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Abstract
Independent component analysis (ICA) decomposes fMRI data into spatially independent maps and
their corresponding time courses. However, distinguishing the neurobiologically and biophysically
reasonable components from those representing noise and artifacts is not trivial. We present a simple
method for the ranking of independent components, by assessing the resemblance between
components estimated from all the data, and components estimated from only the odd– (or even–)
numbered time points. We show that the meaningful independent components of fMRI data resemble
independent components estimated from downsampled data, and thus tend to be highly ranked by
the method.
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Introduction
Unlike positron emission tomography (PET), where a single image can report on brain blood
flow, in blood oxygenation level dependent (BOLD) fMRI, functional information is contained
only in the (often small) temporal modulation of the signal during the experimental paradigm.
The acquired data are reduced to yield the familiar “activation maps,” most often using
univariate inferential approaches, which test the same set of a priori temporal hypotheses in
each image volume element (voxel). Statistical Parametric Mapping (Friston et al., 1995)
employs the General Linear Model (GLM). Regression (using experimenter-defined time
courses to model expected signal changes) allocates the temporal variance in the data among
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these time courses, followed by statistical inference thereby answering “where in the brain
does the fMRI signal timing resemble the paradigm timing?”

Independent component analysis (ICA) ( -McKeown et al., 1998a,b) shares with the GLM the
goal of expressing fMRI data as a sum of products of maps and time courses. Unlike GLM,
ICA does not require the time courses to be specified in advance; rather an algorithm is used
to find independent spatial maps and their associated time courses. However, interpretation of
the resulting components – in particular, distinguishing meaningful (i.e., neurobiologically and
biophysically reasonable) components from noise and artifacts – is not trivial. The need to
examine all components is not helped by the fact that most ICA algorithms do not automatically
rank the components by their relative importance. Ranking the components, for example, by
percent variance is not generally helpful since nuisance sources of variance are often larger
than the desired signals. Thus, this ranking issue has become an important challenge in the
field of fMRI data analysis. While component assessment was initially performed by
comparing maps to neuronatomical regions of interest, and time courses to paradigm timing,
several groups have developed more sophisticated approaches for component assessment, such
as power spectrum ranking (Moritz, Rogers, and Meyerand, 2003), support vector machine
classifier (De Martino et al., 2007) and multiple (repeated) ICA estimations (Meinecke et al.,
2000, Duann et al., 2003, Himberg, Hyvarinen, & Esposito, 2004, Yang, et al. 2008).

To test the reliability of consistently task-related (CTR) components estimated from fMRI data,
McKeown et al. showed that an odd time-point and an even time-point data downsampling
each yielded a component with a time course and map distribution resembling those of the
original CTR component (McKeown et al, 1998b). Based on this report, we hypothesized that
all meaningful components would be relatively highly reproducible, while many nuisance
sources would tend to have poor reproducibility (except for some nuisance sources which
would be stable across such decompositions, such as motion related and physiological pulsation
related artifacts). Hence, we developed a simple approach that we call Maximum Mean
Correlation, which ranks components by assessing resemblance between components
estimated from all the data, and those estimated from downsampled data – specifically, from
only the odd-numbered time points.

For each data set, two separate ICA estimations are performed: One (“ALL”) on all the data,
and one (“ODD”) on only the odd time point data. Temporal and spatial correlations are
computed between each ALL component and each ODD component; the average of the
temporal and spatial correlation is defined as the mean correlation. The maximum mean
correlation (MMC) for each ALL component, with respect to the set of ODD components, is
used to sort the ALL components. A second MMC ranking is performed using the even time
point data; the ODD and EVEN downsamplings provide a consistency check of the MMC
rankings.

Thus, using our MMC approach, the independent components of BOLD fMRI data are ranked
according to how well each one resembles any of the components estimated from downsampled
data. Results show that this procedure generally ranks meaningful components high, and less
meaningful components low.

Methods
Data Acquisition

Five adults (two male) gave informed consent to participate in IRB-approved research. Data
were acquired on a Philips 3.0 Tesla scanner using a multi-element receiver coil to allow
partially parallel image acquisition. BOLD fMRI data were acquired using single-shot SENSE
gradient echo EPI with 37 slices providing whole-brain coverage, a SENSE acceleration factor
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of 2.0, a TR of 2.0 s and scan resolution of 80 × 80. Nominal in-plane resolution was 3mm ×
3mm; slice thickness was 3 mm; slice gap was 1 mm.

Participants underwent four fMRI scans, each of 4 minute duration with 120 time points: one
while they rested quietly with their eyes closed, and three using as visual stimulus a radial blue/
yellow checkerboard, reversing at (nominal) 7 Hz, presented using three different paradigm
timings. The three visual paradigms were: block design (20 s on, 20 s off); slow event-related
(2 s on; 12 s off); rapid jittered event-related (2 s on; mean stimulus onset asynchrony (SOA)
6 s). The order of the four conditions was counterbalanced across sessions. The resting data
was used to create “hybrid” data by adding simulated signals; this method is described below.

Hybrid Data
To assess MMC performance at finding known sources, two simulated signals were added, at
an amplitude equal to 0.05 times the average amplitude of the signal within the brain. Figure
1A displays the spatial maps. The signal change in the anterior two regions and the more
posterior two regions respectively correspond to mixing function 1 and mixing function 2, as
shown in Figure 1 B.

Independent Component Analysis
Preprocessing was accomplished using the FSL (FMRIB’s Software Library,
www.fmrib.ox.ac.uk/fsl) software package (Smith et al., 2004) which included removal of non-
brain voxels; voxel-wise de-meaning; normalization of voxel-wise variance; slice-timing
correction; motion correction; temporal high-pass filtering; and spatial smoothing using a
Gaussian kernel with a full-width at half-maximum (FWHM) of 8mm. ICA, including
automatic estimation of dimensionality by probabilistic principal component analysis (PPCA),
was performed using MELODIC v. 2.0 (Multivariate Exploratory Linear Decomposition into
Independent Components) (Beckmann and Smith 2004), which is part of FSL. ICA
decomposition yields spatial maps and their associated time courses; maps are thresholded
using MELODIC’s default threshold of 0.5, a value that assigns equal ‘cost’ to false-positives
and false-negatives when determining the probability that a voxel is classified as part of a
component rather than as noise.

Maximum Mean Correlation
For each study, separate ICA estimations were performed on the entire data set, and on its
subsampled data. We refer to components estimated from the full data as ALL components,
and to components estimated from the odd time point data as ODD components. The time
courses of the ALL components were subsampled to allow comparison with time courses of
the ODD components. Spatial (equation 1) and temporal (equation 2) absolute correlation
coefficients were computed between each ALL component and each ODD component:

(1)

where S1, S2 represent the unthresholded spatial statistic maps with dimensions M × N × K;
,  are their respective three-dimensional mean values; rS is the absolute spatial correlation

coefficient. We define
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(2)

where A1, A2 represent the compared temporal time courses with I points; ,  are their
respective mean values; rT is the absolute temporal correlation coefficient.

Presumably meaningful IC components tend to have high spatial reproducibility and high
temporal reproducibility, hence in our approach, spatial and temporal absolute correlation
coefficients were then averaged to yield the mean correlation r ̄.

For each ALL component, the maximum value of r ̄ was calculated with respect to the set of
ODD components:

(3)

Here MMCi refers to the Maximum Mean Correlation of the i th component from the ALL
data; r ̄ij is the mean correlation coefficient between the i th component of the ALL data and
the j th component of the downsampled data, in this case the ODD components. Components
were then ordered using MMCi as each component’s ranking score.

In addition, the MMC ranking procedure was performed again on data that was downsampled
from the even time point data. Thus, two MMC rankings are obtained using downsampled data,
one based on the odd time points, and one based on the even time points. Comparing these
rankings yields a consistency measure for the MMC rankings.

Group Analyses
Data for each paradigm were entered into group Independent Component Analyses using the
multi-session temporal concatenation approach in MELODIC Version 3.05. Group ICA
estimations were performed on the data for each paradigm, and on their respective
downsampled odd- and even-numbered time point data; MMC was used to rank the resulting
group components.

Inferential Analyses
As a check on the exploratory analyses performed using ICA, inferential analysis using the
General Linear Model as implemented in FEAT (FMRI Expert Analysis Tool,
http://www.fmrib.ox.ac.uk/analysis/research/feat/) Version 5.1, part of the FSL software
library, was performed on the hybrid data, and on data from each visual paradigm. This GLM
analysis yielded Z statistic maps, thresholded at Z>2.3, and their associated full model fitting
time courses.

Spatial correlation coefficients were calculated between the GLM thresholded z-map and each
MMC ranked component thresholded spatial map. Similarly, temporal correlation coefficients
were computed between the GLM time course and each MMC ranked component time course.

Furthermore, group ICA results were compared to GLM mixed-effects group analysis results
as generated by FLAME (FMRIB’s Local Analysis of Mixed Effects; Woolrich et al., 2003).
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Comparison with other Ranking Approaches
To compare MMC ranking with other ranking approaches, simulated signals were added to
specific regions in the resting data, at varying contrast to noise (CNR) levels.

MMC ranking was compared with five other ranking approaches, namely percent variance
(McKeown et al., 1998); multi parameter ranking based on spatial clustering and one-lag serial
autocorrelation (Formisano, et al, 2002); ranking based on the one-lag spatial serial
autocorrelation; one-lag temporal autocorrelation; the average of one-lag temporal and one-
lag spatial autocorrelations; and the power spectrum method, which requires knowledge of
source frequency (Moritz, Rogers, and Meyerand, 2003). For this purpose, one known source
was added, to yield contrast-to-noise ratios of 0.5 to 0.65, 0.8, and 0.95. For each CNR level,
eight realizations were respectively constructed. Figure 2 shows the mixing functions and one
mixing region.

For this analysis, ICA decomposition was performed using MELODIC, with the number of
components set to 40 for both ALL and subsampled data sets. For each of the eight realizations
at each of the 4 CNR levels, independent components were estimated and then ranked using
MMC and the six other approaches.

Results
Hybrid data

ICA of representative hybrid data yielded 23 components; ICA of its odd-downsampled data
and even-downsampled data respectively yielded 17 components and 19 components. Figure
3 displays the consistency of MMC ranking using odd and even downsampling. The two
rankings were highly correlated with a correlation coefficient of 0.80 and a p-value < 0.005.
MMC-ranked maps and time courses (with respect to the set of ODD components) are shown
in Figure 4. GLM analysis results are also displayed in the last two panels (GLM_1 and
GLM_2) in the figure. The GLM_1 map has high spatial correlation of 0.92 with the first
(labeled #1) MMC-ranked component map and has low spatial correlation of less than 0.1 with
any other component map. The GLM_1 time course has high temporal correlation of 0.81 with
the first MMC-ranked component time course and has low temporal correlation of less than
0.26 with any other component time course; the GLM_2 map has high spatial correlation of
0.89 with the second (labeled #2) MMC-ranked component map and has low spatial correlation
of less than 0.1 with any other component map; the GLM_2 time course has high temporal
correlation of 0.86 with the second MMC-ranked component time course and has low temporal
correlation of less than 0.2 with any other component time course. Results are summarized in
Table 1.

Block design visual paradigm
ICA of representative data from the simple block-design visual paradigm yielded 19
components; ICA of its odd-downsampled data and even-downsampled data respectively
yielded 16 components and 15 components. Figure 5 shows the consistency of MMC ranking
using odd and even downsampling. The two MMC rankings were significantly consistent with
a correlation coefficient of 0.68 and a p-value < 0.005. The maps and time courses of the MMC
ranked components (with respect to the set of ODD components) are shown in Figure 6. GLM
analysis results are also included in the last panel (GLM_1) in the figure. Table 1 displays
temporal and spatial correlation coefficients between MMC-ranked components and GLM
results. The GLM_1 map has high spatial correlation of 0.92 with the first MMC-ranked
component map and has low spatial correlation of less than 0.20 with any other component
map; the GLM_1 time course has high temporal correlation of 0.96 with the first MMC-ranked
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component time course and has low temporal correlation of less than 0.27 with any other
component time course.

Slow event-related visual paradigm
ICA of representative data from the slow event-related visual paradigm yielded 23 components;
ICA of its odd-downsampled data and even-downsampled data respectively yielded 19
components and 18 components. Figure 7 shows the consistency of MMC ranking using odd
and even downsampling. The two MMC rankings were significantly consistent with a
correlation coefficient of 0.67 and a p-value < 0.005. The maps and time courses of the MMC
ranked components (with respect to the set of ODD components) are shown in Figure 8. GLM
analysis results are also shown in the last panel (GLM-1) in the figure. The GLM_1 map has
high spatial correlation of 0.85 with the first MMC-ranked component map and has low spatial
correlation of less than 0.25 with any other component map; the GLM_1 time course has high
temporal correlation of 0.80 with the first MMC-ranked component time course and has low
temporal correlation of less than 0.29 with any other component time course. These temporal
and spatial correlation coefficients are shown in Table 1.

Jittered event-related visual paradigm
ICA of representative data from the jittered event-related visual paradigm yielded 21
components; ICA of its odd-downsampled data and even-downsampled data respectively
yielded 14 components and 15 components. Figure 9 shows the consistency of MMC ranking
using odd and even downsampling. The two MMC rankings were significantly consistent with
a correlation coefficient of 0.56 and a p-value < 0.005. The maps and time courses of the MMC
ranked components (with respect to the set of ODD components) are shown in Figure 10. GLM
analysis results are also included in the last panel (GLM_1) in the figure. Table 1 displays
temporal and spatial correlation coefficients between the MMC ranked components and GLM
results, where the GLM_1 map has high spatial correlation of 0.87 with the first MMC-ranked
component map and has low spatial correlation of less than 0.06 with any other component
map; the GLM_1 time course has high temporal correlation of 0.66 with the first MMC-ranked
component time course and has low temporal correlation of less than 0.14 with any other
component time course.

Group Analyses
Group ICA of data from the block design paradigm, the slow event-related visual paradigm,
and the jittered event-related visual paradigm yielded 26, 26, and 25 components, respectively.
ICA of their odd-downsampled data respectively yielded 24, 26, and 21 components, and ICA
of their even-downsampled data respectively yielded 23, 25, and 21 components. Group ICA
results for the jittered event-related data are displayed in Figures 11 and 12. Figure 11 shows
the consistency of MMC ranking using odd and even downsampling. The two MMC rankings
were significantly consistent with a correlation coefficient of 0.66 and a p-value < 0.005. The
maps and time courses of the MMC ranked components (with respect to the set of ODD
components) are shown in Figure 12. GLM analysis results are also included in the last panel
(GLM_1) in the figure. Table 1 displays temporal and spatial correlation coefficients between
the MMC ranked components and GLM results, where the GLM_1 map has high spatial
correlation of 0.94 with the first MMC-ranked component map and has low spatial correlation
of less than 0.38 with any other component map; the GLM_1 time course has high temporal
correlation of 0.95 with the first MMC-ranked component time course and has low temporal
correlation of less than 0.54 with any other component time course.
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Comparison with Other Ranking Methods
Simulated activation data, created by adding a known signal to resting state data at four CNR
levels, were analyzed using ICA and the resulting components ranked using MMC and six
other ranking approaches. Figure 14 shows the ranking order (i.e., “1” means first-ranked
component) of the component capturing the known source for each ranking method, as a
function of CNR, averaged over the eight realizations of each CNR value. Here, ‘MMC’,
‘MPR’, ‘TEMP’,’SPAT’,’MIX’, ‘VAR’ and ‘POWER’ respectively represent maximum mean
correlation (MMC), multi parameter ranking (MPR) and ranking based on one-lag temporal
autocorrelation (TEMP), one-lag spatial autocorrelation (SPAT), average values of one-lag
temporal and one-lag spatial autocorrelation (MIX), percent variance (VAR) and the power
spectrum ranking (POWER). All methods performed well at the highest CNR studied, while
performance differed at low CNR (see discussion).

Discussion
In this study, fMRI data reporting on block and event-related design were acquired and their
independent components were calculated. Unlike most studies applying ICA to fMRI data, this
study illustrates all the estimated independent components, not just those judged most relevant
to task or a priori brain regions of interest. As most ICA algorithms present the components
in no meaningful order, this study is focused on ordering them according to how well each one
resembles any of the components estimated from downsampled data.

For the hybrid data (resting state plus two simulated sources), the two highest-ranked
components capture the simulated sources, as they agree both in space and time with the
simulated sources (Figure 4). The next eight highest-ranked components appear meaningful:
the maps resemble familiar functional brain regions, such as primary visual (component 3) and
auditory (component 9) cortex, and/or previously reported “resting state
components” (Beckmann et al, 2005,Raichle et al., 2001). Additionally, these time courses
contain power predominantly at low temporal frequencies consistent with hemodynamically-
modulated BOLD signals. Conversely, the lowest-ranked components do not appear
meaningful: their maps either depict widely distributed bi-phasic (“salt and pepper”) signals,
or appear consistent with pulsation or bulk motion, and their time courses contain strong high-
frequency signals consistent with noise and/or motion, but not with hemodynamically-
modulated BOLD signals. For all data sets, the consistency of the odd- and even-based
downsampling MMC rankings was excellent.

For the simple block-design visual paradigm, the component ranked highest by MMC evidently
captures the BOLD fMRI signal response to the visual stimuli, as this component is primarily
localized to early visual cortex, is synchronous with the stimulus timing, and agrees with the
GLM analysis of these data (Figure 6).

For both the slow and the jittered event-related paradigms, the components ranked highest by
MMC also evidently capture the BOLD fMRI signal response to the visual stimuli, and agree
with the GLM analyses of their respective data (Figure 8; Figure 10).

For group ICA of the three sets of visual stimuli data, the component ranked highest in each
case by MMC evidently captures the BOLD fMRI signal response to the visual stimuli, and
agrees with the GLM analysis of their respective data.

For each analysis, the default PPCA used by MELODIC may estimate a different number of
components from the whole data set and its associated temporally downsampled data.
However, because all our results show that MMC ranks meaningful components very highly,
we can conclude that temporal downsampling does not eliminate any of these meaningful

Zeng et al. Page 7

Neuroimage. Author manuscript; available in PMC 2010 July 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



sources. Furthermore, if we do not use PPCA to estimate the number of components in each
decomposition, but instead force ICA of the downsampled data to yield the same number of
components as for the full data, we find very little effect on the MMC rankings. For example,
Figure 13 shows the consistency of MMC ranking for hybrid data decomposition with and
without PPCA. Without PPCA, the number of components was fixed at 40 for decomposition
of both the full and the odd-downsampled data; with PPCA, 23 components were estimated
from the full data and 17 components were estimated from the odd-downsampled data. The
two MMC rankings are consistent, with a correlation coefficient of 0.7352 and a p-value <
0.005.

Thus, using fMRI data from both block and event-related designs, and from both single subjects
and groups, we have shown that the MMC approach may be generally useful for ranking the
independent components of fMRI data.

The effectiveness of our approach appears to depend on the nature of the paradigm, as the
temporal correlation between the first-ranked component and the GLM regressor decreases as
the paradigm changes from block design to event-related, presumably because of the higher
temporal frequency content of the signal from the more rapid paradigms.

The effectiveness of MMC ranking depends also on the contrast to noise ratio. Figure 14 shows
excellent MMC performance at CNR = 0.95, and poorer performance as CNR decreases. Figure
14 also shows that MMC has better performance than the other five non-prior-knowledge
ranking methods for intermediate CNR values. Figure 14 also shows power spectrum method
has the best performance at most CNR levels. Thus if the source frequency is known, this
approach may be best.

Our hypothesis was that MMC would be effective because meaningful components would be
more reproducible, and hence robust with respect to downsampling, than artifactual
components. However, some artifactual components are reproducible and robust, and so some
artifactual components are highly-ranked by MMC. For example, Figure 15 shows eight
selected highly ranked (by MMC) components estimated from resting state data. Components,
1, 2, 3, and 5 refer to meaningful components, while the others appear to be artifactual
components. Among them, component No. 4 and component No. 20 correspond to abrupt
motion; component No. 11 to CSF space pulsation; and component No. 33 to blood vessel
pulsation. Table 2 shows the respective spatial correlations and temporal correlations between
ALL data and the down-sampled (ODD) data. Due to its high spatial and temporal
reproducibility, the parietal lobe motion artifact source was ranked fourth. Note that the
posterior cingulate cortex (PCC) default mode source (Raichle, M. E. et. al. 2001) was ranked
lower than this motion artifact, even though it has more spatial correlation. In addition, we
found the meaningful components usually have both high temporal reproducibility and high
spatial reproducibility, but most artifactual components tend to have lower spatial
reproducibility, even if they also have high temporal reproducibility, such as components No.
20 and No. 33.

While MMC appears to rank meaningful components above artifactual components, the
rankings of meaningful components depend upon their strength. Therefore, neural correlates
of e.g. primary sensory stimulation and motor responses may be ranked above neural correlates
of the higher cognitive functions that may be the target of a study. For this reason, the MMC
rankings should not be interpreted as indicative of any sort of absolute importance.

Relation to prior work
McKeown performed ICA separately on the odd and even time points of fMRI data, then used
spatial correlation of the resulting maps to demonstrate reproducibility of the “consistently task
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related” component (McKeown, 1998b). Our approach takes advantage of such reproducibility
by developing it into a ranking criterion for all components.

Repeated ICA decomposition has been used to assess the reproducibility of independent
components. Meinecke et al., proposed a bootstrap resampling approach to determine
reproducibility across decompositions (Meinecke et al., 2000). McKeown applied two
sequential ICA estimations with different initial weight matrices, and reported highly
reproducible components by comparing results from the two decompositions using mutual
information (McKeown, 2002). Duann et al., assessed the consistency and stability of
components obtained from mutiple infomax ICA decompositions (Duann et al., 2003).

Himberg et al., use a graphical approach to assess consistency between repeated ICA
estimations performed on the same data (Himberg, Hyvarinen, & Esposito, 2004). The
motivation for their work is that the iterative FastICA algorithm will yield different results
depending on the starting or seed point, and so repeated estimations are valuable in assessing
consistency of ICA results. This approach has recently been extended to other ICA algorithms
(Correa, Adali, & Calhoun, 2007).

Yang et al., also utilized repeated ICA decomposition on the same data and then relied on the
spatial reproducibility between them to order and select components (Yang, et al. 2008). In
contrast, MMC ranks components based on the spatial and temporal resemblance of
independent components extracted from the whole data set with independent components from
the temporally downsampled data set.

Moritz et al., use a power spectrum ranking approach for identification of task-related
components using the fundamental paradigm task frequency (Moritz, Rogers, and Meyerand,
2003). Our data show that it is the best-performing method at low CNR level. However, the
MMC approach does not require information on paradigm timing.

McKeown proposed a hybrid ICA technique, HYBICA, which combines a data-driven ICA
approach with a hypothesis-driven GLM approach, to separate consistently meaningful task-
related components from non-relevant components (McKeown, 2000). In contrast, MMC does
not require any specification of paradigm timing.

Further studies
The downsampling approach used for MMC ranking rejects signals at high temporal
frequencies, but is not equivalent to a simple lowpass filter, nor is MMC ranking equivalent
to a simple low-frequency weighting. For example, component number 9 in the hybrid data is
the “slowest” component but is not ranked highest by MMC (see Figure 4). Other approaches
to temporal-frequency based filtering and weighting may be worthy of exploration.

Here we have used only (deterministic) downsampling by a factor of two. Other downsampling
ratios and schemes are possible. For example, we have found (not shown) that a factor of 1.5
is also effective for MMC ranking.

The effectiveness of MMC ranking presumably depends upon the relationship between the
sampling frequency (or TR) and the temporal frequencies of the signals of interest. All data in
this report were acquired using TR = 2 sec. In order to simulate data with slower sampling
(longer TR), we applied downsampling to data from our block-design visual stimuli, to yield
an effective TR = 4 s (downsampling by a factor of two) and 8 s (downsampling by a factor
of four). Applying ICA and then MMC to these data (not shown) consistently ranked the main
“visual component” as first. Further study is needed to test data with much slower sampling
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(very long TR), as is used for acquisitions employing sparse temporal sampling (Hall et al.,
1999).

The effectiveness of MMC ranking also depends on the spatial extent of sources. We tested
this by changing the size of one source region in our simulations. Preliminary results (not
shown) show most simulated sources were ranked the highest at the four CNR levels, regardless
of size.

Ranking components assists with, but does not solve completely, the problem of assessing
which components matter. We note that Martino et al., applied support vector machine
classifiers to “IC-fingerprints” for this purpose (De Martino et al., 2007).

Conclusion
We propose ranking the independent components of fMRI data according to their resemblance
to components estimated from only the odd time point data. We have shown that this tends to
rank the meaningful components high, presumably because the hemodynamic response
underlying BOLD fMRI is slow relative to typical fMRI sampling rates (0.5 Hz, corresponding
to a TR of 2 s), while most artifacts tend to have higher temporal and/or spatial frequency, and/
or be less reproducible. This simple approach to the ranking of components from ICA of fMRI
data is expected to have wide applicability.
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Figure 1.
A. Hybrid data: Echo planar images from resting participant; red boxes indicate where the
simulated signals are added. The simulated signals refer to change in the anterior two regions
and the more posterior two regions respectively. B. Time courses for the two simulated sources.
They are generated by using a gamma variate function for the hemodynamic response function
with delay 1.3 in the function.
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Figure 2.
Hybrid data for testing different ranking methods at each Contrast to Noise Ratio (CNR): A.
Red boxes indicate where the simulated signals are added; B. Mixing function for the simulated
sources.

Zeng et al. Page 13

Neuroimage. Author manuscript; available in PMC 2010 July 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Consistency of MMC ranking of hybrid data using odd and even downsampling. The two
rankings have a correlation coefficient of 0.80 and a p-value < 0.005.
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Figure 4.
MMC ranked components from hybrid data, with GLM analysis results (last two panels). The
top-ranked two components capture the simulated sources. To save space, not all slices are
shown.
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Figure 5.
Consistency of MMC ranking of block-design using odd and even downsampling. The two
rankings have a correlation coefficient of 0.68 and a p-value < 0.005.
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Figure 6.
Ranked components from simple block-designed visual paradigm, with GLM analysis results
(last panel). The first component captures the response to the visual stimuli in primary visual
cortex. To save space, not all slices are shown.
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Figure 7.
Consistency of MMC ranking of slow even-related data using odd and even downsampling.
The two rankings have a correlation coefficient of 0.67 and a p-value < 0.005.
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Figure 8.
Ranked components from slow event-related paradigm, and GLM analysis results (last panel).
The first component captures the response to the visual stimuli in primary visual cortex. To
save space, not all slices are shown.
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Figure 9.
Consistency of MMC ranking of rapid jittered-related data using odd and even downsampling.
The two rankings have a correlation coefficient of 0.56 and a p-value < 0.005.
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Figure 10.
Ranked components from jittered event-related paradigm, with GLM analysis results (last
panel). The first component captures the response to the visual stimuli in primary visual cortex.
To save space, not all slices are shown.
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Figure 11.
Consistency of MMC ranking of group jittered event-related data using odd and even
downsampling of the group data. The two rankings have a correlation coefficient of 0.66 and
a p-value < 0.005.
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Figure 12.
Ranked components from group jittered paradigm event-related data, with GLM results (final
panel). The first component captures the response to the visual stimuli in primary visual cortex.
To save space, not all slices are shown.
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Figure 13.
Consistency of MMC ranking for hybrid data decomposition with PPCA and without PPCA.
The two MMC rankings have a correlation coefficient of 0.7352 and a p-value < 0.005.
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Figure 14.
The average ranking of the component capturing the known source vs. contrast-to-noise ratio
for six ranking approaches: ‘MMC’ = maximum mean correlation; ‘MPR’ = multi parameter
ranking; ‘TEMP’ = one-lag temporal autocorrelation, ‘SPAT’ = one-lag spatial autocorrelation,
‘MIX’ = average of one-lag temporal and one-lag spatial autocorrelation; ‘VAR’ = percent
variance, ‘POWER’ = power spectrum.
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Figure 15.
Selected MMC ranked components. # 1 means the first ranking component. See text for details.

Zeng et al. Page 26

Neuroimage. Author manuscript; available in PMC 2010 July 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zeng et al. Page 27

Table 1
Temporal and spatial correlation coefficients between MMC ranked components and GLM results for hybrid data
(Hybrid), block design visual paradigm data (Block), slow event-related visual paradigm data (Slow), jittered event-
related visual paradigm data (Jittered) and group jittered event-related paradigm data (Group).

Data MMC ranking Corr. between MMC ranking and GLM results (Temporal/Spatial)

Hybrid

#1 0.81 / 0.92

#2 0.86 / 0.89

Remaining rankings < 0.26 / < 0.10

Block
#1 0.96 / 0.92

Remaining rankings < 0.27 / < 0.20

Slow
#1 0.80 / 0.85

Remaining rankings < 0.29 / < 0.25

Jittered
#1 0.66 / 0.87

Remaining rankings < 0.14 / < 0.06

Group
#1 0.95 / 0.94

Remaining rankings < 0.54 / <0.38
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