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Abstract
In previous work we introduced a novel method for reducing global interference, based on adaptive
filtering, to improve the contrast to noise ratio (CNR) of evoked hemodynamic responses measured
non-invasively with near infrared spectroscopy (NIRS). Here, we address the issue of how to
generally apply the proposed adaptive filtering method. A total of 156 evoked visual response
measurements, collected from 15 individuals, were analyzed. The similarity (correlation) between
measurements with far and near source-detector separations collected during the rest period before
visual stimulation was used as indicator of global interference dominance. A detailed analysis of
CNR improvement in oxy-hemoglobin (O2Hb) and deoxy-hemoglobin (HHb), as a function of the
rest period correlation coefficient, is presented. Results show that for O2Hb measurements, 66%
exhibited substantial global interference. For this dataset, dominated by global interference, 71% of
the measurements revealed CNR improvements after adaptive filtering, with a mean CNR
improvement of 60%. No CNR improvement was observed for HHb. This study corroborates our
previous finding that adaptive filtering provides an effective method to increase CNR when there is
strong global interference, and also provides a practical way for determining when and where to
apply this technique.
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Introduction
Over the last decade there have been numerous studies showing that near infrared spectroscopy
(NIRS) can be used to measure functional brain activity non-invasively, both in adults and in
infants (e.g., Durduran et al., 2004; Franceschini et al., 2003; Hespos et al., In press; Jasdzewski
et al., 2003; Maki et al., 1996; Meek et al., 1998; Miki et al., 2005; Obrig et al., 2002; Schroeter
et al., 2002; Toronov et al., 2007; Villringer and Chance, 1997; Villringer et al., 1993;
Watanabe et al., 1998; Wilcox et al., 2005; Zeff et al., 2007). With non-invasive NIRS
techniques, light is introduced into the head through the intact scalp. To reach cortical tissue,
photons must travel through overlaying tissue, including the scalp and the skull. Thus, the
measured signals (HHb and O2Hb concentration changes) are a mixture of hemodynamic
signals occurring in the gray matter and interfering signals occurring in these overlaying tissue
layers (McCormick et al., 1991; McCormick et al., 1992; Steinbrink et al., 2005; Toronov et
al., 2001). Among the major sources of interference are cardiac and respiratory activity, which
are themselves partly coupled. There are also low frequency spontaneous physiological
oscillations (referred to as LFOs, vasomotor waves or Mayer's waves) around 0.1 Hz, as well
as very low frequency oscillations around 0.04 Hz (Obrig et al., 2000). All of these interference
sources are located both in the vasculature of the layers overlaying the brain and in the brain
itself, and are often referred to as “global interference”. To improve the noninvasive
measurement of brain activity, numerous methods have been proposed to reduce interference
due to such global physiological effects including: low-pass filtering (Franceschini et al.,
2003; Jasdzewski et al., 2003), subtraction of an average “noise” (cardiac) waveform (Gratton
and Corballis, 1995), linear regression against a close source-detector pair (Saager and Berger,
2005), state space estimation (Diamond et al., 2006; Kolehmainen et al., 2003; Prince et al.,
2003), principal components analysis (Zhang et al., 2005), and adaptive filtering using a pulse
oximetry reference waveform (Morren et al., 2004). While each of these methods can help
improve NIRS signals, and variants have been used in functional MRI and EEG analysis (e.g.,
Bonmassar et al., 2002), considerable room for improvement remains in terms of contrast
improvement and suitability to real-time use. The main disadvantage of low-pass filtering
procedures is that they can reduce hemodynamic responses as well as noise because these
components overlap in terms of frequency spectra. Furthermore, low-pass filtering methods
cannot be used with common event-related designs, because the frequency bands of
physiological noise and stimulus evoked activations are highly overlapping. Methods based
on subtracting average “noise” waveforms from the recorded time series only correct for one
type of oscillation and do not take into account the nonstationarity of the oscillation shape.
Methods using pulse oximetry reference waveforms measured far from the head can only
reduce global interference due to cardiac oscillations (Zhang et al., 2007a, b).

To overcome some of these problems, we developed a new method, based on adaptive filtering,
to remove global interference (Zhang et al., 2007a, b; Zhang et al., 2005). The key idea of this
method is to employ NIRS measurements of HHb and O2Hb from detectors close to the source
(s) to estimate hemodynamic changes in the overlaying tissue layers. These measurements are
used as a reference channel by an adaptive filter. Next, using this reference, the adaptive filter
estimates global interference, which is then removed from the target signals measured from
detectors farther away from the sources. The simulations carried out by Zhang et al. (2007a)
indicate that this method is effective at removing global interference because such interference
is largely produced by signals in the overlaying tissue layers. In addition to evaluating the
method with Monte Carlo simulations, we have also shown a proof of principle that it can
effectively reduce global interference in vivo (Zhang et al., 2007b). Here, we address the
generalizability of these findings, the domain of applicability of this technique, and their
interpretation. We applied our adaptive filtering method to NIRS data obtained from a set of
156 NIRS time series collected from 15 participants in order to replicate and expand our original
findings. We predicted that adaptive filtering would improve the contrast-to-noise ratio for
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O2Hb measurements when there is global interference. We also sought to quantify the efficacy
of our adaptive filtering method, and its dependence on the contrast-to-noise ratio of the original
measurements.

Material and methods
Participants

Seventeen individuals (10 females, 7 males; mean age = 20.6 years), volunteered for the study.
All had normal or corrected-to-normal vision, no history of neurological disease, and were
right-handed. All participants gave written informed consent prior to the study, according to
the protocols approved by the Massachusetts General Hospital Institutional Review Board.
Complete data from two participants (1 female, 1 male) was not available because of technical
problems before or during data acquisition. We therefore analyzed data from 15 participants.

Stimuli
The stimuli were flickering polar checkerboards subtending 15 × 15 degrees of visual angle.
To maximize visual activation, high contrast visual stimuli (over 50%) were flickered at 8 Hz.
To ensure people were paying attention to the stimuli, once every 5 seconds, on average, one
of the checkers in the checkerboard, chosen randomly, turned red for 125 ms, and participants
pressed a button with their dominant hand every time they detected such a change. These types
of visual stimuli are well known to produce robust activation in retinotopically organized areas
in the occipital lobe (e.g., Sereno et al., 1995), maximizing the chances that visually evoked
activation would be present at all occipital recording sites.

Procedure
Prior to the session, we administered general health history and Edinburgh Handedness
(Oldfield, 1971) questionnaires. Tasks were administered on a MacIntosh G3 Powerbook
computer using Psyscope software (Macwhinney et al., 1997). Participants were supine on a
reclining bed and viewed the stimuli on a computer screen, which was positioned within view
via an extensible mechanical arm. The screen was placed approximately 57 cm from the
participants' eyes. Responses to the red checkers were made with the index finger of the
dominant hand, using a button box placed on the bed. Each run consisted of alternating 15
seconds of visual stimulation with 15 seconds of fixation, for a total of at least 10 cycles. At
the onset of each stimulation block, a digital signal was sent by the presentation computer to
the NIRS instrument, via a specialized button box (Carnegie Mellon University, Pittsburgh).

Optical data was collected using two NIRS1 devices (TechEn, Milford, MA) used in previous
studies (Jasdzewski et al., 2003; Zhang et al., 2007b). Each device used two source lasers (690
and 830 nm), and three detectors (Hamamatsu C5460-01), arranged into two vertical rows. The
geometry of the optical probe is illustrated in Figure 1. The lights from two diode lasers were
combined using bifurcated glass fiber bundle with a nominal 2.7 mm core diameter (Fiberoptics
Technology, prototype). Detector fibers were glass fiber bundles with also 2.7mm core
diameter. The optical fiber bundles (optodes) were anchored in a flexible piece of plastic that
was attached to a black Velcro headband that fastened snugly around the head of the subject.
Soft, black Velcro was also used to absorb stray light beneath the probe. The lasers were
intensity-modulated by an approximately 4 kHz square wave and an in-phase/quadrature-phase
(IQ) detection scheme. The analog optical signals were low pass filtered at 3.4 Hz using second
order RC low pass filter. These signals were simultaneously sampled at 200 Hz, and transferred
to computer using a 16bit A/D conversion (Measurement Computing, PCM-DAS16D/16).
Thus, all signal channels were precisely synchronized to enable accurate comparison of timings
of event onsets.
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The combined light of two wavelengths were in contact with tissue in one source location (Sx
in Figure 1, where x is 1 or 2, defining the optode row), and exiting light was collected from
three detectors for each NIRS device (a total of six), placed 11 mm (Dx1, near), 26 mm (Dx2,
mid) and 40 mm (Dx3, far) from the respective source, as illustrated in Figure 1. During the
visual task, the center of the multi-channel NIRS probe was positioned on the participant's
midline, over caudal parts of visual areas V1 and V2 (confirmed by existing MRI scan on a
subset of participants), so that the centers of the two optode rows were about 20 mm left and
right of midline.

Data Analysis
Similar to our previous study (Zhang et al., 2007b) the raw 200 Hz optical data were offset-
corrected and digitally low-pass filtered at 5Hz (in addition to the instrument filter) to further
reduce instrument noise. The optical measurements for each channel were converted to relative
concentration changes of HHb and O2Hb using the modified Beer-Lambert Law (e.g.,
Strangman et al., 2003). Concentration measurements were then band-pass filtered (pass band:
0.01Hz to 1.25Hz ) to further remove any slowly drifting signal components and other noise
with frequencies far from the target signal, then down-sampled to 20 Hz. Based on our previous
Monte Carlo simulations with common head structure and tissue optical properties (Zhang et
al., 2007a), we chose the following differential path length factors (DPF), although previous
work has demonstrated the approach is relatively insensitive to DPF (Zhang et al., 2007a): 5.4
for S-D1, 6.7 for S-D2, and 7 for S-D3 at 690 nm; 5.1 for S-D1, 6.3 for S-D2, and 6.6 for S-
D3 at 830 nm.

The time series of O2Hb concentration changes acquired from all source-detector pairs (S1-
D11, S1-D12, S1-D13, S2-D21, S2-D22, and S2-D23) were fed into the adaptive filter (HHb
was filtered similarly but separately). The adaptive filter used a finite impulse response (FIR)
and transversal structure (tapped delay line), with 100 nodes, and Widrow-Hoff Least Mean
Squared (LMS) adaptation algorithm (for additional details, see Zhang et al., 2007b). The
Matlab code used to perform the adaptive filtering can be obtained by contacting the
corresponding author.

To assess the contrast-to-noise ratio (CNR) of the detected visual response we performed power
spectral density (PSD) analysis, as in our case study (Zhang et al., 2007b). Briefly, the signal
power is calculated by integrating the power (in linear scale) from the PSD over the “signal
bands”, the noise power is calculated by integrating the rest of the power spectrum (“noise
bands”), and the CNR is calculated as the square root of the ratio of signal power to noise
power. The signal bands of the vision response in our stimulation paradigm are defined as
0.028-0.039Hz (fundamental band) and 0.061-0.072Hz (second harmonic). These bands were
chosen because (i) 0.033Hz and 0.066Hz are the fundamental frequency and the second
harmonic of the evoked visual response signal, respectively, containing most of the signal
power of the visual response (Zhang et al., 2007b), and (ii) these two peaks in the power
spectrum have a width of roughly 0.011Hz. The noise bands comprise the rest of the spectrum
in the 0-10Hz range. Given the periodic nature of our visual stimulation, this frequency domain
method of defining CNR is preferable to time domain methods because it enables more accurate
separation between signal and noise.

Our theoretical work suggested that a measurement of the degree of global interference
dominance is important to maximize the benefit of adaptive filtering: adaptive filtering may
be beneficial only if the target channel shows interference similar to the reference channel. In
this group study, global interference dominance was evaluated using the Pearson correlation
coefficient between the reference and each target time series during the rest period, when there
was no visual stimulation.
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In addition, we anticipated that recordings with poor signal quality (low signal-to-noise ratio,
or SNR) would not benefit from adaptive filtering. The hypothesis is that at low SNR, the
measurement will not be dominated by global interference common to both the target and
reference measurements, and hence adaptive filtering will not help. We therefore also
computed SNR for each oxygenation measurement. While measurement noise includes both
shot noise and electronic noise (Zhang et al., 2001), at low SNR usually our measurements are
dominated by electronic noise; hence only electronic noise is considered here. The electronic
noise was measured as the standard deviation of the measurements acquired when the laser is
turned off, and, in principle, is proportional to the noise equivalent power (NEP) of the NIRS
instrument.

Results
A total of 156 O2Hb and HHb time series were successfully acquired: four measurements (from
S1-D12, S1-D13, S2-D22, and S2-D23) from each of 39 experimental runs on 15 participants.
In the correlation coefficient calculation for global interference dominance estimation, the
length of the available rest period with no visual stimulation differed slightly for different NIRS
time series, ranging from 7 to 20 sec (mean 12 sec, standard deviation 5 sec, N=152). For four
of the time series the leading rest period was not available due to technical difficulties, so the
correlation coefficient was calculated using a separate run on the same subject. The correlation
coefficient was calculated with short baseline periods at the beginning of each run because one
of the potential applications of this method is real-time adaptive filtering of NIRS signals, for
which fast estimates are critical. The correlation coefficients were comparable with those
calculated with longer baseline. A representative case of adaptive filtering of O2Hb time series
is shown in Figures 1 and 2. The CNR before adaptive filtering for this case was 55.3%, after
filtering the CNR increased to 187.3%, demonstrating a CNR improvement of 239%. Figures
1 and 2 also show a comparison between low-pass and adaptive filtering, using a particularly
low 0.125 Hz low-pass filter cutoff. Critically, adaptive filtering reduces the variability in the
data (Figure 2c), relative to more traditional low-pass filtering (Figure 2b; standard deviation
of 0.063 vs. 0.144, respectively, t(600)>20, p<.00001). Furthermore, by removing the
physiological oscillatory noise observed in the near detector (Figure 2a), adaptive filtering
results in a qualitatively different shape for the hemodynamic response, eliminating the two
peaks visible in the low-pass filtered average. This is important because such peaks could be
interpreted erroneously as being due to the dynamics of visually elicited neural activation
(instead of residual physiological noise).

Figure 3 and Table 1 summarize the CNR improvement after adaptive filtering for the entire
dataset as a function of the rest period correlation coefficient, where one point is plotted for
every channel in each run collected (N=156). As can be seen from Figure 3, for O2Hb, when
the rest period correlation coefficient is low, the CNR improvement for evoked visual signal
detection is also low; in fact, most of the measurements show decreased CNR after adaptive
filtering. When the correlation coefficient is high, however, there is substantial CNR
improvement, with most measurements revealing increased CNR after adaptive filtering, up
to 400% improvement. Ideally, we would be able to predict the percent CNR improvement
from the rest period correlation coefficients, and to apply adaptive filtering only when needed.
The simplest way to achieve this is to use a threshold. The data in Figure 3a suggests a more
rapid increase in CNR improvement with increasing correlation at a correlation coefficient
threshold of approximately 0.6, where we consider values higher than this threshold as
indicating substantial global interference dominance for O2Hb. Note that, although we chose
a threshold of 0.6 to illustrate our findings, the general pattern of results holds for a range of
thresholds. Using this value, 101 O2Hb measurements, out of the total of 156 cases (65%) are
dominated by global interference, and 72 out of these 101 cases (71%) show improved CNR
(first row in Table 1). A binomial sign test, justified by our expectation that the CNR
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improvements would fail parametric distribution assumptions, finds this proportion significant
(p=0.00002). The CNR change ranges from -77% to 404%, and the average CNR improvement
is 60% (the median value is 49%). Some measurements in this set still show decreased CNR,
and further exploration is needed to understand why. If we look at CNR improvement for all
156 measurements without considering whether it is global interference dominated, 77
measurements (49%) show CNR improvement, which was not significant by a sign test
(p=0.9). This result suggests that the set of measurements with substantial global interference
dominance (as defined by our threshold) reliably benefit from adaptive filtering.

For HHb, as can be seen from the right plot in Figure 3b, most of the cases show decreased
CNR after adaptive filtering, even at higher rest period correlation coefficients. Selecting r=0.8
as a correlation threshold to maximize the benefit of adaptive filtering for HHb, some 31 HHb
measurements remain, 17 of which (or 55% of this set) show CNR>0, a proportion which is
not significant by a sign test (p=0.7). When considering all 156 HHb measurements, 36 cases
(23%) show CNR improvement. In this case, a sign test indicates that our filtering method
reliably degrades the HHb signal (p<0.00001).

The distribution of CNR before and after adaptive filtering can be found in Figure 4, separating
the measurements by rest period correlation coefficients and by O2Hb/HHb. The mean CNR
of all 156 O2Hb measurements is 64% before adaptive filtering and 75% after filtering. For
rest period correlation coefficients larger than 0.6, the mean CNR is 70% before adaptive
filtering and 97% after filtering. For HHb, the mean CNR of all 156 measurements is 85% and
63% before and after adaptive filtering, respectively. For measurements with rest period
correlation coefficient larger than 0.8, the original mean CNR is 109% and after adaptive
filtering it is reduced to 85%, again supporting the conclusion that HHb does not benefit from
this adaptive filtering approach.

We also sought to quantify the extent to which the reference and target measurements correlated
in O2Hb versus HHb. Using a mixed-effects linear regression (Pinheiro and Bates, 2000), we
found that O2Hb exhibited a mean target-reference correlation of 0.61 +/-0.38, whereas HHb
exhibited mean target-reference correlations of 0.37+/-0.45, a significant difference, T(308.1)
= 5.0, p<0.0001, indicating, as expected, that global interference is stronger on O2Hb
measurements.

Finally, we had expected an effect of SNR on filtering efficacy. We therefore performed a
mixed-effects linear regression between the channel-minimum SNR and the resulting CNR
improvement. Significant positive relationships were observed in both O2Hb [T(116)=5.8,
p<0.0001] and HHb [T(116)=3.9, p=0.0001]. Measurements where SNR<10 consistently
showed poor correlations (r<0.6) and either no improvement or decreases in CNR

Discussion
We begin by summarizing the two principal findings from this study. First, adaptive filtering
improves the CNR for O2Hb when there is substantial global interference. This should remain
true, at least quantitatively, even in comparison to simple subtraction [as discussed in (Zhang
et al., 2007a)] as well as low-pass filtering methods. In contrast, adaptive filtering did not help,
and actually degraded, the CNR for HHb. One key factor to make the adaptive filtering
approach practical is to find a way to pre-identify those measurements that will benefit most
from adaptive filtering. Our study suggests that a rest period correlation coefficient can help
predict the magnitude of O2Hb CNR improvement. Second, we also demonstrated that HHb
and O2Hb differ significantly in the rest period correlation coefficient and in their response to
adaptive filtering when there is visual stimulation using multi separation data collection.
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Before further discussing these findings, it is important to point out that our results represent
a worst case scenario. Indeed, despite the full-field, high contrast visual stimuli used in the
study, some measurements may have contained no visually evoked activation, and hence could
not generate a CNR improvement. While these conclusions are relatively straightforward, the
reason for the qualitative difference between O2Hb and HHb merits discussion. In principle,
adaptive filtering works well when the multi separation measurements share a significant
amount of common mode signal, and the statistical properties of this common mode signal
change (i.e., are non stationary). The fact that adaptive filtering performs poorly for HHb means
that HHb is more strongly affected by local changes than global ones, e.g. related to the
heterogeneous distribution of blood vessels or blood supply. While HHb and O2Hb are
computed from the same raw NIRS data, under normal circumstances HHb is generated via
oxygen utilization in tissue, and oxygen utilization by brain and scalp differ, both due to
different regional demands for oxygen, and differences in cerebral blood flow regulation which
are not paralleled in the scalp. These differences would lead to the prediction of poorer
correspondences between scalp and brain HHb measures, as observed, and a correspondingly
reduced ability for adaptive filtering to improve CNR, as also observed. In contrast, the
dominant sources of physiological “noise” when trying to detect brain function are often
arterial, respiratory and lower frequency vasomotor oscillations (Obrig et al., 2000). These
pulsatile components are present in the arterial compartment, which typically is greater than
95% oxygenated, and such oscillations would be expected in both cerebral and extra-cerebral
tissue. Hence, one might expect better performance of our adaptive filtering method on O2Hb,
given the closer expected correspondence between reference and target measurements. Indeed,
the measurement similarities were significantly closer for O2Hb than for HHb.

In both O2Hb and HHb, numerous data points exhibited negative changes in CNR with adaptive
filtering. Decreases in CNR could be due to changes localized near the target or reference
detector contact point. Any independent changes in the reference measurement, when
subtracted from the target during adaptive filtering, will effectively be injected into the target
measurement, thereby decreasing the target measurement CNR. In addition, if there are any
systemic changes correlated with the stimulus delivery (e.g., increase in heart rate or blood
pressure, more typical during motor stimulation than during visual stimulation), it is possible
that this stimulus-related systemic change in the reference measurement could negatively affect
the observed CNR, as found in other neuroimaging contexts (e.g., Bullmore et al., 1999). The
various potential reasons behind the CNR decreases remain to be investigated in detail.

Our reported results depend on the selection of “similarity thresholds” between reference and
target measurements. In theory, an optimized threshold should be chosen, but such a threshold
will change with various experimental parameters including probe geometry. Since the major
goal of this study was to demonstrate how well and when our adaptive filtering approach helps
in general, we did not investigate methods for optimal threshold selection and pooled the
measurements from 2.6 and 4.0cm source-detector separations for analysis.

Our findings also suggest that our adaptive filtering technique is best applied when there is
substantial global interference (e.g. judged by rest period correlation coefficient >0.6), and that
the filtering should be exclusively applied to O2Hb signals, not HHb. We have also shown that,
as anticipated, SNR of both the target and reference NIRS signals affects the adaptive filtering
result: it is better if the SNR is at least 10 to 1. More work is needed to establish a complete
and standardized way of predicting CNR improvement using signal processing techniques,
including the reason for some CNR decreases following adaptive filtering even when
interference dominates the signal (e.g., r>0.6). Further exploration could also help better
understand the physiology behind the difference between HHb and O2Hb during the rest period,
their differential response to adaptive filtering, and to use the resulting information to improve
noninvasive, in vivo cerebral measurements.
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In this study, a single short-distance detector per hemisphere was used. An important question
is whether a separate short-distance detector would be needed for every optode, or whether a
single such detector may be sufficient to measure global interference. For example, although
the Mayer's wave is a global factor, its contribution may be different at measurements collected
at different sites because of heterogeneity in blood vessel sizes, location, or geometry. In
addition, since different optodes have different contact and skin conditions (e.g., due to hair,
focal pigmentation, sweating), the corresponding interference may be different at different
sites. Ideally, one would have one reference measurement for each target source-detector pair.
However, many such reference measurements would likely be redundant. The optimal (or
minimum) number of required reference measurements remains to be established.

In summary, adaptive filtering and related methods, are promising for cognitive neuroscience
researchers using NIRS techniques to probe the human brain non-invasively. On the one hand,
by reducing the effect of global interference on the O2Hb measurements, one could conduct
shorter studies and still achieve sufficiently high CNR, thus minimizing the effects of fatigue
and adaptation. On the other hand, adaptive filtering methods may make it possible to obtain
better sensitivity or specificity for the time course of neural changes non-invasively, possibly
even at the level of single trials, which are key to understand the relationship between brain
and behavior. This approach is particularly well suited to event-related designs where the use
of a low pass filter with a low frequency cutoff is not possible. This type of adaptive filtering
techniques can also be applied in real-time, enabling better on-line recording evaluation or
even higher sensitivity feedback paradigms for neuroscience research.
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Figure 1.
Representative case (see also Figures 2 and 4) of adaptive filtering to remove global
interference to recover hemodynamic changes elicited by visual stimulation. a) Probe geometry
schematic; b) The time series at the top shows O2Hb concentration changes calculated from
optode pair S1-D11 (near detector). The time series in the second row shows O2Hb
concentration changes calculated from optode pair S1-D12 (middle detector), before adaptive
filtering. The CNR in this case was 55.3%. The time series in the third row shows the results
of low-pass filtering (cut-off frequency: 0.125 Hz). Finally, the time series at the bottom shows
the results of adaptive filtering applied to the top time series. Adaptive filtering increased the
CNR to 187.3%. The gray bands on the time series depict visual stimulation periods.
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Figure 2.
The panels in the left column show the average responses (thick lines) and corresponding
standard deviation (thin, dotted lines) for the data shown in Figure 1. The panels in the right
column show data for all the individual blocks (9) that comprise the corresponding average on
the left; a) results for optode pair S1-D11 (near detector) after low-pass filtering; b) results for
optode pair S1-D12 (middle detector) after low-pass filtering; c) results for optode pair S1-
D12 after adaptive filtering. The gray bands depict the period during which visual stimulation
occurred.
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Figure 3.

CNR improvement, defined as , versus global interference dominance
(measured by the Pearson correlation coefficient during the rest period); a) O2Hb; b) HHb.
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Figure 4.
CNR before and after adaptive filtering for different sets; a) and b): O2Hb with rest period
correlation coefficient threshold; c) and d) are the same, but for HHb. Dots above the lines are
the measurements with improved CNR after adaptive filtering, r is the rest period correlation
coefficient. The arrow points to the case shown in Figures 1 and 2.
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