedures are based on the
particular model structure, these methods may produce different results when applied to the
same fMRI data. It is desirable to develop a more general framework for group ICA that could
accommodate varying structures of group spatio-temporal processes. It is also important to
develop a statistical method to select an appropriate group structure for a particular data set.

An important task in analyzing multi-subject fMRI data is to characterize and compare brain
activity between subjects from different groups, such as subjects with/without certain
psychiatric conditions or subjects assigned to various treatment arms. Current group ICA
methods do not take into account subjects’ group identification in the ICA decomposition.
Group comparisons are typically performed as post-ICA-estimation analysis often by
comparing independent components estimated separately in each group. There are several
limitations associated with the existing group comparison approaches. First, when independent
components are estimated separately in each group, it is necessary to first identify matching
components in different groups. Because independent components are not ordered as principle
components, this is often done by identifying independent components in each group that are
associated with a pre-specified spatial or temporal template, which requires some prior
information on the spatial distribution or temporal dynamics of the underlying source signal
(Calhoun et al., 2004). Furthermore, it is possible that spatial ICA may split a spatio-temporal
structure into two or more temporally correlated components, which creates another difficulty
in selection of matching components from different groups. Recently, Calhoun and colleagues
proposed an approach that performs a group ICA on combined data from both subject groups
and then reconstruct subject-specific maps and time courses for group comparisons (Calhoun
et al., 2008). This new approach avoids the need for matching components between groups.
However, the group identification is still not incorporated directly in the ICA decomposition.
The second issue with the existing group ICA comparison approaches lies in the
interdependence of group comparisons on the temporal and spatial domains. Preferably, group
comparison in one of the domains should be performed while controlling for the group
difference in the other domain. For example, GLM estimates and compares group spatial map
by regressing each subject’s data against the same temporal paradigm. Such approach does not
naturally apply to ICA because both the time courses and spatial maps are estimated from data.
Within common group ICA comparison approaches (but see (Calhoun et al., 2008)), group
independent components are estimated separately in each group and thus differ both in their
spatial images and time courses. Hence, group comparison in either the temporal or the spatial
domain is confounded by the group difference in the other domain. The above limitations of
the existing approaches arise mainly because the group comparisons are performed indirectly
as a second-stage analysis after estimating independent components separately in each group.
Hence, it is desirable to develop a group ICA method that could directly incorporate subjects’
group information in the ICA decomposition and therefore provide a formal statistical method
for group comparisons.

In this paper, we propose a unified framework for fitting group ICA models that are based on
varying structures of group spatio-temporal processes. We consider a class of group spatial
ICA models, assuming independence in the spatial domain. The proposed models decompose
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multi-subject fMRI data into group spatial maps and a group mixing matrix that reflects the
assumed structure of group spatio-temporal processes, such as the trilinear product structure
of tensor PICA. This class of models incorporates existing methods such as the GIFT and tensor
PICA as special cases. Furthermore, by specifying an appropriate structure for the group mixing
matrix, the proposed model could directly incorporate subjects’ group information in the ICA
decomposition. For model estimation and statistical inference, we propose a maximum
likelihood approach. Latent spatial source signals are modeled with Gaussian mixture
distributions where the various Gaussian components model the probability density of
background noise and BOLD effects respectively. We develop a modified EM algorithm to
obtain the maximum likelihood estimates of the parameters in the group ICA models.

To evaluate the validity of various structures of group spatio-temporal processes for a particular
data set, we present statistical tests for making model comparisons between group ICA models
assuming different group structures. The statistical tests are based on the difference in the
maximum log-likelihoods under two ICA model structures and are known as the likelihood
ratio test (LRT). The LRT can be used to assess the validity of a group structure in an fMRI
data set. Furthermore, a statistical test based on the LRT is developed to examine group
differences in the spatial modes’ associated time courses between subject groups. We also
develop a local LRT for comparisons of different group structures for a subset of independent
components. The local LRT is motivated by the fact that ICA components extracted from fMRI
data often reflect different kinds of signals including task-related, transiently task-related,
physiology-related and artifact-related ones. (Calhoun and Adali, 2006; McKeown and
Sejnowski, 1998). Given the varying characteristics of ICA components, it may be desirable
to assume a specific group structure only upon components that are of interest or expected to
have particular properties while not imposing this structure upon components whose properties
are unknown or unlikely to conform to the chosen structure. Another motivation for the local
LRT is that we may be interested only in a subset of the signals that are relevant to the study
objectives. The local LRT provides more precise evaluation of an assumed group structure on
the selected components.

The remainder of this paper is organized as follows. In the Methods section, we introduce aclass
of group ICA models and show that existing group ICA models such as the GIFT andtensor
PICA can be viewed as special cases within this class. We then present a maximum likelihood
(ML) approach with a modified Expectation-Maximization (EM) algorithm for the estimation
of the proposed class of models. To compare between group ICA models, we introduce
likelihood ratio tests and show how to use the LRT to assess the goodness-of-fit of a group
structure in a data set and to test group differences between subject groups. The Results section
evaluates the performance of the proposed method on simulated data, and also illustrates its
application to real fMRI data from a study investigating changes in neural processing associated
with the regular practice of Zen meditation. Finally, a concluding section summarizes and
provides further discussion about the presented method and findings.

In this section, we first describe the class of group ICA models that is able to subsume varying
structures of the group spatio-temporal processes. We then present the maximum likelihood
approach for model estimation and likelihood ratio tests for performing model comparisons.

A class of group ICA models

In the fMRI application of ICA, the data is usually decomposed as a product of spatial maps
and associated time courses. Statistical independence is assumed for either the spatial maps or
the time courses, leading to the terminology of spatial ICA or temporal ICA, respectively
(Calhoun and Adali, 2006). For fMRI data, spatial ICA has become dominant because the
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spatial independence assumption is well suited to the sparse distributed nature of the spatial
pattern for most cognitive activation paradigms (McKeown and Sejnowski, 1998). In this
paper, we also assume spatial independence in our group ICA model. To set notation, let i =
1,...,Nindex subjects, s = 1,...,T index time points, and v =1,...,V index voxels. Let X be the
T xV matrix representing the observed fMRI data from subject i. We consider the following
group ICA model

X=MS+E, (1)

where X=[X/,... ,X’NJ' is the NT xV group data matrix formed by concatenating N subjects’
data in the temporal domain, S is gxV matrix containing q statistically independent spatial maps

in its rows, M=[A{, ... ,Ai,]' is the TNx g group mixing matrix, where A, is the Txq submatrix

corresponding to the i th subject, and E=[E/, ..., E’N]’ is the NTxV noise matrix where E; is
the TxV noise matrix corresponding to the i th subject. Define e, as the v th column of the E
matrix representing the N subjects’ noise term at voxel v. The noise term is assumed to follows
a zero-mean multivariate Gaussian distribution within each subject and is independent across
subjects, i.e. e, ~ MVN(0,ly ® X,) where X, is the TXT error covariance matrix for the v th
voxel. The ICA model in (1) is referred to as the noisy or probabilistic ICA (Beckmann and
Smith, 2004; Hyvarinen et al., 2001) since it includes the Gaussian noise term to account for
the background noise that is not represented in the source signals. In noisy ICA, the noise term
is generally assumed to be additive and Gaussian distributed since structured noise usually
appear in the data as structured non-Gaussian variability and hence can be modeled as one of
the source signals (Beckmann and Smith, 2004; Beckmann and Smith, 2005; Hyvarinen,
1998; Hyvarinen et al., 2001). Comparing to the classical noise-free ICA, the noisy ICA model
can help address the issue of overfitting and provides a convenient framework for formal
statistical tests of significance for source signal estimates (Beckmann and Smith, 2004).

Our group ICA model decomposes the multi-subject fMRI data as the product of the group
mixing matrix M and the group spatial map matrix S. The group spatial map matrix S is
estimated by aggregating information from all subjects’ data and represents the group spatial
patterns of brain function. The group mixing matrix M is formed by concatenating the
submatrices Aj which represent the mixing processes for the i th subject (i = 1,..., N). The
relationship between the subject mixing matrices reflects the nature of the between-subject
heterogeneity in the modeled neural activity. Therefore, by specifying different kinds of
regularities across subjects for the group mixing matrix, we obtain group ICA models with
varying structures of the group spatio-temporal processes. In the following, we consider several
special cases within this class of group ICA models.

Connection with existing group ICA methods—BY specifying an appropriate structure
for the group mixing matrix, the class of group ICA models in (1) relates naturally to some of
the existing group ICA methods. For example, the group structure assumed in the GIFT
approach is equivalent to the setting of

t
M=[A},..., AT, @)

where Aj is the Txqg submatrix corresponding to the i th subject. Since there are no restrictions
on the relationship between the subject submatrices, the group structure of the GIFT
corresponds to the most general model within our class of group ICA models. Note, however,
we note that the GIFT model is different from the proposed group ICA model in that the former
is a noise-free classical ICA whereas the latter includes a noise term.
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The tensor PICA is another special case within our class of group ICA models. The trilinear
product model of the tensor PICA is equivalent to assuming the following Khatri-Rao product
structure (Bro, 1998) for the group mixing matrix,

M=C|®|A @)

where C is the Nxq subject loading matrix with c;; representing the i th subject loading on the
£ th independent component (i = 1,..., N, £ = 1,..., q), and A is the Txq matrix containing the
group time courses associated with the g independent components. The Khatri-Rao product
C|®|Aisa TN x g matrix formed by N copies of the A matrix stacked and column-wise scaled
by the rows of the subject loading matrix C , i.e. C|®|A = ((Adiag(C1.)t,..., Adiag(Cy.))Ht
(Bro, 1998).In other words, we assume that each subject’s mixing matrix is equal to the
common mixing matrix A scaled by the subject’s loading vector, i.e.A; = Adiag(C;.))t.

Extended group tensor model—In many imaging studies, it is desirable to describe and
compare the spatio-temporal processes related to brain activity among subject groups with
different characteristics or treatment assignments. Group comparisons are more challenging
with ICA than with the standard GLM analysis. In GLM analysis, the subjects’ group
identifying labels are incorporated into the design matrix and group-specific estimates of brain
activations are readily derived. For ICA, the group information is generally not directly taken
into account in the extraction of the independent components and group-specific independent
components are typically estimated separately in each group.

Within the model framework of (1), we propose a group ICA model that incorporates the

subjects’ group information in the structure of the group mixing matrix and thus factors in the
group labels in the ICA decomposition of the multi-group data. For illustration purposes, we
present the model for a two-group scenario but the model could easily be generalized for more

than two groups. Suppose we collected fMRI data from two groups of subjects. Let X' (i =
N 4) denote the TxV fMRI data matrix from subject i in group g (g = 1,2).

Let X'¥= lX(g) X(° J be the N 4 TxV data matrix obtalned by temporally concatenating the
data from the subjects in group g (g 1,2) and X = [X®', X@"t be the (N; + No)TxV data
matrix obtained by stacking the data from both groups. We propose a group ICA model within
the model framework (1) with the group mixing matrix specified as,

( C(l)|®|A(1) )

() ()
C9 | ®|A @)

Here A© (g = 1,2) is the Txq matrix containing the group time courses associated with the q
independent components for group g and C@) is the Ng % g subject loading matrix for group

g where c(g) represents the loading of the i th subject in group g on the £ th independent
component (i=1,...Ng, £=1,...,q). With the group mixing matrix (4), we assume a trilinear
product structure for the group spatio-temporal processes within each group, with
representative time courses being allowed to be different between the two groups. The proposed
model can be viewed as an extension of the tensor PICA model for multi-group data, allowing
us to capture different temporal responses between subject groups.

To provide a quick overview of the aforementioned special cases within the proposed group
ICA models, we summarize their key properties and defined structure for the group mixing
matrix in Table 1 below. We will henceforth refer to these models using the given model names
in Table 1.
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The proposed group ICA models are estimated using maximum likelihood estimation. The
maximum likelihood (ML) approach has been used for single-subject ICA analysis
(Belouchrani and Cardoso, 1995; Cichocki et al., 1998; Hyvarinen, 1998; Moulines et al.,
1997). Here, we extend the ML method for ICA decomposition of multi-subject fMRI data.
The likelihood function is constructed based on a data augmentation scheme where unobserved
spatial source signals are treated as missing data. The distribution of the source signals is
modeled by a mixture of Gaussian distributions. We developed a modified expectation-
maximization (EM) algorithm to obtain the maximum likelihood estimates for these sources.

The complete likelihood function—We first construct the likelihood function for group
ICA models in (1). Given the spatial signal s,, the observed multi-subject fMRI data at voxel
v follows a multivariate Gaussian distribution with mean Ms, and variance | y ® Z .
Therefore, the complete log-likelihood for the observed data and the latent spatial signals in
the group ICA model (1) is as follows

v v
log p(X,S;G):Z log ¥(x,;Ms,, I, ® E\,)+Z log f(sy;p),
v=1 v=1 (5)

Where () is the multivariate Gaussian density function, f(s;¢) represents the probability
density function (pdf) for the spatial signal s, with ¢ denoting the parameters involved in the
pdf, and 6 = (M,{X,},) represents all the parameters in the likelihood function. The complete
likelihood in (5) is composed of two parts. The first part represents the likelihood function of
the observed fMRI data given the parameters and the spatial signals and the second part is the
likelihood for the latent spatial signals based on a prior distribution function. In the following,
we discuss the choice of the distribution function for the spatial signals.

Gaussian mixtures for the latent spatial source signals—We follow two major
criteria in selecting an appropriate distribution function for the latent spatial signals. First, the
distribution should be able to capture the salient features of the underlying spatial source
signals; for example, in fMRI most task-related signals are usually attributable to a small
percentage of voxels of the brain, whereas the rest of the brain areas are thought to exhibit task-
unrelated background fluctuations (Biswal and Ulmer, 1999; Suzuki et al., 2001). Secondly,
due to the enormous amount of data in multi-subject fMRI studies, it is desirable to select a
distribution that offers numerical efficiency in the estimation of the model parameters. Based
on the above two criteria, we model the spatial source signals with a mixture of Gaussian
distributions. The Gaussian mixture distribution is well suited to capture different patterns of
neural activity across the brain (Xu et al., 1997). Furthermore, the Gaussian mixture offers
tractable mathematic properties that facilitate the model estimation, as will be detailed below.

Denote with s, the spatial source signal for £ th (€ =1,..., q) independent component at voxel
v. The pdf of s, , based on Gaussian mixture distribution, is,

m
SCsvespr) :Zﬂfjly(s\vﬁ/l[j» 0?,),
=1 ®)

where m is the number of Gaussian density components in the mixture. Our experiments and
previous work (Beckmann and Smith, 2004) suggest that two to three mixtures are typically

appropriate to capture the distribution of the spatial signals. ¥(sve:1s)s (T?j) is the Gaussian
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density function with mean p£j and variance (Tfj nzjis the proportion of the j th Gaussian density

m

o 0=my < and ) my=1g=(mg) fuggh lo )
which satisfies = represents the parameters

associated with the Gaussian mixture distribution for the € th independent spatial source signal.
To facilitate our later derivation with the mixture distribution, it is helpful to assume that a
latent class variable wy, exists, taking values in [1,...,m] with probability p(wy, =mns;) (1 <j <
m). The latent class variable w,, indicates the membership of voxel v to the Gaussian mixture,
i.e. when wy,= j, the conditional distribution of s, corresponds to the j th Gaussian component
in the mixture,

]J(SV[ | W/:j):lP(va/;u[j,(T%j), 1< ] <m (7)

Due to the statistical independence between the components, the joint distribution of g
independent components at voxel v equals the product of the pdf of each component,i.e.,

q
f(sv;‘P)zl_[f (Sves@),
=1 (8)

where sy = [Sy1 4. , s\,q]t and ¢ = (@y,..,9q)- We can then substitute the Gaussian mixture
density function in (8) into the complete log-likelihood function (5).

Modified E-M algorithm—When the likelihood function involves unobserved latent
variables, the expectation-maximization (EM) algorithm (Dempster et al., 1977; Dempster et
al., 1981) is often used to find maximum likelihood estimates of parameters. The EM algorithm
is an iterative algorithm that alternates between performing an expectation step (E-step) and a
maximization step (M-step). In the E-step, one computes an expectation of the log-likelihood
conditioning on the posterior distribution of latent variables S given the observed data and the
current parameter estimates (). At the M-step, the updated maximum likelihood estimates of
the parametersd<*1) is computed by maximizing the expected log-likelihood found on the E-
step. The parameter estimates 8*1) found on the M-step are then used to begin another E-step,
and the process is iterated until convergence, i.e. until the parameter estimates #®) and §(k*+1)
in two consecutive iterations are considered sufficiently close.

Since the log-likelihood in (5) involves unobserved spatial source signals S , we consider the
EM framework for model estimation. Due to the special features of the imaging data and our
proposed group ICA model, we develop a modified EM algorithm.

At the E-step, the expected log-likelihood function is computed as

0018")=E__, log p(X,S:8)=[log p(X,S:6) Pr(SIX,8" )8
S| X8 9)

To calculate the expectation, we first need to derive the posterior distribution of the latent
spatial signals. Given the assumed mixture of Gaussian distributions for s,, and the multivariate
Gaussian distribution of the data, we show that the posterior distribution of s, is again a mixture
of Gaussian distributions,
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m?
Pr(s, | X,.0)= Zpt’ (s, Q).
= (10)

wO=w”, ... w’) € {1.....m} : rth realization of latent labels wy = (Wyy,...,Wyq, where r = 1,
...mq
(/)

- (n—
[,Ul“(r),...,,uq“m] T dlag((rl (,,,..., q“(,))

-1
Q= M"(I, ® £, HM+T""'|

(') Q(’)[Ml (I ®X, _I)X +1“(l) (')]

md

p= '.)/sz,"), with
r=1

T A1 . AT A~ 1 .
2 ([_[ ) 100 rexpl - (u” I " -al” Q) o)
=1 7w

The expectation of the log-likelihood function is then obtained by integrating the log-likelihood
function over the Gaussian mixture posterior distribution. However, the integration in (9) does
not have a tractable form. When the E-step is intractable, typical solutions include the Monte
Carlo EM (MCEM) algorithm (Wei and Tanner, 1990) or the stochastic EM algorithm (Delyon
et al., 1999), which approximate the intractable expectation function by simulating random
variables from the posterior distribution. Due to the large number of voxels with imaging data,
implementations of these algorithms are practically infeasible. As an alternative, we propose
to approximate the intractable expectation function Q(6 | 8®) using a second-order Taylor
expansion approximation, which gives the following explicit form for Q(0 | 6(%)),

018" —Z{—l[log|2|+x‘ @, ® %, x, - 2%,/ (I, ® X, )MS,

v=1
m?

—(r) AT
> P04, X, MO, )+a! M (1, e X7 ) MG

2 1 var(s,)
+3 " |log(/ G, ,so))+ >
fZ‘ [ 2 (G

m ﬂ[' — -
+ [Z 0_—2/‘{'(Svf;ll(j, O'%j) [(I-lfj ) /0';]- - IJ]
=

G

71'(1 :
[ZG WS oesptej> 03 (g — w)] /f(s‘ P)
j=1

4]
]} (11)
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Our modified E-step does not require iterative numerical simulations and hence is
computationally more efficient than the existing algorithms.

At the M-step of the standard EM algorithm, the updated estimates are obtained by maximizing
the expected log-likelihood function computed in the E-step,

—(k+1) —(k)
6 “=argmaxg Q@6 ) (12)

In our class of group ICA models, the group mixing matrix M may have a specific structure
based on the chosen assumption for the group spatio-temporal processes. For example, the
Tensor Model assumes that the matrix M can be written as a Khatri-Rho product of the group
time course matrix and the subject loading matrix. In order to estimate the group mixing matrix
with a specific structure, an additional step is performed after the M-step of the standard E-M
algorithm to project the estimated group mixing matrix onto the space of the specified model
structure. Continuing with our example, to estimate the group mixing matrix for the Tensor
Model such that M~ = C™ |®|A”, a rank-1 approximation can be employed (Beckmann and
Smith, 2005).

The steps for the proposed modified E-M algorithm are summarized in the following:

1. start with initial parameter values 60= (M© {03}, ¢©). The initial values could
be obtained by first analyzing the multi-subject fMRI data using existing group ICA
software such as the GIFT (http://icatb.sourceforge.net/) or FSL’s MELODIC routine
(http:/lwww.fmrib.ox.ac.uk/fsl/melodic).

2. modified E-step: calculate Q(0 |6°(K)) based on a Taylor expansion approximation
(11)

3. M-step: update parameter estimates by maximizing the expectation function obtained
through step 2, i.e. 8*1) arg max g Q(6 |6~K)

4. project the estimated group mixing matrix M*1) onto the space specified by the
model structure. The step is done by taking each column of M&*1) that corresponds
to a particular independent component and projecting it to the specified space.

5. iterate between steps 2—4 until convergence

After obtaining the parameter estimates & = (M, {£,}, ¢) from the modified E-M algorithm,
the spatial source signal and its variance can be estimated based on its posterior distribution
(10),

mi
ey - Vw1 pol =7y,
S=E(sv1%,0)=) 70, ML x,+T " @),
r=1 (13)

m?
— o —(r) : AT =
var(s,)=Var(s, | x,,0)=> 5@, +a\"a” ) -5].
r=1 (14)

The spatial IC maps can then be obtained by plotting the raw IC estimates § ,, or the IC
standardized by their standard deviation 8, /s .d..(s), to evaluate the relative activity of various
brain regions in each signal.
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An important goal in fMRI analysis is to identify "active™ voxels, i.e. voxels that display
significant changes of activity (positive or negative), typically task -related but not necessarily
S0 (e.g., in resting state studies). We model the spatial source signals using Gaussian mixtures,
with different Gaussian components modeling the probability density of background noise and
BOLD effects, respectively. In this scheme, the activation of a voxel can be evaluated by
calculating the probability for the voxel to belong to the Gaussian component that represents
activation. Gaussian components that model the activation vs. background noise could be easily
identified by examining the estimated mean associated with each Gaussian. Gaussian with a
mean close to 0 represents background noise and Gaussians with mean far away from 0
represent activation corresponding to positive or negative BOLD effects. Suppose that the j;
th Gaussian component models the activation of interest in each signal, the probability of
activation at voxel v in the € th signal can be estimated as the posterior probability for the latent
class variable wy, to point to the j; th Gaussian component , i.e.,

Prwy=j1 [6,X)= ) 5.

re{w(‘f;':jl} (15)

A statistical inference for the distribution of the activated voxels can be obtained by plotting
the thresholded posterior probability of their signal.

Statistical tests between group ICA models

1 g
m(x,:0)= [¥%:Ms,, Z) (i) ds o 5 exp(—5x/ 2, %) - ) 2.
r=1

Based on the maximum likelihood method, we can compare various group ICA models using
the likelihood ratio test (LRT). The LRT can be used to assess the goodness-of-fit of an assumed
spatio-temporal structure in a group data set. Furthermore, we derive a statistical test based on
the LRT to test group differences in the fMRI signal time course between subject groups.

Likelihood ratio test—The likelihood ratio test is a statistical test between two nested
models in which the simple model is a special case of the general model, in the sense that the
general model differs from the simple model only by the addition of one or more parameters.
In the likelihood ratio test, the two nested models are framed as a null hypothesis Hg and an
alternative hypothesis Hy where the simple model is represented by the null hypothesis Hg and
the general model is represented by the combination of the null and alternative hypotheses, i.e.
Hp UH;. The likelihood ratio test statistic is the difference between the maximum log-
likelihoods of the data under the two models. Under the null hypothesis Hg , the likelihood
ratio test statistics (LR) approximately follows a Chi-square distribution with degrees of
freedom equal to the number of additional parameters in the general model. If the LR is greater
than the o upper percentile of the Chi-square distribution with the given degrees of freedom,
the null hypothesis is rejected and we conclude that the general model is significantly better
supported by the observed data than the simple model.

To perform the likelihood ratio test between nested group ICA models with different structures
for the group mixing matrix M, we calculate the marginal likelihood of the observed data by
integrating the complete likelihood function with respect to the density of the unobserved
spatial source signals. The marginal likelihood for voxel v can be written as:

m

(16)

Hence, the marginal log-likelihood for our class of group ICA models is
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\4 m4
1 A
LX:0)=c — EZ Nlog =, +x/ (I, ®E;1)x\,+logZZ‘(,') ,
v=1 r=1 (17)

where c is a constant term that does not involve the parameters. The LR test statistic for
comparing two nested group ICA models is,

LR= - 2[ L(X;8)) — L(X:6))] (18)

where 8 and 8 are the MLE of the parameters under the simple model and the general model,
respectively. The LR statistic follows a Chi-square distribution, i.e. LR ~ 2 (t) , with the number
of degrees of freedom 1 given by the difference in the dimensionality of 8y and 8,, which
essentially equals the difference in the number of parameters in the group mixing matrix under
the two ICA models.

Goodness-of-fit test for a group ICA model—Using the LRT, we could evaluate the
goodness-of-fit for a specific structure of the group spatio-temporal processes in a multi-subject
fMRI data set by comparing the model with the specific group structure against the Full Model.
In the following, we present the goodness-of-fit test for the Tensor Model. Similar tests can be
performed to evaluate the appropriateness of other group structures.

The Tensor Model assumes the trilinear product structure for the group ICA decomposition.
When the assumption of trilinear structure is violated, the validity of the estimated group spatio-
temporal processes becomes questionable. To evaluate the goodness-of-fit of the Tensor Model
in a data set, we compare the group ICA model with the trilinear product structure against the
Full Model using the likelihood ratio test. The hypotheses of the test are:

H, M=C|®|A
H M=[A],...A) where A; # Adiag(C;)fori=1,...,N 19)

The null hypothesis H, states that the group mixing matrix can be expressed as the Khatri-
Rho product of the subject loading matrix and the group time course matrix, which is equivalent
to specifying a trilinear product structure for the group spatio-temporal processes. The general
model in the test, i.e. Hg U Hq , is the Full Model, where the group mixing matrix is equal to
the concatenated mixing matrices from the individual subjects, without any assumption of a
shared structure among them. The trilinear model is a special case of the Full Model when each
subject’s mixing matrix can be expressed as the group time courses matrix column-wise scaled
by the subject’s loading vector. Hence, the test is equivalent to testing whether the subjects’
individual mixing matrices satisfy the relationship A=A diag(C;.) fori=1,...,N. The likelihood
ratio test statistic is defined in (18) with 8 = {A, C, {£,0}, o} and 8; = M, {£,}, ¢}
representing the set of estimated parameters for the models under the hypotheses Hy and Hg U
H1 , respectively. The LR statistic follows a Chi-square distribution with the number of degrees
of freedom equal to the difference in the number of parameters under the two hypotheses, which

is T =TNg —(T + N)g. If LR>y>(7), the null hypothesis is rejected and it can be concluded that
the data do not satisfy the trilinear product structure.

Testing group differences between subject groups—We hereby derive a statistical

test of differences between subject groups. The proposed test is constructed as the likelihood
ratio test between the Tensor Model and the Group Tensor Model. In the Tensor Model, the
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defining assumption is that all subjects are associated with the same set of group spatial maps
and group temporal responses. As an extension, the Group Tensor Model (4) allows
heterogeneous temporal responses between different subject groups. Hence, by comparing the
two models using the LRT, we could examine whether there is a significant difference in the
temporal responses between two groups. The hypotheses for the proposed group test are

c |®] AD

) and AV = AP,
(20)

The Tensor Model in the null hypothesis is a special case of the Group Tensor Model when
A = A@ | je. when the group time courses of the two groups are assumed to be the same.
Hence, the test is equivalent to testing whether AQ) = A@). The LRT test statistic is defined as
in (18) with 8y = {A, C, {£,0}, o} and 8; = {Aq, C1, Ay, Co, {£,}, ¢} representing the
maximum likelihood estimates of the parameters under the Tensor Model and the Group Tensor
Model, respectively. The difference in the two models is that the null hypothesis provides for
only one group time course matrix for all the subjects, while the alternative hypothesis specifies
two time course matrices, one for each group. Hence, the number of degrees of freedom of the
Chi-square distribution equals the number of parameters in the additional group time course

matrix required by the alternative hypothesis, i.e. T = Tq. If LR>)? (1) the null hypothesis is
rejected and it can be concluded that the temporal responses are significantly different between
the two groups.

Local likelihood ratio test for a subset of independent components—Observed
fMRI data represent the combination of various kinds of signals including task-related,
transiently task-related, physiology-related and artifact-related ones. Since the signals stem
from different underlying sources, they may be associated with various types of between-
subject variability. For example, the temporal dynamics of task-related signals tend to be more
consistent across subjects (when the experimental paradigm is fixed), since the neural activity
is temporally locked to the same stimulus presentation schedule for all subjects. Other types
of signals, such as those representing physiological fluctuations (e.g., cardiac or respiratory
effects on the BOLD signal, or spontaneous mental activity unrelated to the task) are typically
more heterogeneous among subjects. Given the varying characteristics of the signals, it may
be desirable to assume different group spatio-temporal structures for independent components
related to different kinds of signals. For example, one may choose to assume the trilinear
product structure only for a subset of independent components (e.g., task-related ones), while
not imposing this structure upon components for which it seems unreasonable (e.g., head-
motion related ones). The assessment of the goodness-of-fit of the trilinear structure is therefore
only relevant to the selected subset of components. Similarly, when testing group differences
between subject groups, the interest of the researcher may focus on only those signals that are
relevant to the study objectives.

To address the above issues, we propose the local LRT that is targeted to a subset of the
independent components. The local LRT allows for comparisons between structures of group
spatio-temporal processes for a subset of components. Suppose that a researcher is interested
in testing the group structures for g, independent components where 1 <g; < g. Without loss
of generality, it can be assumed that the selected components correspond to the first g, columns
in the group mixing matrix due to the permutation invariance of ICA. Hence, the group mixing
matrix can be partitioned into two sub-matrices such that M = [M1,M5] , where M is the
TN x g1 mixing matrix corresponding to the selected g; components and M5 is the TN x g»
mixing matrix corresponding to the other components with g, = q—q;. The local LRT focuses
on the comparisons of different group structures for M related to the selected components.
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As an example, let us consider the local goodness-of-fit test for the trilinear product structure.
The hypotheses being tested are:

HyM=C" [®]A"
Hi M =[AY, .. A 1] where A? # A* diag(C}) fori=1...,N 1)

whereC” is the N x g subject loading matrix representing the subjects’ loadings on the gy
selected independent components, A™ is the T x g1 matrix containing the group time courses
associated with the selected components, and A7(i=1,...,N) is the T x gy individual mixing
matrix corresponding to the i th subject for the g, selected independent components. The local
LRT test statistic is then constructed based on the difference in the maximum log-likelihood
under the hypotheses Hg and Hg U Hy , respectively. The LR statistic follows a Chi-square

distribution with the number of degrees of freedom t = TNgy — (T + N) q. If LR>y (1), the
null hypothesis is rejected and it can be concluded that the selected subset of independent
components does not satisfy the trilinear product structure assumption.

Similarly, the local LRT can be set up to test group differences between subject groups
restricted to a subset of selected independent components. The testing hypotheses are in this
case:

cwr |®|A(l)*

HyM=C*|®|A", H11M|:( C | @AD"

) and A" 2 A®'
(22)

where A©@” (9=12) is the T x q; matrix containing the group time courses associated with
the q; selected independent components for group g and C@ s the Ng X gz subject loading
matrix for group g for the selected components. The LR statistic for this test follows a Chi-
square distribution with the number of degrees of freedom © = Tq;.

Toperformthe local LRTs on a subset of selected components, we need to fit group ICA models
with a component-specific group spatio-temporal structure. This can be achieved by
identifying, in step 4 of the modified E-M algorithm, the columns in the updated group mixing
matrix that correspond to the selected signals and project these columns onto the space specified
by the group structure assumed for the selected signals. To identify the column that corresponds
to a selected signal, the estimated spatial maps for the independent components can be ranked
according to their correlation with a spatial template of the signal of interest.

Data dimension reduction and whitening—ICA analysis usually incorporates several
preprocessing steps including centering, dimension reduction and whitening in order to reduce
the complexity for the subsequent ICA decomposition. In group ICA analysis of multi-subject
fMRI data, two stages of dimension reduction are often performed to reduce the computational
load and avoid overfitting (Beckmann and Smith, 2005; Calhoun et al., 2001). At the first stage,
a dimension reduction in performed in the temporal domain within each subject. Following
Beckman and Smith (2005), we first perform a probabilistic PCA (PPCA) of the group data
matrix obtained by spatially concatenating the individual subjects’ data, i.e. Y1xny =[X1 ...
Xn]. Each subject’s data is then projected onto the common subspace spanned by the first R
eigenvectors from the PPCA analysis Ug , where R is determined using Laplace approximation
(Minka, 2000),

v . 117
X;=U, X, (23)
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where )Zi is the reduced data for the i th subject with the dimensionality of RxV.

The reduced data from all the subjects are then concatenated to form the matrix

X:[X’l, cees X;,J’ and a second stage dimension reduction and whitening is performed as in a
single subject PICA analysis (Beckmann and Smith, 2004),

. -1/2. T
X'=(A, -1, UK, (24)

where q is the number of independent components extracted from the concatenated dataset
X that is again estimated using Laplace approximation, Ug and Aq contain the first g
eigenvectors and eigenvalues based on the singular value decomposition of X, and the error
variance o2 represents the variability in X accounted by the g independent components and is
estimated by the average of the NR—q smallest eigenvalues of X.

The two-stage dimension reduction and whitening is equivalent to multiplying the original
group fMRI data by the following transformation matrix,

12

H=(A,-0’1) U@, U . (25)

Hence, the group ICA model in (1) can be re-expressed on the reduced and sphered space as
following:

X*=M"S +E*, (26)

where X" = HX,M* = HM, and E* = HE. The transformed noise term in model (26) still follows
a multivariate Gaussian distribution, i.e. e;~MVN(0, £}) with £;=H(I, ® X,)H” . The new
parameter vector for the group ICA model (26) is °=(M", {X:}, ¢) Note that ¢, which
represents the parameters related to the Gaussian mixture distribution of the spatial source
signals, is not affected by the transformation since the dimension reduction is performed in the
temporal domain. The parameter vector 8" can be estimated using the proposed modified EM
algorithm. Note that a slight modification is needed in the projection step (Step 4) of the EM
algorithm because the group mixing matrix on the reduced dimension is no longer composed
of concatenated subject submatrices. Therefore, in Step 4 ,M”(&*1) needs first be transformed
back to the original scale with

M D=HTM*®D where H™'=(I, ® U,)U, (A, — azlq)'/z.ﬁ‘k+‘) is then projected onto a
specified subspace and the new estimates are obtained on the reduced dimension as

6D e é+ D After obtaining the parameter estimates 6 from the modified EM, the
parameters estimates 6 can be computed by back-transforming 6* to the original scale.

Simulation Studies

To evaluate the performance of the proposed maximum likelihood method and the likelihood
ratio tests for the group ICA models, we conducted two sets of simulation studies. In the first
set, we generated a multi-subject dataset for one group of subjects and considered four
simulation cases with different structures for the group mixing matrices, representing various
types of subject heterogeneity. We fitted the Full Model and the Tensor Model for each
simulation case with the proposed maximum likelihood approach. The accuracy of the model
estimation was assessed by calculating the correlations between the true and estimated spatial
maps and time courses. The goodness-of-fit of the Tensor Model was evaluated through the
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proposed LRT for each simulation case. In the second set of simulations, we generated data
for two groups of subjects. The Tensor Model and Group Tensor Model were fitted and the
proposed LRT was applied for testing group differences.

Single-group simulation study—Three source signals were generated with the spatial
maps and associated time courses depicted in Figure 1. The time courses in Figure 1 were
estimated time sources from the ICA analysis of an fMRI dataset and hence represent realistic
temporal dynamics of source signals. While the simulated spatial maps are simpler than typical
3D brain activation images from real fMRI data, they are devised to reproduce the sparse nature
of activations in fMRI, i.e. the fact that the source signal is attributable to a small number of
voxels while the majority of the voxels exhibit background fluctuations. Gaussian background
noises were added to the generated source signals. We simulated data for a group of 9 subjects.
We considered four simulation cases with different structures for the group mixing matrix,
representing varying types of between-subject heterogeneity:

Case 0: Inthis case, we generated data according to the Tensor Model. Hence, the group mixing
matrix is the Khatri-Rao product of the subject loading matrix C and a group time series
matrixA. The group time series matrix consists of the three time courses as depicted in Figure
1, i.e. A = (t3,tp,t3), which are associated with the three spatial maps. The subjects’ loadings
on the three sources are (1, 0.5, 0.3), (0.3, 1, 0.5), (0.5, 0.3, 1), (0.9, 0.4, 0.3), (0.3, 0.9, 0.4),
(0.4,0.3,0.9),(0.8,0.4,0.2),(0.2,0.8,0.4),and (0.4, 0.2, 0.8) times the noise standard deviation
for the 9 subjects.

Case 1: Each subject’s mixing time course A; (i = 1,...,9) is the composition of the group time
courseA = (t1,t,t3) in Figure 1 and individualized Gaussian noise. Hence, a subject’s time
course associated with each source signal is no longer proportional to the group time course
and the group model thus deviates from the Tensor Model.

Case 2: We transformed the group time courses in Figure 1 into the frequency domain where
we retained the frequency but randomized the phase for each subject, and then transformed it
back to the temporal domain to obtain each subject’s time course. This case is closer to the
resting-state fMRI BOLD signals where the temporal responses of different subjects may have
similar frequency features but different phase patterns.

Case 3: Each subject contains the three spatial maps in Figure 1 but modulated by individual
time courses A; (i = 1,...,9) that were generated from a Gaussian process and hence do not
reflect common underlying temporal dynamics.

Multi-group simulation study—In the second set of simulation study, we generated data
from two groups of subjects each with 3 subjects. Here, we considered a relatively small group
size so that we can evaluate the performance of the proposed methods in small sample studies.
In typical multi-group fMRI studies, the number of subjects in each group is usually larger
than 3, resulting in generally better performance in model estimation and statistical tests. The
generated data represented the combination of three independent components. The spatial maps
of the components are portrayed in Figure 1. Gaussian background noises were added to the
spatial source signals. We considered two simulation cases, exemplifying different types of
between-group heterogeneity:

Case 1: We generated data according to the Tensor Model. Hence, the group mixing matrix

of all subjects is the Khatri-Rao product of the subject loading matrix C and a group time series
matrix A. The time series matrix consists of three time courses as depicted in Figure.1, i.e. A
=y, ty, t3, which are associated with the three spatial maps. The subject loading on the three
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sources are (1, 0.5, 0.3), (0.3, 1, 0.5), (0.5, 0.3, 1), (1, 0.6, 0.8), (0.6, 1, 0.2), and (0.3, 0.4, 1)
times the noise standard deviation for the six subjects in the two groups. Note that the same
group time course matrix A is shared by subjects of both groups, indicating fMRI signals with
the same temporal structure in the two groups.

Case 2: We generated data from the Group Tensor Model. Within group g (g = 1,2), the group
mixing matrix of the 3 subjects is the Khatri-Rao product the subject loading matrix C(9 and
the group time series matrix A©). The group time series matrices A© =(t;@ t,@ ;) (g =
1,2)contain two different sets of time courses (Figure 3) associated with the three spatial source
signals. Therefore, the simulated fMRI time courses are similar within each group but different
between the two groups.

Simulation studies

In the following, we compare the performance of different group ICA models under the various
types of spatio-temporal structure embedded in the simulated datasets. We first consider the
results from the single-group simulation study and compare the results from the Tensor Model
and Full Model. The accuracy of the model estimates is measured by the spatial correlations
between the estimated and true spatial maps (Figure 2A) and the temporal correlations between
the estimated and true time courses (Figure 2B). We then consider the multi-group simulation
study where subjects were from two groups and compare the results from the Tensor Model
and Group Tensor Model. In the simulation study, the proposed likelihood ratio tests were
performed between nested group ICA models. The performance of the LRT was evaluated by
the empirical type | error and power of the test. More specifically, we recorded the rejection
rate of the LRT, that is, the proportions of simulated data where the LRT rejected the null
hypothesis, which is the simple model, in favor of the alternative hypothesis, which is the more
general model. The rejection rate is an empirical estimate of the type | error when the null
hypothesis is true and the data were generated from the simple model, and an empirical estimate
of the power of the LRT when the null hypothesis is false and the data were generated from
the general model.

Single-group simulation study—We present the results for the four simulation scenarios
in the single-group simulation study. Among the four cases, Case 0 is generated from the Tensor
Model and Case 1 to Case 3 represent group ICA models that deviate from the Tensor Model
with the degree of deviation increasing from Case 1 to Case 3. Both the Tensor Model and the
Full Model were fitted in all cases and their results compared. The proposed LRT were
performed to compare the Tensor Model and the Full Model. The rejection rate of the LRT for
rejecting the Tensor Model in favor of the Full Model was recorded for each simulation
scenario. In Case 0 where the null hypothesis (Tensor Model) is true, the rejection rate of LRT
is an empirical estimate of the type | error of the LRT. In Case 1 to Case 3, the rejection rate
reflects the power of the LRT for detecting the deviations from the Tensor Model.

Case 0: In this case, where the data were generated from the Tensor Model structure, both the
Tensor Model and the Full Model provided accurate estimates of the spatial maps (Figure 2A)
and the time courses of the simulated signals (Figure 2B). The box plots show that there were
high correlations between the estimated and true signals within the spatial and temporal
domains. Across the three simulated independent components, the mean (SD) of the spatial
correlations was 0.995 (0.003) and 0.996 (0.003) for the Full Model and Tensor Model,
respectively. The mean (SD) of the temporal correlations was 0.996 (0.004) and 0.998 (0.001)
for the Full Model and Tensor Model, respectively. The LRT was performed between the two
models. Since the data were generated from Tensor Model, the rejection rate of the LRT for
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rejecting the null hypothesis (Tensor Model) in favor of the alternative hypothesis (Full Model)
is an estimate of the type | error. At the significance level of 0.05, the empirical type I error
was 0.045, which is close to the nominal level.

Case 1: This model represents a slight deviation from Tensor Model in that each individual’s
temporal responses are combinations of the group time courses and individual Gaussian noises.
The box plots show that both the Full Model and Tensor Model were still fairly accurate in
estimating the spatial maps and the temporal responses associated with each source. Across
the three simulated independent components, the mean (SD) of the spatial correlations was
0.995 (0.003) and 0.996 (0.003) for the Full Model and Tensor Model, respectively. The mean
(SD) of the temporal correlations was 0.980 (0.005) and 0.970 (0.003) for the Full Model and
Tensor Model, respectively. The power of the LRT for detecting the deviation from the Tensor
Model in Case 1 was 0.34 at the significance level of 0.05.

Case 2: This case mimics the characteristics of the temporal dynamics observed in resting state
fMRI studies. The frequency information of the time courses of each independent component
was similar across subjects but the phase of the time courses was randomized across subjects.
The box plots show that the Full Model still provided highly accurate estimates of the signals
high within both the spatial and temporal domains. In comparison, the accuracy of the Tensor
Model was decreased, especially in the temporal domain because the subjects’ temporal
responses were quite different from the group time courses associated with each independent
component. Across the three simulated independent components, the mean (SD) of the spatial
correlations was 0.995 (0.003) and 0.972 (0.034) for the Full Model and the Tensor Model,
respectively. The mean (SD) of the temporal correlations was 0.994 (0.004) and 0.680 (0.05)
for the Full Model and the Tensor Model, respectively. The power of the LRT for detecting
the deviation from the Tensor Model in Case 2 was 0.77 at the significance level of 0.05.

Case 3: In this case, the time courses were generated from Gaussian processes for each subject
and hence vary significantly across subjects. The box plots show that the Full Model provided
highly accurate estimates of the signals within both the spatial and temporal domains, while
the accuracy of the Tensor Model was significantly decreased in both domains because of the
considerable deviation from the Tensor Model assumption. Across the three simulated
independent components, the mean (SD) of the spatial correlations was 0.995 (0.003) and 0.970
(0.030) for the Full Model and Tensor Model, respectively. The mean (SD) of the temporal
correlations was 0.995 (0.004) and 0.602 (0.03) for the Full Model and Tensor Model,
respectively. The power of the LRT for detecting the deviation from the Tensor Model in Case
3 was 0.96 at the significance level of 0.05.

Multi-group simulation study

In the following, we describe the results from simulation studies where subjects are from two
groups. We fitted both the Tensor Model as well as the Group Tensor Model and compared
their results. The proposed LRT were performed between the two models. The LRT rejection
rates for the Tensor Model in favor of the Group Tensor Model were assessed for each
simulation scenario.

Case 1—The multi-subject data from the two subgroups were generated from the Tensor
Model, that is, subjects from both group have similar signal time courses. Since the null
hypothesis (Tensor Model) was true in this case, the rejection rate of LRT is an empirical
estimate of the type | error of the LRT. At the significance level of 0.05, the empirical type |
error was 0.08, which is close to the nominal level. Both the Tensor Model and Group Tensor
Model provided accurate estimates of the source signals in the spatial and temporal domains.
Across the three simulated independent components, the mean (SD) of the spatial correlations
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was 0.995 (0.004) and 0.996 (0.002) for the Group Tensor Model and Tensor Model,
respectively. The mean (SD) of the temporal correlations was 0.998 (0.001) and 0.998 (0.001)
for the Group Tensor Model and Tensor Model, respectively.

Case 2—The data were generated from the Group Tensor Model, with the two groups being
characterized by different time courses. Because the null hypothesis (Tensor Model) was not
true in this case, the rejection rate of LRT reflects the power of the test for detecting the
deviation from the Tensor Model. The empirical power of LRT in Case 2 was 0.97 at the
significance level of 0.05. Across the three simulated independent components, the mean (SD)
of the spatial correlations was 0.996 (0.002) and 0.988 (0.005) for the Group Tensor Model
and Tensor Model, respectively. The mean (SD) of the temporal correlations was 0.998 (0.001)
and 0.732 (0.002) for the Group Tensor Model and Tensor Model, respectively. In Figure 3,
we plot the true time courses associated with the two subgroups and the estimated time courses
from the two models. The results show that the Group Tensor Model captured the difference
in the two groups and accurately estimated the temporal responses associated with the three
independent components in each group. In comparison, the Tensor Model only captured the
temporal response from one group due to the restriction in its model assumption.

Application to real fMRI data

Subjects

We applied our proposed group ICA approach to real fMRI data from a study on the
neurobiological correlates of meditation. Twelve Zen meditators with more than 3 years of
daily practice (MEDT) were recruited from the local community and meditation centers, along
with twelve control subjects (CTRL) who never practiced meditation. The groups were
matched for gender (MEDT=10 M, CTRL=9 M), age (mean+SD: MEDT, 37.3+7.2 years;
CTRL, 35.345.9 years; 2-tailed, 2-sample t-test: p=0.45), and education level (mean+SD:
MEDT, 17.8+2.5 years; CTRL, 17.6+1.6 years; p=0.85). All participants were native speakers
of English and right-handed, except one meditator who was ambidextrous. Subjects gave
written informed consent for a protocol approved by the Emory University Institutional Review
Board.

Rationale and design of the experimental task

The practice of Zen meditation is traditionally considered as conducive to a mental state of
reduced conceptual processing while full awareness is retained. This state is pragmatically
elicited by heedfulness to distraction from spontaneous thoughts, usually by adopting a
reference attentional object such as one’s own breathing. We hypothesized that habitual
meditators would exhibit an enhanced capacity to voluntarily moderate intensity and duration
of the automatic conceptual processing kindled by the presentation of semantic stimuli,
compared to control subjects. Under this hypothesis, we expected differential patterns of neural
responses to semantic stimuli during meditation in control subject and habitual meditators.

To test this hypothesis, we adapted a simple lexical decision paradigm from Binder and
colleagues (Binder et al., 2003) employing semantic and nonsemantic stimuli: 50 word and 50
phonologically and orthographically matched nonword items, were presented visually on a
screen in pseudo-random temporal order and subjects were asked to respond whether the
displayed item was "a real English word" via an MRI-compatible button-box with their left
hand (index finger ="yes", middle finger ="'no"). Subjects were instructed to use the awareness
of their breathing throughout the session as a reference point to monitor and counteract
attentional lapses. Whenever they would catch themselves mind-wandering and having lost
their attentional focus, they were to immediately return their attention to their breathing. They
were also told that when a stimulus (word/nonword) appeared on the screen, they should
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perform the lexical decision task as accurately as possible and return their attention to breathing
without any further lingering. The experimental task can be thus conceived as having a dual-
layer structure: an ongoing meditative baseline condition and a phasic perturbation of this
baseline by semantic and nonsemantic stimuli. Importantly, given the length of the imaging
run (~ 20 min), the schedule of stimulus presentation was sparse enough to allow a reasonable
establishment of the “meditative” attentional refocusing in between the stimuli (inter-stimulus
interval: range 1.4-72.9 s, median=8.2 s, IQR=12.9 s).

MRI acquisition and preprocessing

A T1-weighted high-resolution anatomical image (MPRAGE, 176 sagittal slices, voxel size:
1x1x1 mm) and a single series of functional images (echo-planar, 520 scans, 35 axial slices,
voxel size: 3x3x3mm, TR=2.35s, TE=30), were acquired with a 3.0 Tesla Siemens Magnetom
Trio scanner. The functional volumes were corrected for slice acquisition timing differences
and subject movement. The anatomical image was registered to the mean of the corrected
functional images and subsequently spatially normalized to the MNI standard brain space by
using the segmentation routine of SPM5 (http://fil.ion.ucl.ac.uk/spm/software/spmb5). The
computed MNI-normalization parameters were then applied to the functional images, which
were finally smoothed with an 8mm isotropic Gaussian kernel. Multi-subject fMRI data were
concatenated spatially and a probabilistic PCA (PPCA) was performed on the mean covariance
matrix. Based on the Laplace approximation, each subject’s data was projected onto the
common subspace spanned by the first 40 eigenvectors from the PPCA.

Testing group differences between meditators and controls

To test our hypothesis that meditators and control subjects demonstrate differential temporal
patterns of neural activity related to the processing of the stimuli, we considered the Tensor
Model and the Group Tensor Model, and performed the LRT to compare the two models. The
Tensor Model assumes that subjects from both the meditation and control groups share the
same sets of group activity time courses while the Group Tensor Model allows different time
courses between the two groups. The LRT test between the two models showed that the Group
Tensor Model provided a significantly better fit to the data than the Tensor Model (p=0.039),
indicating a significant difference in the temporal profiles of neural activity of meditators and
control subjects. The Group Tensor Model was therefore chosen for this data set. Based on the
Laplace approximation, fourteen independent components were extracted. By examining the
estimated spatial maps and temporal responses of the extracted fourteen components, we
selected three spatio-temporal modes of interest on the basis of the putative neural systems
involved in meditation and in the execution of the experimental task. The first network includes
the supplementary motor area (SMA), the hand region of the right sensorimotor cortex
contralateral to the (left) hand pressing the button box, and the visual cortex, and is clearly
functionally related to the sensorimotor response to the lexical decision task. The second
network is a fronto-parietal system including the bilateral intraparietal sulcus and the
supplementary eye fields, which is consistent with the general architecture of attentional
function (Corbetta and Shulman, 2002); this network was selected for the central role of
attentional control in the meditative exercise. The third network represents what has come to
be known as the “default mode network” (Raichle et al., 2001), a set of regions including the
posterior cingulate, the medial prefrontal cortex, the lateral parietal cortex, and the hippocampi,
which is characterized by high metabolism at rest and decreased activity during a variety of
demanding tasks (Gusnard and Raichle, 2001); of particular interest, the default mode network
has been recently implicated in the spontaneous generation of unconstrained thoughts during
mind-wandering (Binder et al., 1999; Christoff et al., 2004; Mason et al., 2007), and was
selected here for the purported capacity of meditative training to moderate the distracting
influence of spontaneous thoughts. Spatial maps showing activated brain regions are presented
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in Figure 4, where the active voxels are those with an estimated posterior probability of
activation exceeding 0.90.

Testing group differences for selected components: local LRT

After determining the appropriate group ICA model for analyzing an fMRI data set, we can
perform further analyses by examining a selected set of independent components that are
particularly relevant to the study aims. In the present case, we focused on three independent
components whose spatial modes are displayed in Figure 4 and whose associated time courses
for the control and the meditation groups are shown in Figure 5 (for the estimated stimulus-
locked response in each network, see Figure 1 in Supplementary Material). The temporal
correlations between the estimated time courses of the two groups were 0.84 for the task-related
network, 0.51 for the attention network, and 0.36 for the default mode network. To examine
whether there was a significant group difference in the time courses of the selected networks,
we performed the local LRT test for each of the selected independent components and used
Bonferroni correction to adjust for multiple testing. The results showed that while the time
courses associated with the task-related network in the two groups were not statistically
significantly different (p=0.054), meditators and controls were characterized by distinct
temporal dynamics for the attention network (p=0.005) and the default mode network
(p<0.001). We also evaluated the correlations between the IC time courses and a time series
representing the expected neural response to the task stimuli (words and nonwords), i.e., the
vector of delta functions corresponding to the occurrence of the task stimuli (words and
nonwords) convolved with a gamma-function model of the hemodynamic response (Cohen,
1997). The correlations between the time course of the task-related network and the task time
series were 0.78 and 0.86 for the control group and the meditation group, respectively; the
correlations between the time course of the attention network and the task time series were
0.48 (CTRL) and 0.85 (MEDT), indicating that the activity profile of the attention network
was more strongly associated with the timing of the experimental stimuli in meditators than in
controls; the correlations between the time course of the default mode network and the task
time series were —0.66 (CTRL) and —0.62 (MEDT).

Discussion

We have presented a unified framework for group ICA analysis of multi-subject fMRI data,
by introducing a class of group ICA models that is able to (1) accommodate varying types of
structures of group spatio-temporal processes, including those assumed by existing group ICA
methods such as the GIFT and tensor PICA,; (2) provide a formal statistical framework for
group comparisons by incorporating group identification in the ICA decomposition; and (3)
allow component-specific group structures to provide more a flexible fit for fMRI signals
related to different sources. A general maximum likelihood approach is employed for
estimating group ICA models with varying model structures. The proposed group ICA method
provides likelihood ratio tests to compare between group ICA models. Using the LRTs, we
can perform model comparison and selection, assess the goodness-of-fit of an assumed group
structure, and test group differences in fMRI signal time courses between subject
subpopulations.

In the proposed method, the distribution of the spatial signals is modeled by a Gaussian mixture,
on the rationale that most signals of interest are reasonably confined to a limited subset of the
entire anatomical brain space. A Gaussian mixture employs different Gaussian components to
capture the distribution of the small proportion of the activated voxels and the distribution of
the majority of the brain areas that are not strongly related to the signal, and is therefore
appropriate for modeling fMRI data. Furthermore, a mixture of Gaussians is a general
distribution that can accommodate various types of source densities. For example, previous
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work (Xuetal., 1997) and our experiments have shown that Gaussian mixtures can model
and separate sub- and super-Gaussian sources. Compared to alternative distributions for
the latent source signals (Hong et al., 2005), Gaussian mixtures also have the major advantage
of tractable mathematical properties. For example, the posterior distribution of the source
signals given the observed fMRI data conforms to a Gaussian mixture which facilitates
statistical estimation and inference.

In order to obtain the maximum likelihood estimates of the group ICA models, we have
devloped a modified EM algorithm. Compared to standard EM, the modified EM algorithm
includes an additional step to project the estimated components into the subspaces spanned by
an assumed group structure, hence providing a general method for estimating group ICA
models with varying model structures. The Likelihood ratio test statistics can also be obtained
as a by-product from the modified EM algorithm to provide statistical tests between different
group ICA models. The tradeoff with the modified EM is that it requires a longer
computation time than some of the existing methods, due to the slow convergence of the
EM algorithm. Typically, the modified EM algorithm takes approximately 10-20 times
of total estimation time compared to the GIFT and tensor PICA.

An important aspect of the imaging analysis is the inference about the statistical significance
of detected brain networks, which typically requires a secondary analysis of the estimated
spatial maps after the ICA decomposition. For example, the GIFT identifies significantly
activated brain areas by performing a “random effects” inference on the individual maps that
are reconstructed from the group ICA estimation. Tensor PICA makes statistical inference on
spatial activation by fitting Gamma-Gaussian mixture distributions to the estimated spatial Z-
scores maps and thresholding the posterior probability of activation for each voxel. Using our
proposed Gaussian mixture likelihood methods, we are able to simultaneously estimate the
spatial source signals, the variability of the signals, and also the posterior probability of
activation at each voxel which can be readily thresholded to identify significantly activated
brain regions in source signals.

Finally, we have proposed likelihood ratio tests to compare group ICA models with different
model structures. Depending on the investigators’ objectives, the proposed LRT can be
performed either at global scale for all identified independent components, or at local scale for
only a subset of the components. The global LRT provides an overall evaluation of the validity
of the assumed group structure for source signals underlying the observed fMRI data. On the
other hand, the local LRT allows testing the validity of the assumed structure on just a subset
of independent components. The local LRT thus provides a more precise statistical tool when
researchers are particularly interested in a specific selection of the components.
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Figure 1.

Spatial maps and time courses used for the simulation study. Panel (A) presents the spatial
maps of the three independent components where the areas in dark red represents activated
locations in each component. The spatial signals at other locations represent Gaussian
background noise. Panel (B) plots the time courses associated with each of the independent
components. The time courses are the estimated temporal responses of independent
components extracted from real fMRI data.
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Figure 2.
Accuracy of estimation of the spatial maps and time courses of the three independent
components for the single-group simulation study using the maximum likelihood method.
Boxplots of correlations between the true and estimated spatial signals (A) and temporal signals
(B) for the Full Model (Full) and the Tensor Model (Tensor) within the class of group ICA
models. Both the Full and Tensor Models have high accuracy for Case 0 where the true model
is the Tensor Model and Case 1 where the true model deviates slightly from the Tensor Model.
For Case 2 and 3 where the true model is not related to the Tensor Model, the accuracy of
Tensor Model decreases because the structure of the group spatio-temporal processes differ
significantly from the assumed trilinear product structure of the Tensor Model. The Full Model

still maintains high accuracy in Case 2 and 3 due to its general model structure.
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(A) True time series for simulation
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Figure 3.
Accuracy of estimation of the two groups’ time courses for Case 2 in the multi-group simulation
study based on the Tensor Model and the Group Tensor Model. Panel (A) presents the true

time series for the three independent components for group 1 t\", t{", t\"” and group 2

t'2,67, > Panel (B) depicts the estimated time series for the two groups based on Group
Tensor Model; Panel (C) presents the estimated group time series based on the Tensor Model.
The Group Tensor Model accurately estimates the group time courses from both groups while
the Tensor Model only captures the time course from one group due to the restriction in its

model assumption.
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Figure 4.

Thresholded activation maps for three selected independent components based on the Group
Tensor Model for the Zen meditation fMRI data. VVoxels with a posterior probability of
activation exceeding 0.9 are labeled active. The three components correspond to the task-
related network, attention network and default mode network.
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Figure 5.

Estimated time courses for three selected independent components based on the Group Tensor
Model for the Zen meditation fMRI data. The red lines correspond to the estimated time courses
for the meditation group; the green lines correspond to the control group and the dotted lines
are the task time series convolved with the HRF function (Note: since the default mode network
is deactivated during tasks, we reverse the sign of the task time series in the third panel for
depiction purpose). Local likelihood ratio tests show that the time courses associated with the
task-related network are not significantly different between the meditation and control groups
(p=0.054), meditators and controls are characterized by distinct temporal dynamics for the
attention network (p=0.005) and the default mode network (p<0.001).
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Table 1

Descriptions of some important cases of the proposed class of group ICA models.
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with no restrictions on the
relationship between the subject
mixing matrices.

Model Name Definition equation | Properties Defined structure for the group Connection with
mixing matrix existing methods
Tensor Model Eqg. (3) Each subject’s mixing matrix is M=CIQ®I A Tensor PICA
equal to the common group time (Beckman and
course matrix A scaled by the Smith,2005)
subject’s loadings, which means
that the subjects’ time courses
associated with an IC are scaled
repetitions of the common group
time course.

Group Tensor Model Eqg. (4) Subjects within a group are c(1) | Q | A(l) Extension of Tensor
associated with a common group M= PICA for multi-
time course matrix, with (2) @)/ group data
representative time courses being CY1I®1A
allowed to be different between
the two groups. The model can be
generalized to multiple groups.

Full Model Eq. (2) The most general model within M =[A t At ] t GIFT (Calhoun et
our class of group ICA models - ’ * M al., 2001)
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