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g, pattern recognition methods allow detecting multivoxel patterns of brain
activation which are informative with respect to a subject's perceptual or cognitive state. The sensitivity of
these methods, however, is greatly reduced when the proportion of voxels that convey the discriminative
information is small compared to the total number of measured voxels. To reduce this dimensionality
problem, previous studies employed univariate voxel selection or region-of-interest-based strategies as a
preceding step to the application of machine learning algorithms.

Here we employ a strategy for classifying functional imaging data based on a multivariate feature
selection algorithm, Recursive Feature Elimination (RFE) that uses the training algorithm (support vector
machine) recursively to eliminate irrelevant voxels and estimate informative spatial patterns. Generalization
performances on test data increases while features/voxels are pruned based on their discrimination ability.
In this article we evaluate RFE in terms of sensitivity of discriminative maps (Receiver Operative
Characteristic analysis) and generalization performances and compare it to previously used univariate voxel
selection strategies based on activation and discrimination measures. Using simulated fMRI data, we show
that the recursive approach is suitable for mapping discriminative patterns and that the combination of an
initial univariate activation-based (F-test) reduction of voxels and multivariate recursive feature elimination
produces the best results, especially when differences between conditions have a low contrast-to-noise ratio.

Furthermore, we apply our method to high resolution (2 × 2 × 2mm3) data from an auditory fMRI
experiment in which subjects were stimulated with sounds from four different categories. With these real
data, our recursive algorithm proves able to detect and accurately classify multivoxel spatial patterns,
highlighting the role of the superior temporal gyrus in encoding the information of sound categories. In line
with the simulation results, our method outperforms univariate statistical analysis and statistical learning
without feature selection.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Machine learning and pattern recognition techniques are being
increasingly used in fMRI data analysis. These methods allow
detecting subtle, non-strictly localized effects that may remain
invisible to the conventional analysis with univariate statistics
(Haxby et al., 2001, Norman et al., 2006, Haynes and Rees, 2006). In
contrast to these latter approaches, machine learning techniques take
into account the full spatial pattern of brain activity, measured
simultaneously at many locations, and exploit the inherent multi-
variate nature of fMRI data.

The application of machine learning techniques to fMRI has been
referred to as multivoxel pattern analysis (MVPA) and it generally
entails four steps (Norman et al., 2006). First, the set of voxels that will
(F. De Martino).

rights reserved.
enter the multivariate analysis is selected. With respect to this, the
analysis may be massively multivariate and consider all brain voxels
simultaneously (whole-brain approach, Mourao-Miranda et al., 2005)
or may be limited to a subset of voxels from one region-of-interest
(ROI) (Cox and Savoy, 2003, Haynes and Rees, 2005, Kamitani and
Tong, 2005), in which case the dimensionality of the multivariate
space is greatly reduced. Second, stimulus-evoked brain activity is
represented as a point in a multidimensional space, i.e. as the pattern
of intensity values at selected voxels (multivoxel patterns, MVP). In
order to represent the brain response to a stimulus or cognitive state
any estimate of activation at the selected voxels can be used, such as
the intensity at a single acquisition volume (TR) (Haynes and Rees,
2005, Mourao-Miranda et al., 2005) or the average intensity in
multiple TRs (Kamitani and Tong, 2005, Mourao-Miranda et al., 2006).
Third, using a subset of trials, a classifier is trained and the optimal
separating boundary (hypersurface) between different conditions in
this multidimensional space is defined. Several methods including
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Support Vector Machines (SVMs) (Cox and Savoy, 2003, Mitchell et al.,
2004, Mourao-Miranda et al., 2005, LaConte et al., 2005, Kamitani and
Tong, 2005), linear disciminant analysis (LDA) (O'Toole et al., 2005,
Haynes and Rees, 2005, Kriegeskorte et al., 2006) Gaussian Naïve
Bayes (GNB) (Mitchell et al., 2004) and Neural Networks (Hanson et
al., 2004) classifiers have been used for this purpose. During training, a
map coding for the relative contribution of each voxel to the
discrimination of conditions (discriminative map) can be directly
obtained for all linear classifiers (Mourao-Miranda et al., 2005).
Fourth, the capability of the trained classifier to accurately discrimi-
nate the experimental conditions when presented with new data (i.e.
trial responses not used during training) is tested (generalization).

This article deals with issues concerning the first point, i.e. the
initial selection of the set of voxels, with the aim of optimizing the
performance of the multivoxel pattern analysis. For consistency with
the pattern recognition literature the voxels of an fMRI data set are
also referred to as “features”.

Whole-brain approaches are appealing in that they do not require
a priori hypothesis on the location of the relevant voxels, which can be
determined post-hoc from the discriminative maps. These approaches
seem most appropriate when the discrimination of perceptual or
cognitive states is reflected by widely distributed activation patterns
that extend and include various and separated brain regions. However,
whole-brain approaches may be problematic when the aim of the
analysis is the fine-grained discrimination between perceptual states
(Haynes and Rees, 2005, Kamitani and Tong, 2005). In fact, in these
cases the proportion of voxels that convey the discriminative
information is expected to be small and thus whole-brain approaches
seem sub-optimal. Machine learning algorithms are known to degrade
their performances when faced with many irrelevant features (over-
fitting, Kohavi and John,1997, Guyon and Elisseef, 2003, Norman et al.,
2006), especially, when the number of training samples is rather
limited as in typical fMRI studies. Thus selection of an adequate subset
of features/voxels is of critical importance in order to obtain classifiers
with good generalization performance.

Restricting the multivariate analysis to an anatomically or
functionally pre-defined subset of voxels can be seen as a solution
to this feature selection problem. This solution is affected by all
limitations of ROI-based approaches, which only allow testing a
limited set of spatial hypotheses and cannot be used when the aim of
the study is the localization of those voxels forming discriminative
patterns. An interesting alternative is the local multivariate search
approach proposed by Kriegeskorte et al., (2006). This method relies
on the assumption that the discriminative information is encoded in
neighboring voxels within a “searchlight” of specified radius. Such
locally-distributed analysis might be, however, sub-optimal when no
hypothesis is available on the size of the neighborhood and might fail
to detect discriminative patterns jointly encoded by distant regions
(e.g. bilateral activation patterns).

The main limitation of whole-brain MVPA is its computational
complexity since the number of voxels is very large in comparison to
the number of trials in a typical fMRI acquisition (Norman et al., 2006).
In pattern recognition approaches, feature selection strategies are
usually employed prior to the analysis in order to reduce the
dimensionality and to preserve sensitivity to small effects. In previous
neuroimaging applications, machine learning algorithms have been
combined with univariate feature selection strategies (Mitchell et al.,
2004, Mourao-Miranda et al., 2006). Both the activation level (F-test)
or the discrimination ability (t-test) have been used as univariate
ranking criteria for voxel selection. Any such method of voxel
selection, though, does not consider the inherent multivariate nature
of the fMRI data.

Multivariate feature selection strategies can be summarized in
three categories, multivariate filters, wrappers and embedded
methods (for a review see Kohavi and John, 1997 and Guyon and
Elisseef, 2003). Filter methods are applied previous to the classifier
and thus do not make use of the classifier performance to evaluate the
feature subset. Wrappers and embedded methods, on the other end,
use the classifier to find the best feature subset. Wrappers consider
any classifier as a black box and make use of different search engines
in the feature space to find the subset that maximizes generalization
performances. Embedded methods instead incorporate feature selec-
tion as a part of the training process.

Here we consider an approach to fMRI MVPA that ensures high
sensitivity to fine-grained spatial discriminative patterns, while
preserving the appealing properties of whole-brain analysis. This
approach combines a wrapper method (Recursive Feature Elimina-
tion) and SVMs to perform fMRI MVPA. Recursive Feature Elimination
(RFE) has been compared to other multivariate feature selection
strategies (Rakotomamonjy, 2003) and has been successfully applied
to gene selection and sample classification in combination with
Support Vector Machine classifiers (Guyon et al., 2002). The recursive
nature of the algorithm makes RFE computationally feasible in fMRI
MVPAwhere the number of features can reach 300,000 cortical voxels,
as in the case of whole-brain high resolution (2 × 2 × 2mm3)
acquisitions. In a recent publication Hanson and Halchenko, (2008)
introduced the combination of RFE and SVMs to fMRI multivoxel
pattern recognition analysis. The authors showed that removing
iteratively irrelevant voxels improves generalization performances in
discriminating visual stimuli (Faces and Houses) during two different
tasks (1-back recognition detection task, oddball).

In the present article, we evaluate and compare the performances
of RFE, of different univariate feature filter methods (activation- and
discrimination-based), and of their combination on simulated fMRI
data. For each method, sensitivity analysis (ROC analysis) and
generalization performance are computed at different levels of
functional signal-to-noise (SNR, activation level with respect to the
baseline) and functional contrast-to-noise (CNR, differences between
activation levels in two conditions). We show that, especially in the
case of low SNR and/or CNR, the combination of univariate activation-
based voxel reduction and RFE outperforms all other methods.

We also apply our method to a real data set obtained in an
experiment with auditory stimulation in which sounds from four
different categories were presented. The results of the analysis on this
fMRI data set confirm the expectations from the simulations and show
that the combination of activation-based univariate feature selection
and RFE provides the highest generalization performance.

Methods

General description of the approach

Fig. 1 illustrates schematically the proposed approach, which
consists of an N-fold cross-validation procedure with two nested
cycles. At each fold k (k = 1,…,N), trials from the fMRI time series are
divided into training (Traink) and test (Testk) set, with the latter only
used to assess generalization performance. The training trials (Traink)
are further partitioned in several (RL) splits. For each of the splits, an
SVM classifier is trained and discriminative weights are calculated on
a subset of trials (TrainRFEi). Multivariate feature selection using
Recursive Feature Elimination (RFE, red dashed box in Fig. 1) is
performed R times based on the ranking of the average absolute
discriminative weights of L consecutive trainings. At each feature
selection, voxels corresponding to the smallest ranking are discarded;
voxels with the highest discriminative values are used for training in
the next iteration. Generalization performances corresponding to the
current feature selection level are assessed using the external test
trials (Testk). Note that these trials do not enter the training and thus
influence neither the decision boundary nor the discriminative
weights nor the recursive selection. Final generalization performances
and discriminative maps of each RFE level are obtained as the average
over the N folds.



Fig. 1. General description of the proposed SVM/RFE iterative procedure to brainmapping. After single trial-response estimation functional time series are divided in training and test
data sets (Traink; Testk). An optional step of voxel reduction can be performed prior to RFE using only the training data (Traink). For each voxel selection level the recursive procedure
(RFE; red dashed box in figure) consists of two steps. First an SVM classifier is trained on a subset of the training data (TrainRFEi) using the current set of voxels. Second a set of voxels is
discarded according to their discriminative weights as estimated during training. Test data (Testk) are classi fied at each iteration and generalization performances are assessed.
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Fig.1 also indicates that prior to RFE an additional, preliminary step
of univariate voxel reduction can be used. This step consists in
selecting a subset of voxel, based on univariate statistics computed on
the training data (Traink).

Single trial-response estimation

We estimated the multivoxel pattern of intensities forming the
input to the SVM classifier in the following way. At each stimulus
presentation, a trial t(t = 1,…,T) is formed considering Npre and Npost

temporal samples (before and after stimulus onset respectively) of
the pre-processed (see below) time course of activity. A trial
estimate of the response at every voxel v(v = 1,...,V) is then obtained
by fitting a General Linear Model (GLM) with one predictor coding
for the trial response and one linear predictor accounting for a
within-trial linear trend. The trial-response predictor is obtained by
convolution of a boxcar with a double-gamma hemodynamic
response function (HRF) (Friston et al., 1998). At every voxel, the
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corresponding regressor coefficient (beta) is taken to represent the
trial response.

To account for BOLD response variability we repeated the estimation
procedure (at each voxel) changing the time-to-peak (4 to 6s) of the
modeled HRF response. The best-fitting beta (minimum p-value) was
selected as representative for the trial response.

The outlined procedure is designed for slow event related designs
or block designs in which the responses to contiguous trials are not
overlapping in time (see below for a discussion of rapid event related
designs). The result is a matrix M (T × V), whose element mt,v is the
response estimate at trial t and voxel v. This matrix is partitioned in
training and testing matrices (Mtrain and Mtest) which are used in the
rest of the analysis.

Activation- and discrimination-based univariate feature selection

In previous fMRI applications of pattern recognition methods
(Mitchell et al., 2004, Haynes and Rees, 2005, Mourao-Miranda et al.,
2006), univariate feature selection strategies have been suggested for
reducing the dimensionality of the multivoxel space (i.e. number of
columns in matrix M).

Consider a training set defined as:

mi; cif g i = 1; :::; Ttrainð Þ; cia −1; + 1f g;miaRv; ð1Þ
where mi is one row of matrix Mtrain and represents a trial in the V
dimensional space of the voxels, whose class ci is known (e.g. the two
stimulus conditions).

Introducing the hypothesis that interesting patterns consist of voxels
that show a significant stimulus-related BOLD response to any of the
two conditions compared to baseline levels justifies the reduction of the
number of features based on the univariate selection of ‘active’ voxels.
Furthermore, it simplifies the interpretation of the results as the
analysis is restricted to voxels showing neurophysiologically under-
stood responses (but see Haynes et al., 2007 and Discussion).

From the values ci and mi,v (v=1,…,V) we can compute the
following scoring functions:

SA; + 1 vð Þ = m + 1;vffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

+ 1;v

n + 1

s ; SA; + 1 vð Þ = m−1;vffiffiffiffiffiffiffiffiffiffiffi
σ2

−1;v

n−1

s
;

ð2Þ

where m + 1;v ;σ2
+ 1;v m−1;v ;σ2

−1;v

� �
indicate an estimate of mean

response and variance calculated over the n+1 (n−1) trials of condition
c = + 1 (c = − 1) at voxel v.

In the present paper the use of univariate activation-based ranking
is twofold. First, it is a feature selection step to be compared with
recursive feature elimination (univAct), in which case we used as
ranking criteria the mean between SA,+1 and SA,−1. Second, we use
activation-based ranking as a method of initial univariate feature
reduction in order to select a subset of voxels on which the iterative
feature selection procedure is subsequently applied (univActRed). In
the latter case we sorted the voxels independently using SA,+1 and SA,−1
and selected the union of the first V' voxels per condition.

Amore restrictive formof univariate feature selection is based on the
selection of voxels that show a significant difference between the two
conditions (Mitchell et al., 2004, Haynes and Rees, 2005, Mourao-
Miranda et al., 2006). As measures of discrimination ability a parametric
(t) or non-parametric (Wilcoxon) statistical test can be used.

From the values ci andmv,i (v=1,…,V) we can compute the following
scoring functions:

ST vð Þ = m + 1;v−m−1;vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

+ 1;v

n + 1
+
σ2

−1;v

n−1

s
;

ð3Þ
SW vð Þ = j R + 1;v

n + 1
n−1

−1j ; ð4Þ

where m + 1;v ,σ2
+ 1;v and R+1,v (m−1;v , σ2

−1;v, R−1,v) indicate an estimate
of mean response, variance and sum or ranks calculated over the n+1
(n−1) trials of condition c = + 1(c = − 1) at voxel v.

The univariate discrimination-based selection (univT; univW) is
obtained sorting the voxels according to ST or Sw and selecting the first
V' voxels.

It is important to underline the necessity of performing any sort of
initial feature selection (activation- or discrimination-based) only
using the training data in order to reduce potential biases in the
evaluation of generalization performances.

To better quantify generalization abilities of the univariately
selected voxels the scoring functions are computed in cross-valida-
tion, i.e. further splitting the training data in different subsets,
computing voxel-by-voxel scores on the different sub-splits and
then averaging the different scores.

In order to compare univariate feature selection to multivariate
feature selection implemented using RFE, we matched the number of
voxels selected with the different univariate methods (univT; univW;
univAct) to the number of voxels selected by RFE at the different
iterations. Furthermore we evaluate the impact of an initial univariate
voxel reduction based on activation (univActRed), both on multivariate
(RFE) and univariate (univT; univW; univAct) feature selectionmethods.

Recursive feature elimination

Activation- and discrimination-based feature filtering consider
each voxel independently, and thus do not take into account the
intrinsic multivariate nature of the fMRI data. Wrapper methods, such
as RFE, constitute a multivariate alternative to classical feature
filtering and use the classifier itself to discard irrelevant features.
Our implementation of RFE can be described with the following
pseudo-code:

while (~ stop)

1. Train SVM MTrainRFEi
; LabelsRFEi

� �
i = 1; :::; L

2. Compute the scoring function: SRFE vð Þ = ∑L
i = 1 jwi vð Þj

L
3. Sort V based on SRFE(v)
4. Eliminate features with smallest scores

end

where LabelsRFEi are the trials' classes in the training set TrainRFEi, and
wi(v) is the discriminative weight for voxel v as obtained from the
SVM training (see below). Before feature selection the SVM is trained
multiple times on different training data sets (TrainRFEi; i = 1,…,L). To
perform feature selection the scoring function SRFE(v) is used.

The backward elimination procedure used to search the multi-
dimensional space needs a stopping criterion to be defined. One
possible solution is to terminate the algorithm based on the
generalization performances (e.g. performance drop compared to
previous iteration). A more conservative choice is to proceed from
the original feature set to the empty set or a set of desired
dimensionality, which in cases of high dimensional feature spaces
can be very time consuming (Guyon et al., 2002). When the latter is
chosen as a stopping criteria the total number of iterations is
controlled by the number of voxels discarded at each iteration and
the best feature set is selected post-hoc based on the highest
generalization performances.

Linear support vector machines (binary classification)

Let us consider a training set as in (1). In the general case of
overlapping classes (i.e. non-linearly separable classes) the problem of
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finding the optimal separating hyperplane (defined by the normal w
and the distance to the origin of the multidimensional space b) that
maximizes the distance to the nearest training points of the two
classes is defined as:

min
w;b;n

J wð Þ = 1
2
wTw + a

Xl

ni

ξi ð5Þ

subject to:

ci wTmi + b
� �

z1−ξi; i = 1; ::: ; Ttrain ð6Þ

and:

niz0; i = 1; :::; Ttrain ð7Þ

where ni; i = 1; :::; Ttrain are slack variables that account for training
errors and a is a positive real constant (Suykens et al., 2002). The
solution is obtained using Lagrangian methods (Cristianini and
Shawe-Taylor, 2000). Classification of new trials mnew is obtained by
evaluating:

sign wTmnew + b
� � ð8Þ

An absolute discriminative map can be obtained considering the
vector |w| (i.e. voxels that contribute the most to the discrimination of
the two classes are represented by high values of |w|).

In the present paper, we use a variant of SVM known as ls-SVM. In
the classical SVM formulation of Eq. (5–7) the optimal boundary
between different classes is obtained by considering only the training
Fig. 2. The simulated ROIs projected in the volume of a subject. In red the discriminative RO
voxels).
point falling on the separating hyperplane (i.e. support vectors). In ls-
SVM each training point is weighted in order to obtain the
distinguishing hypersurface (hyperplane). The optimization problem
for the general case of non-separable classes is defined as:

min
w;b;e

J wð Þ = 1
2
wTw + γ

1
2

X1
i¼l

e2i ð9Þ

subject to:

ci wTmi + b
� �

= 1−ei; i = 1; :::; Ttrain ð10Þ

where is γ a positive real constant (Suykens et al., 2002).
By changing the inequalities constraints (SVM, Eq. 6–7) into the

equality constraints (ls-SVM, Eq. 10), training of ls-SVMs is
simplified and is reduced to solving a set of linear equations
instead of a quadratic programming problem. Ls-SVMs have been
benchmarked on a series of typical classification problems and have
been proved to outperform other classification techniques (e.g.
Linear Discriminant Analysis, Quadratic Discriminant Analysis) and
achieved higher or comparable classification accuracies if compared
to classical SVM (Suykens et al., 2002). The link of ls-SVMs and
other classification techniques such as Kernel Fischer Linear
Discriminant Analysis has been described in Suykens et al. (2002).

fMRI data

Simulated time series
We simulated fMRI time series according to a design with two

conditions with 30 trials per condition and each trial lasting 14,440ms
Is (170 2 × 2 × 2 voxels); in blue the active but non-discriminative ROIs (469 2 × 2 × 2
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(block design). The functional time series had a simulated TRof 3610ms
and functional voxel resolution of 2 × 2 × 2mm3. These parameters
were used in order to match experimental design and acquisition
parameters used in the real fMRI data set also presented in this paper.
Fig. 3. Results obtained on the whole-brain analysis using different feature selection strategie
Receiver Operative Characteristic (ROC) power (defined as the area of the ROC curve in the
selected voxels starting from the whole brain. Compared feature selection schemes are: 1
activation-based selection (univAct). The bold line represents the sensitivity analysis of c
performances of SVM based classifier are plotted for a different number of selected voxel
univariate discrimination-based selection (univT; univW); and 3) univariate activation-base
only the discriminative voxels (dotted lines). The bold line represents the chance level (0.5)
The discriminative voxels (170 in total) were confined to two
realistically shaped regions (Fig. 2 top row) and belonged to one of
two populations (condition1 N condition2; condition2 N condition1)
whose spatial distribution was random within the regions. We also
s at different CNR and SNR values (varBOLD fixed at 10% of the maximum response). (a)
false positive range of [0; 0.01]) of SVM based maps obtained for different numbers of
) RFE; 2) univariate discrimination-based selection (univT; univW); and 3) univariate
onventional statistical parametric maps obtained using the GLM. (b) Generalization
s starting from the whole brain. Compared feature selection schemes are: 1) RFE; 2)
d selection (univAct). Different methods are compared to classification obtained using
.
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simulated neighboring regions (469 voxels in total) that responded
to both stimulation conditions without carrying specific discrimi-
native information (Fig. 2 bottom row).

The simulated BOLD responses were obtained by convolving the
simulated stimulus with a standard hemodynamic response function
modeled using a double-gamma function (Friston et al., 1998). At each
voxel the simulated activations were added to temporally autocorre-
lated noise obtained as:

Ra tð Þ = ρkR0 t−1ð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2

kR0 tð Þ;
q

ð11Þ

where R0 is random Gaussian noise and ρk ~ N(0.5,0.1) controls the
amount of autocorrelation at voxel k.

We simulated the data at the level of the original time series and
not at the level of the matrix (M) as it allows us to examine also the
influence of the trial estimation step. For each active voxel we varied
the signal-to-noise ratio (i.e. the response amplitude compared to the
noise standard deviation; SNR), the contrast-to-noise ratio (i.e. the
response differences compared to the noise standard deviation; CNR)
and the variability of the BOLD responses to trials of the same stimulus
condition (varBOLD), the latter defined in terms of percent of
variability compared to the maximum response. Three different levels
for SNR [0.3; 0.5; 0.8], CNR [0.1; 0.3; 0.5] and varBOLD [10%; 20%; 60%]
were used to produce 27 simulated fMRI data sets.

Simulated functional time series were used to test the perfor-
mances of a purely multivariate feature selection strategy (RFE). RFE
was compared, matching the number of selected voxels, to the
performances of SVM based classification preceded by purely
univariate feature selection strategies based on t-test or Wilcoxon
(univT; univW) and univariate activation-based selection (univAct).

Furthermore using univariate activation-based ranking as initial
voxels reduction strategy (i.e. selecting the union of the 2000 most
active voxels for both conditions; univActRed) we evaluated its impact
on multivariate feature selection (univActRed+RFE). Matching the
number of selected voxels, we compared univActRed+RFE to methods
in which the same initial activation-based reduction was followed by
different univariate selection strategies (univActRed+univT; uni-
vActRed+univW) and to the case in which only activation-based
selection was used (univActRed+univAct).

To assess generalization performances we followed an N-fold
cross-validation scheme leaving out ten trials for each fold. The twenty
remaining trials were further split fifty times (each time leaving out
five trials) and an ls-SVM classifier was trained on each split. RFE was
performed ten times (R=10) based on the average absolute discrimi-
native weights (|w|) of five consecutive trainings (L=5). The entire
procedurewas repeated ten times (i.e. ten folds) changing training and
testing sets. Finally, for each RFE level, generalization performances
and discriminative maps were obtained as the average of levels and
maps obtained in the ten folds. The best RFE level refers to the level
with the highest average generalization.

For all tested feature selection methods, the number of discarded
voxels at every step was computed so that the size of the final feature
set equals the number of simulated discriminative features.

We quantitatively assessed the differences in sensitivity between
the various methods using Receiver Operative Characteristics (ROCs)
curves computed based on the absolute discriminative maps obtained
fromeachanalysis. As afigure ofmeritwe computed the area under the
curve in the false positive rate interval [0, 0.01] (Skudlarski et al., 1999,
Sorenson and Wang, 1996, Fadili et al., 2000). The sensitivity of the
maps obtained using the different MVPA methods was compared to
a conventional univariate analysis (GLM, t-test) in which the entire
data sets were used and a design matrix consisting of three predictors
(i.e. one for each condition and one accounting for a linear trend) was
fitted to the data. The resulting absolute t-maps (one for each simulated
data set) were used to compute ROC curves and consequently the area
under the curve in the false positive rate interval [0, 0.01].
Real data

We examined the performances of our approach on real data using
a time series from an auditory experiment on sound categorization
performed in a 3T system (Siemens Allegra). Functional runs consisted
of 23 axial slices obtained with a T2-weighted gradient echo, EPI
sequence (TR 3.6s; FOV256 × 256;matrix size 128 × 128, voxel size = 2 ×
2 × 2mm3). Anatomical images were obtained using a high resolution
(1 × 1 × 1mm), T1-weighted sequence.

Stimuli consisted of 800ms tonal sounds of four different
categories (cats, girls [singing female voices], guitars and tones). The
sounds were matched not only in length and RMS power but also in
the temporal profile of the fundamental frequency, such that the
perceptual pitch could be considered identical across categories.
Stimuli were presented in blocks of four during silent periods between
TRs, each block lasting 14,440ms. Stimulation blocks were followed by
blocks of silence lasting 14,440ms. Each run consisted of 15 trials per
condition presented in a pseudo-random order and lasted 30min
approximately. Results presented in this article were obtained using
two functional runs of one subject.

The fMRI data sets were subjected to a series of pre-processing
operations. (1) Slice-scan-time correction was performed by resam-
pling the time courses with linear interpolation such that all voxels in
a given volume represent the signal at the same point in time. (2) Head
movements were detected and automatically corrected byminimizing
the sum of squares of the voxel-wise intensity differences between
each volume and the first volume of the run. Each volume was then
resampled in three-dimensional space according to the optimal
parameters using trilinear interpolation. (3) Temporal high-pass
filtering was performed to remove temporal drifts of a frequency
below seven cycles per run. (4) Temporal low pass filtering was
performed using a Gaussian kernel with FWHM of two data points. (5)
After co-registration to the anatomical images collected in the same
session the functional volumeswere projected intoTalairach space. (6)
Moderate spatial smoothing with a Gaussian kernel of FWHM of 3mm
was performed on the volume time series.

After pre-processing, the two functional time series were used for
the SVM based analysis as described in Fig.1, which produced a total of
30 trials per condition.

In particular we employed a purely multivariate feature selection
strategy (RFE). RFE was compared, matching the number of selected
voxels, to the performances of SVM based classification preceded by
purely univariate feature selection strategies based on t-test or
Wilcoxon (univT; univW) and univariate activation-based selection
(univAct).

Using univariate activation-based ranking as initial voxel reduction
strategy (i.e. selecting the union of the 2000 most active voxels for all
conditions; univActRed) we evaluated its impact on multivariate
feature selection (univActRed + RFE). Matching the number of selected
voxels we compared univActRed + RFE to methods in which the same
initial activation-based reductionwas followed by different univariate
selection strategies (univActRed + univT; univActRed + univW) and to
the case in which only activation-based selection was used (uni-
vActRed+univAct).

The cross-validation scheme we used for the real data analysis
followed the procedure used for the analysis of the simulated data (ten
folds each time leaving ten trials out; 50s level splits; ten feature
selection levels [R=10, L=5]; percentage of discarded voxels per feature
selection step).

The same data set was also subjected to conventional univariate
statistical analysis using BrainVoyager QX (Brain Innovation, Maas-
tricht, The Netherlands). For all six possible contrasts, statistical
parametric maps were computed searching for voxels that discrimi-
nated between conditions consistently in the two functional runs
(conjunction analysis; Nichols et al., 2005) and were thresholded
using false discovery rate (FDR, q = 0.05).



Fig. 4. Results obtained from the combination of an initial univariate activation-based voxel reduction and different subsequent voxel selection strategies. Results are reported at
different CNR and SNR values (varBOLD fixed at 10% of the maximum response). (a) Receiver Operative Characteristic (ROC) power (defined as the area of the ROC curve in the false
positive range of [0; 0.01]) of SVM based maps obtained for different numbers of selected voxels starting from a subset of voxels selected using activation-based reduction
(univActRed). Compared feature selection schemes are: 1) RFE; 2) univariate discrimination-based selection (univT; univW); and 3) univariate activation-based selection (univAct).
The bold line represents the sensitivity analysis of conventional statistical parametric maps obtained using the GLM. (b) Generalization performances of SVM based classifier are
plotted for a different number of selected voxels starting from a subset selected using univariate activation-based reduction (univActRed). Compared feature selection schemes are: 1)
RFE; 2) univariate discrimination-based selection (univT; univW); and 3) univariate activation-based selection (univAct). Different methods are compared to classification obtained
using only the discriminative voxels (dotted lines). The bold line represents the chance level (0.5).

51F. De Martino et al. / NeuroImage 43 (2008) 44–58



52 F. De Martino et al. / NeuroImage 43 (2008) 44–58
Results

We compared different voxel selection methods in terms of their
sensitivity to the true discriminative voxels (ROC analysis; Fig. 3a,
whole-brain analysis; Fig. 4a, after initial activation-based voxel
reduction) and generalization performances (Fig. 3b, whole-brain
analysis; Fig. 4b, after initial activation-based voxel reduction). In
what follows we detail the results obtained on the simulated and real
fMRI data. For comparison, ROC power obtained using conventional
univariate statistical parametric mapping (GLM, bold line in Figs. 3a
and 4a), chance level (bold line in Figs. 3b and 4b) and generalization
performances obtained using only the simulated discriminative voxels
(ROI; dotted line in Figs. 3b and 4b) are reported.

Simulated fMRI data

Whole-brain analysis
When starting the analysis from the whole set of voxels (V≈

40000), selecting voxels univariately based on their activation results
Fig. 5. ROC power (a) and generalization performances (b) obtained using univActRe
in higher ROC power (Fig. 3a) and higher generalization performances
(Fig. 3b) than univariate discrimination-based voxel selection. A
purely multivariate voxel selection strategy (RFE) iteratively improves
sensitivity to the discriminative pattern at CNR=0.3 and CNR=0.5
(Fig. 3a) and improves generalization at CNR=0.5 (Fig. 3b) but not at
very low CNR levels (CNR=0.1). Compared to RFE, activation-based
voxel selection has an advantage in terms of ROC power (Fig. 3a) at
CNR=0.1 and CNR=0.3. On the contrary, at the highest CNR level
(CNR=0.5) RFE outperforms activation-based voxel selection both in
terms of sensitivity (Fig. 3a) and generalization (Fig. 3b). These results
can be explained considering the nature of the simulated discrimina-
tive voxels, which are few compared to the entire set and present
activation levels (depending on the SNR) above the baseline noise. At
high CNR levels, the discriminative information is sufficient to drive
the multivariate search despite the large number of irrelevant voxels.
At lower CNR levels this is not the case and selecting univariately the
voxels based on their activation proves to be more effective. This
suggests the combination of univariate activation-based voxel selec-
tion and RFE as a promising strategy for MVPA.
d + RFE at different SNRs and varBOLD levels reported for different CNR values.



Fig. 6. Classification performances obtained on the real data set for each binary comparison in the discrimination of sound categories. (a) Performances of different feature selection
schemes on whole-brain analysis. (b) Performances of different feature selection schemes after an initial univariate activation-based voxel reduction.
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Combination of univariate and multivariate voxel selection
Fig. 4 shows that, after univariate activation-based voxel reduction,

iteratively pruning the voxels based on their multivariate information
(univActRed + RFE) clearly outperforms all other feature selection
strategies both in terms of sensitivity (Fig. 4a) and generalization
performances (Fig. 4b). This same strategy provides the highest
performances also compared to whole-brain analysis (compare Figs. 4
and 3) and allows approaching close-to-optimal levels of classifica-
tion, as defined by those obtained using only the discriminative voxels
(dotted lines in Fig. 4b). Improvements are not observed only at CNR =
0.1, this can be due to the fact that at this CNR level, even using only
Fig. 7. Detailed results obtained on the real data set for each binary comparison in the disc
column) are projected over the inflated cortex of the subject, the 20% of the voxels with the h
(thresholded with FDR; q = 0.05) within bold lines. Unthresholded (transparency coding) d
(second column) are projected over the inflated cortex of the subject, the best (most disc
generalization results (median, lower, upper quartile and dispersion) obtained using un
generalization performances) is highlighted.
the discriminative voxels, classification performances are close-to-
chance level.

Performances decrease when the variability of the BOLD response
increases

Fig. 5 shows univActRed+RFE ROC power and generalization at
different SNR and varBOLD levels for different CNRs. Both sensitivity
and classification performances are negatively affected by the varia-
bility of the BOLD response. As expected, the decrease in performances
with increasing variability is stronger at lower CNRs and SNRs where
the intra-class distance in the multivariate space is lower.
rimination of sound categories. Unthresholded (transparency coding) GLM maps (first
ighest absolute t-values are shownwithin dotted lines and statistically significant voxels
iscriminative maps obtained using univActRed + RFE at the best feature selection level
riminative) 20% of the voxels are shown within dotted lines. The third column shows
ivActRed + RFE at different feature selection levels, the best level (i.e. the highest



Table 2
Generalization performances on the real data set reported together with estimated CNR,
SNR, BOLD variability and sensitivity (i.e. ROC power for the false positive rate interval
[0; 0.01])

Girl/guitar Girl/cat Girl/tone Guitar/cat Guitar/tone Cat/tone

SNR 0.26 0.28 0.25 0.30 0.25 0.26
CNR 0.32 0.26 0.30 0.31 0.30 0.34
VarBOLD 0.11 0.12 0.12 0.11 0.12 0.11
% Correct 66 58 65 61 65 67
ROC power 0.65 0.61 0.66 0.67 0.66 0.67
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Real data

Figs. 6 and 7 show the results obtained using SVM based
classification and different feature selection schemes on the real
fMRI data.

RFE improves single trials classification performances. Fig. 6 shows
the SVM based classification performances for the six possible
contrasts at different feature selection levels for different feature
selection methods. Both when starting from the whole brain (Fig.
6a) or after an initial voxel reduction based on single condition
activation levels (Fig. 6b), the highest classification performances for
each contrast are obtained using RFE. Improvements in classification
of single trials are visible for each contrast especially when RFE
follows an initial univariate feature selection based on activation
measures (Fig. 6b). In Table 1 we report for each binary classification
the percentage of correct classification obtained using univActRed +
RFE, the best feature selection level (and the corresponding number
of voxels used in the classification), and the size of the improvement
(the highest classification performance minus classification
performance at the initial feature selection step). For comparison
we also report the percent difference in classification between
univActRed + RFE and the closest performing method at the same
feature selection level.

Fig. 7 shows detailed results obtained using classical univariate
mapping (GLM, first column) and RFE after univariate activation-
based voxel reduction (univActRed + RFE) (second column) for the six
different discriminations.

Generalization performances of univActRed+RFE at different
feature selection levels are reported as median, lower and upper
quartile across the different iterations. The best feature selection level,
as defined by the highest generalization performances, is highlighted
and chance level is reported for comparison as a dashed line.

In the case of univActRed+RFE we report the entire map associated
with the best feature selection level using a transparency coding
scheme in which the size of a map value determines its transparency
value (the lower the value, themore transparent it will be shown). The
20% of the voxels with the highest absolute discriminative weights are
reported within dotted lines.

For comparison unthresholded GLM maps are reported with
transparency coding and the 20% of the voxels with the highest
absolute t-values are reported within dotted lines. Furthermore, for
the GLM we show significant voxels as identified by conventional
methods (FDR at q = 0.05).

The sixth contrast (cat vs. tone) shows significant bilateral
univariate differences. The same areas are highlighted as most
discriminative using univActRed + RFE, with the highest general-
ization performances (0.67) obtained at the seventh iteration. Similar
generalization performances are obtained for the other contrasts (girl
vs. guitar: 0.66; girl vs. cat: 0.58; girl vs. tone: 0.65; guitar vs. cat: 0.61;
guitar vs. tone: 0.65) at different feature selection levels. Note that
none of them show significant univariate differences. For all contrasts,
maps obtained with univActRed + RFE highlight bilateral discrimina-
Table 1
Summary of results obtained on the real data analysis when RFE is applied after initial voxe

Girl/guitar Girl/cat G

Correct classification 66% 58% 6
Best level (univActRed+RFE) 10 (NrVox=236) 4 (NrVox=2002) 1
Improvement size (univActRed+RFE) 10% 2% 1
Difference to closest method 7% (univActRed+

univW
3% (univActRed+
univT)

5
u

Improvement size is defined as the highest generalization performances minus the generali
(number of voxels used in the classification are reported in brackets) is defined as the leve
difference to the closest performing method (reported in brackets) at the same feature sele
tive regions along the superior temporal gyrus, both anterior and
posterior to the primary auditory regions located along the Heschl's
gyrus.

In order to compare the real data results with the simulation
results we computed the SNR, CNR and BOLD variability of the real
data for each contrast in the voxels that produced the highest
generalization results. Using these computed values and the general-
ization performances we determined the closest simulation case and
estimated from the corresponding parameter values the ROC power
for the real data. The results are reported in Table 2. Accepting a false
positive rate in the interval [0, 0.01] all contrasts are in the ROC power
interval [0.61, 0.67].

Discussion

Differently from conventional univariate statistical analyses,
machine learning techniques take advantage of the multivariate
nature of the fMRI data and highlight maximally discriminative
spatial patterns. While these methods offer a sensible advantage
compared to conventional univariate mapping in the case of low
contrast-to-noise scenarios, the main challenge in their application
to fMRI is dealing with the large number of voxels in combination
with a rather low number of trials of a typical scan. Performances
of pattern recognition methods such as SVMs are in fact known to
degrade with the increasing number of irrelevant features.

In the present articlewe have described and evaluated an approach
for fMRI pattern discrimination analysis based on Support Vector
Machines and a combination of univariate and multivariate feature
selection strategies. Using this approach, the search for multivoxel
discriminative patterns is iterative and data-driven, thus minimizing
the number of required spatial assumptions on the location and extent
of the patterns.

Compared to previous approaches employing whole-brain ana-
lyses (Mourao-Miranda et al., 2005), the evaluated method increases
the sensitivity for the discriminative patterns, especially when they
include a relatively small number of voxels compared to the whole
data set (sparse discriminative patterns). This method can thus be
seen as a useful solution when specific hypotheses on the localization
(Haynes and Rees, 2005, Kamitani and Tong, 2005) and/or dimension
(Kriegeskorte et al., 2006) of the spatial patterns are not available.

In our approach, the search of patterns is based on the Recursive
Features Elimination (RFE) algorithm (Guyon et al., 2002), which
l reduction obtained using univariate activation-based ranking

irl/tone Guitar/cat Guitar/tone Cat/tone

5% 61% 65% 67%
0 (NrVox=236) 7 (NrVox=687) 9 (NrVox=337) 7 (NrVox=687)
2% 6% 9% 3%
% (univActRed+
nivAct)

2% (univActRed+
univAct)

5% (univActRed+
univT)

3% (univActRed+
univAct)

zation performances at the first feature selection level. The best feature selection level
l at which the highest classification performances are obtained, for each contrast. The
ction level is also reported.
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iteratively eliminates the least discriminative features based on
multivariate information as detected by the classifier (Support Vector
Machine) itself. RFE has been recently used for the analysis of fMRI
data (Hanson and Halchenko, 2008), and has been proven to improve
generalization performances in discriminating visual stimuli (Faces
and Houses; block design) during two different tasks (1-back
recognition detection task, oddball). Here we compared the perfor-
mances of RFE and different univariate feature filter methods
(activation- and discrimination-based) on simulated fMRI data.
Furthermore we evaluated, on the same simulated fMRI data, the
performances of a combined approach, univariate activation-based
feature reduction and multivariate recursive feature elimination, to
feature selection. As an illustrative example, we applied the proposed
MVPA approach to the classification of fMRI responses elicited by
auditory stimuli revealing overlapping, but distinguishable multivoxel
patterns for different sound categories.

In a previous publication Carlson et al. (2003) used a “knock out”
procedure to examine the degree of overlap in information between
the representations of different object categories (chairs, faces and
houses) in the visual cortex. In particular the procedure aimed to
compare the reduction in classification performances of a stimulus
category (e.g. chairs) in two cases: first, when the discriminant
direction between a stimulus category and all other categories was
removed (chairs vs. faces and houses) and second, when the
discriminant direction of another stimulus was removed (faces vs.
chairs and houses). This “virtual lesion” approach was implemented
projecting the multivoxel patterns on the different category-specific
discriminant hyperplanes (i.e. removing the direction of the category-
specific maximum discrimination in the multivoxel space) and
subsequently evaluating the performance losses for each category.
The authors showed that removing a category-specific discriminant
reduced the classification of all other categories only in part. These
results suggest that there is not a complete overlap between the
representations of the different object categories in the visual cortex.
While the aim of the knock out procedure of Carlson et al. is to
evaluate the similarity between the multi voxel patterns elicited by
different stimulation conditions, RFE aims to optimize in a multi-
variate and data-driven way the discriminative information between
different categories. In particular, while RFE removes at each iteration
the least discriminant voxels the knock out procedure of Carlson et al.
removes a direction in the feature space which is a weighted average
of all voxels.

Results of our simulations show that the combination of RFE and
univariate activation-based reduction of voxels ensures the highest
sensitivity and generalization performances (see Fig. 4). In particular,
when RFE is applied after an initial univariate activation-based voxel
reduction there is a sensible advantage compared to the case the
same initial voxel reduction is followed by univariate discrimination
or activation-based selection, especially at very low CNRs (see Figs.
4a–b). This is a consequence of assuming that, at single voxel level,
BOLD changes of a condition compared to the baseline are greater
than BOLD differences between conditions (SNR N CNR), which
appears as a realistic assumption in most fMRI studies. This result
confirms previous comments on the use of univariate feature
selection methods to MVPA (Mitchell et al., 2004, Mourao-Miranda
et al., 2006). Because of the reduced sensitivity of univariate statistics
at low SNRs/CNRs the most appropriate choice for combining
univariate and multivariate features selection is to use rather liberal
thresholding for univariate selection (which prevents the exclusion of
potentially informative voxels) and further discard irrelevant voxels
based on the multivariate scoring function.

Also alone, the recursive approach proves to bemore sensitive than
conventional univariate analysis (General Linear Model; Fig. 3a) and
shows sensible improvements with a decreasing number of voxels
(Figs. 3a–b). In our simulations, indeed, both ROC power and
generalization performance increased with feature selection level,
with the latter approaching optimal values, i.e. those obtained using
only the simulated discriminative voxels (Fig. 4b). Note that the
superiority of the combined approach (univActRed + RFE) compared
to the purely multivariate approach (RFE) is due to the chosen strategy
to use a constant value for the total number of feature selection steps
in the different methods. Better performances might be obtained
allowing the multivariate approach to exhaustively search the whole
set of features with a larger number of smaller steps. However, this
would require a much longer computational time.

Our simulations did not consider the case in which discriminative
patterns are not represented by regions that do not show a global
main effect of activation (Haynes et al., 2007), in which case using RFE
without univariate activation-based pre-selection may prove to be
more sensitive. More generally, available a priori information on the
nature of the effects of interest (e.g. presence of a global main effect)
or on its location may aid and guide the chosen feature selection
strategy. As shown by the simulation results, perfect anatomical
knowledge of the location of the discriminative patterns (ROI
approach) proves to be the most sensitive method. Our RFE-based
approach, on the other hand, allows searching for discriminative
patterns in a more “data-driven” way with no initial assumption on
their location. The analysis of the real data shows an illustrative case.
For sound categorization, little is known on the exact localization of
the discriminating patterns within the human auditory cortex and
defining anatomical or functional landmarks is not straightforward.
Using RFE we were able to map these discriminative patterns and
improve the generalization performance compared to the initial
anatomical selection of voxels.

Furthermore our simulations were limited to the case of two
sparse and spatially distributed populations of voxels without
explicit covariances between them (e.g. functional and effective
connectivity). The observed superiority of the multivariate analysis
compared to the mass-univariate GLM is thus due to the integration
of weak univariate differences irrespective of the sign of the
discriminative information, which also explains its advantage
compared to conventional smoothing (Kreiegeskorte et al., 2006).
In such cases, combining RFE with classifiers other than the ls-SVM
(e.g. GNB) would produce similar results. More generally, however,
the presence of functional and effective connectivity among voxels
may affect the final outcome of our method. In fact, while the
proposed RFE procedure can be applied to any algorithm, the
weighting of individual features is algorithm-dependent and may be
influenced by the way the classifier handles the covariance between
the features.

We tested the same approaches on fMRI time series obtained in an
auditory experiment with sounds from different categories. In line
with the results from the simulations, RFE preceded by activation-
based univariate voxel reduction selection (univActRed+RFE) pro-
duced the highest generalization performances and the recursive
approach to feature elimination improved generalization perfor-
mances in all contrasts (Fig. 6; Table 1). Classical univariate mapping
failed to reveal significant discriminative regions for all contrasts
except the sixth (cat vs. tone) (Fig. 7, first column). As expected, in this
latter case, discriminative maps produced by univActRed+RFE over-
lapped with GLM contrast map and were accompanied by above
chance generalization performances (cat vs. tone: 0.67). In all other
contrasts, despite the lack of statistically univariately significant
voxels in standard GLM analysis, our approach reached comparable
generalization performances (girl vs. cat: 0.58; girl vs. guitar: 0.66; girl
vs. tone: 0.65; guitar vs. cat: 0.61; guitar vs. tone: 0.65). The
discriminative spatial patterns as highlighted by univActRed + RFE
comprise multiple non-neighboring regions in the anterior and
posterior portions of the superior temporal gyrus, in both the right
and left auditory cortex. These results are consistent with the notion of
a ‘what’ auditory processing stream originating in the superior
temporal areas, anterior to the Heschl's gyrus (Belin and Zatorre
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2000a, Belin et al., 2000b, Rauschecker and Tian, 2000, Lewis et al.,
2005) and with recent fMRI studies which point to a relevant role of
STS in the representation and processing of complex sounds (Warren
et al., 2005). A full account of these results, including a group analysis,
is given in Staeren et al. (2008).

One possible drawback of the application of RFE is the backward
elimination strategy, which requires setting of several parameters, the
most relevant being the number of iterations and the number of
features to discard at each iteration. Searching exhaustively the whole
feature set would require a large number of iteration with few
discarded voxels at each iteration. Especially in fMRI, however, such an
approach would result in very long computational time. In the present
paper we selected a relatively small but practically feasible number of
feature selection steps (10) and discarded, at each iteration, a fixed
proportion of the current number of features computed based on the
desired final set size.While arbitrary, this choice proved to be effective
both in the case of the simulations and of the real data. It should be
noted, however, that different data sets may require different settings.
Other multivariate feature selection methods, such as the embedded
algorithm by Rakotomamonjy (2003) suffer from similar problems, as
the size of the discriminative feature set has to be chosen after the
optimization is terminated. The application of these methods, thus,
requires heuristic choices, compromising practical feasibility and
optimal search criteria.

The single trial estimation procedure we outlined in this paper was
designed for block or slow event related designs for which one may
derive a response-pattern estimate for each block/event (or even TR).
This is not possible with rapid event related designs. In these cases,
applying MVPA requires subdividing the measurements in many
subparts, each one including a sequence of trials that allows for
estimating condition response patterns. Assuming linearity of BOLD
responses, one obtains a response-pattern estimate from each of these
sub-runs that can then be used as those obtained from a slow event
related design. After trial estimation, application of RFE is identical as
in blocked or slow event related designs.

Another methodological consideration regards the possibility of
defining a statistical threshold for the maps produced by the SVM
classifier. Statistical assessment of discriminative maps obtained by
MVPA, however, is not simple and it requires assumption or
estimation of a null hypothesis distribution for the voxels' discrimi-
native weights.

Without assumptions on this distribution, thresholding might be
performed using permutation testing (Mourao-Miranda et al., 2005,
Wang et al., 2007). This approach allows estimating an empirical null
hypothesis distribution for the discriminative contribution of each
voxel. However, it is computationally very intense, especially
considering that permutation-based tests should be performed, in
our case, for each level of feature selection.

Alternatively, one may test the consistency of the discriminative
contribution of a location (voxel) across subjects in a group analysis of
the discriminative maps (Wang et al., 2007). This approach assumes
that there is a spatial (anatomical) correspondence between the
discriminative patterns in different subjects. We have implemented a
method for group analysis that combines the anatomical cortex-
based realignment of the subjects' brains with a random effect ana-
lysis of their discriminative maps. A full account of the results of
group level statistical analysis performed on the maps obtained
applying our approach to the problem of sound categorization is
given in Staeren et al. (2008).

TheROCanalysis performed toevaluate the sensitivityof ourapproach
on the simulated data sets is independent of the threshold as the true
positive and false positive ratios are computed for a range of thresholds.
For real data, we report unthresholdedmaps at the best feature selection
level, as defined by the highest generalization accuracies. Note that the
voxels selectedusing the proposed iterative procedure provide significant
generalization performances in the classification of new trials and the
results reported inTable2 indicate that theproposedapproach is sensitive
to the underlying discriminative patterns.

Conclusions

We illustrated different strategies to perform feature selection for
pattern discrimination analysis of fMRI data and introduced a novel,
data-driven feature selection strategy that uses multivariate informa-
tion. Our results show that the combination of univariate (activation-
based) and multivariate feature selection outperforms other techni-
ques when no a priori information is available on the size and location
of the pattern of interest.

The proposed method could be extended to the multivariate
analysis of data from other imaging modalities (perfusion MRI, PET,
optical imaging, EEG, MEG) or to their combination. In the latter,
feature elimination could be applied in the multidimensional space of
features extracted fromdifferentmethods (e.g. voxels of fMRI and time
points of EEG) and used to reveal the most discriminative set of multi
modal features.
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