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Abstract
The serotonin transporter (SERT) modulates the entire serotonergic system in the brain and
influences both the dopaminergic and norepinephrinergic systems. These three systems are intimately
involved in normal physiological functioning of the brain and implicated in numerous pathological
conditions. Here we use high-resolution magnetic resonance imaging (MRI) and spectroscopy to
elucidate the effects of disruption of the serotonin transporter in an animal model system: the SERT
knock-out mouse. Employing manganese-enhanced MRI, we injected Mn2+ into the prefrontal cortex
and obtained 3D MR images at specific time points in cohorts of SERT and normal mice. Statistical
analysis of co-registered datasets demonstrated that active circuitry originating in the prefrontal
cortex in the SERT knock-out is dramatically altered, with a bias towards more posterior areas
(substantia nigra, ventral tegmental area, and Raphé nuclei) directly involved in the reward circuit.
Injection site and tracing were confirmed with traditional track tracers by optical microscopy. In
contrast, metabolite levels were essentially normal in the SERT knock-out by in vivo magnetic
resonance spectroscopy and little or no anatomical differences between SERT knock-out and normal
mice were detected by MRI. These findings point to modulation of the limbic cortical-ventral
striatopallidal by disruption of SERT function. Thus, molecular disruptions of SERT that produce
behavioral changes also alter the functional anatomy of the reward circuitry in which all the
monoamine systems are involved.
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Introduction
The serotonin transporter (SERT) regulates serotonin levels in the synaptic cleft through active
uptake from the extracellular space (Li, 2006) and is encoded by a single gene in mouse (Bengel
et al., 1997). SERT is the target of a large class of psychoactive drugs used in a number of
anxiety disorders, as well as drugs of abuse such as cocaine and
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methylenedioxymethamphetamine (MDMA). Moreover, SERT is the principal regulator of
the entire serotonergic system (Murphy et al., 2004) and dysregulation of SERT gene
expression is implicated as a risk factor for a number of affective disorders (Gainetdinov and
Caron, 2003;Murphy et al., 2004;Murphy et al., 2001).

Mouse knock-outs for SERT and the other two monoamine transporters, dopamine transporter
(DAT) and norepinephrine transporter (NET), have been used extensively to study the
pharmacological, behavioral, and anatomic consequences of disruption (Caron, 1999; Dykstra
et al., 2003; Gainetdinov and Caron, 2003; Gainetdinov et al., 2002; Hall et al., 2004; Kita et
al., 2003; Numachi et al., 2007; Reith, 2005; Rocha, 2003; Torres and Caron, 2005; Uhl,
2003; Uhl et al., 2002; Xu et al., 2000; Yamashita et al., 2006). Single and multiple knock-outs
of the monoamine transporters have been especially useful in investigations aimed at linking
the molecular actions and behavioral consequences of drugs of abuse (Sora et al., 2001; Uhl
and Lin, 2003). These studies have generated a wealth of information about specific aspects
of these model systems at the molecular level (e.g. up/down regulation of monoamine receptors
in response to uptake inhibition, altered concentrations of monoamine metabolites and related
molecules), and at the behavioral level (e.g. conditioned place preference, locomotor response,
drug induced response) (Homberg et al., 2007; Li et al., 2003; Numachi et al., 2007; Rocha,
2003; Shen et al., 2004).

Here we explore brain circuitry in SERT knock-out mice to link molecular alterations to
anatomical and behavioral observations. SERT knock-out mice exhibit avoidance and
hyperarousal and are more vulnerable to stress than wild-type mice (Adamec et al. 2008). In
addition, SERT mice display an initial impairment of food- and cocaine-self-administration
(Thomsen et al. 2009). A number of behaviors, including addiction, anxiety, aggression, and
affective disorders such as depression, have been linked to anatomical brain regions,
specifically the limbic cortical-ventral striatopallidal circuitry (Berton and Nestler, 2006;
Everitt and Robbins, 2005; Murphy and Lesch, 2008; Nelson and Trainor, 2007; Robbins and
Everitt, 2002). The prefrontal cortex (PFC) is believed to perform executive functions in this
circuit (Berton and Nestler, 2006; Robbins and Everitt, 2002) where it has been implicated in
working memory, affect, temperament, attention, response initiation and management of
autonomic control and emotion (Canli et al., 2001; Groenewegen and Uylings, 2000;
Groenewegen et al., 1997; Hagen et al., 2002; Zald et al., 2002). The PFC is also densely
innervated by serotonergic neurons arising in the median Raphe nuclei of the brain stem (Puig
et al., 2004). Recent work in monkey demonstrates that injection of Mn2+ into the PFC traces
expected pathways deeper into the brain (Simmons et al., 2008). How these pathways might
be altered by a loss of SERT activity remains an open question.

Due to the importance of the PFC and its connections, and the expected involvement of
serotonin in this circuit, we chose to exploit the SERT knock-out mouse to probe circuitry
originating in the PFC with and without SERT activity. After stereotaxic injection of nanoliter
volumes of MnCl2 into the PFC of knock-out and normal control mice, we followed the time
course of Mn2+ uptake, transport, and accumulation over the first 24 hours post injection by
sequential high resolution MRI. We also employed MRS to compare metabolite levels in living
brains of normal versus SERT knock-out mice. After in vivo MR imaging, we fixed the brains
and used diffusion tensor imaging to obtain additional structural information and then
processed them for histology and analysis by microscopy. Co-injection of fluorescent tracer
with the Mn2+ allowed definitive identification of the injection site, confirming its location
and lack of damage at the cellular level. Detection of this conventional fluorescent tracer at
distant sites was examined to verify the MEMRI results.

Finally, we adopted a non-biased comprehensive approach to identify all connections traced
by Mn2+ throughout the brain after PFC injection. Whole brain MRI data sets from both
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genotypes at all time points were co-registered into the same 3D space (Kovacevic et al.,
2005; Lee et al., 2005) using a straightforward linear and nonlinear alignment (Bearer et al.,
2007b; Tyszka et al., 2006). Image alignment allows an automated voxel-wise comparison of
3D MR images (Hammers et al., 2003; Kassubek et al., 2004; Lee et al., 2005; Mechelli et al.,
2005; Toga and Mazziotta, 2002). This allows identification of those voxels with statistically
significant intensity changes across time and between cohorts (Bearer et al., 2007b; Cross et
al., 2004). By comparing the intensities between one time point and the next, we detected the
pathway of the Mn2+ as it progressed along neuronal circuits in each genotype. This allowed
us to probe changes in the reward/addiction circuitry (limbic cortical-ventral striatopallidal)
due to loss of SERT activity.

Materials and Methods
Animals

Mice were obtained from Taconic Farms, Inc (Hudson, NY). Ten serotonin transporter (SERT)
knock-out mice (Taconic: B6.129-Slc6a4tm1Kpl N10) and ten normal mice (C57Bl/6NTac)
were used in this study. Mice were female between the ages of 19 and 23 weeks. All
experiments were performed in accordance with protocols approved by the Institutional Animal
Care and Use Committee of the California Institute of Technology.

Stereotaxic Injections
Stereotaxic injection procedure was similar to that employed by Bearer et al (Bearer et al.,
2007b). Mice were anesthetized by spontaneous inhalation of 1% isoflurane and placed in a
stereotaxic frame (Kopf Instruments, Tujunga, CA). 5nl of 600mM MnCl2 with 0.5 mg/ml 3k
rhodamine dextran-amine (RDA) (Molecular Probes/Invitrogen, Eugene, OR) was injected
unilaterally into the right prefrontal cortex (coordinates x −0.5 mm (lateral), y 1.0 mm (anterior-
posterior A–P with bregma=0), z 1.0 mm (dorso-ventral D–V with brain surface=0) (Paxinos
and Franklin, 2001)) over 5 minutes using a quartz micropipette (1mm OD quartz capillary
pulled to approximately 80μm OD tip). The animal then received 0.2ml glycopyrrolate (0.02
mg/kg) and 0.1ml dextrose (5%) subcutaneously; with 0.2ml lactated Ringer’s solution (10ml/
kg) IP. It was then immediately placed in the MR scanner under 0.8% isoflurane anesthetic.

Preparation for ex vivo imaging
From 1 to 10 days after in vivo imaging, animals were sacrificed and brains fixed via
transcardiac perfusion with 4% paraformaldehyde (PFA) as previously described (Tyszka et
al., 2006). After overnight rocking in 4% PFA at 4°C the mouse head was cleaned of skin,
lower jaw, ears and cartilaginous nose tip and then rocked in 50ml 0.01% sodium azide in PBS
for 7 days at 4°C. The head was then transferred to a 5mM solution of gadoteridol (Prohance®,
Bracco Diagnostics Inc, Princeton NJ) and 0.01% sodium azide in PBS and rocked for 7 days
at 4°C prior to MR imaging.

Magnetic Resonance Imaging and spectroscopy
Each animal was scanned before the stereotaxic injection; and beginning at 0:38±0:14, 1:20
±0:14, 2:00±0:16, 2:44±0:14, 4:08±0:14, and 22:51±1:02 hours post injection. Times are
averages over all animals ± standard deviation. We use the midpoint of each 40 minute scan
as the “scan time” and for convenience call these the 1hr, 1hr40m, 2hr20m, 3hr, 4hr20m and
24hr time points. An 11.7T 89mm vertical bore Bruker BioSpin Avance DRX500 scanner
(Bruker BioSpin Inc, Billerica, MA) equipped with a Micro2.5 gradient system was used to
acquire all mouse brain images and spectroscopic data with a 35mm linear birdcage RF coil.
For in vivo imaging the animal’s head was secured in a Teflon stereotaxic unit within the RF
coil to minimize movement and aid in reproducible placement. Temperature and respiration

Bearer et al. Page 3

Neuroimage. Author manuscript; available in PMC 2010 July 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



were continuously monitored during data acquisition and remained within normal ranges. We
employed a 3D RARE imaging sequence (Hennig et al., 1986) with RARE factor of 4, 4
averages, TR/TEeff = 250ms/24ms; matrix size of 160×128×78; FOV 16mm × 12.8mm ×
7.8mm; yielding 100μm isotropic voxels with 40 minute scan time. The short TR provides
T1 weighting to emphasize the location of the paramagnetic Mn2+, while the relatively long
effective TE (24ms) provides T2 weighting that aids in providing contrast between different
anatomical features.

All in vivo mouse brain magnetic resonance spectroscopy (MRS) experiments were conducted
using Point Resolved Spectroscopy (PRESS) (Bottomley, 1987) with a short echo time TE of
7.267 milliseconds, recycle time of 2.3 seconds, a spectral width of 7KHz, 4000 data points in
each free induction decay signal (FID), and 128 averages. The sequence was preceded by a
VAPOR water suppression module (Tkáč et al., 1999) interleaved with outer volume
saturation. Optimized second order shimming was done with the Fastmap routine (Gruetter,
1993) in a 5 mm cube centered in the striatum. The PRESS spectra were then recorded inside
a 2mm3 volume (8 μl) at the center of the volume used for shimming.

For ex vivo imaging, two intact fixed heads were secured in a Teflon® holder and submerged
in a perfluoropolyether (Fomblin®, Solvay Solexis, Inc, Thorofare, NJ) within a 50ml vial and
imaged. The ambient bore temperature was maintained at 4°C by thermostatically controlled
airflow. Diffusion weighted images were acquired using a conventional pulsed-gradient spin
echo (PGSE) sequence (TR/TE = 300ms/11.9ms, 256 × 150 × 120 matrix, 25.6mm × 15mm
× 12mm FOV, 100μm isotropic voxel size, 1 average, δ = 3ms, Δ = 5.2ms, Gd = 1125mT/m,
nominal b-factor = 3370 s/mm2). An optimized six point icosahedral encoding scheme (Hasan
et al., 2001) was used for diffusion weighted acquisitions with a single un-weighted reference
image for a total imaging time of 14.5 hours.

Histology
Brains were fixed in pairs (SERT/normal) at different time points (1, 2, 4, 6, 8, 11, 12, 13, 16
and 21d) after injection to allow histologic determination of transport differences. After
fixation and ex vivo MR imaging, brains were dissected from the calvarium and sent to
Neuroscience Associates (NSA, Knoxville, TN) for gelatin embedding and serially sectioned
coronally at 30–35 μm. All 20 brains were embedded in register into the same gelatin block,
allowing review of the same location in the entire set on one microscope slide. Sections were
collected into 24 cups sequentially, such that each cup contained every 24th section spanning
the whole brain of all 20 individuals. Alternate cups were selected for staining with either
Thionine/Nissl for cellular morphology, or for mounting unstained in anti-quench with DAPI
(Vector Lab, Burlingame, CA) to image the RDA fluorescence. Sections were imaged on a
Zeiss AxioImager Z1 equipped with both hallogen and mercury illumination, He43 filter cube,
and 5x, 10x, 20x, 40x, 63x and 100x neofluor objectives, Images were captured by an Axiocam
HRC or MRM using AxioVision 4.5 software.

Image Alignment and Statistical Parametric Mapping
Pre and post Mn2+ injection MR images were skull-stripped using the Brain Surface Extractor
(BSE) within BrainSuite 2 (Shattuck and Leahy, 2001) to remove all non-brain material.
Inaccuracies were corrected by manually editing the masks using BrainSuite 2. After skull
stripping, field inhomogeneities were corrected using the N3 method (Sled et al., 1998) and
each was scaled to the mode of its intensity histogram (Bearer et al., 2007b; Kovacevic et al.,
2005). A minimum deformation target (MDT) was produced as described (Kochunov et al.,
2001). Briefly, all pre-injection images were aligned to a representative individual with a 12-
parameter full-affine transformation using Alignlinear (AIR 5.2.5) (Woods et al., 1998a;
Woods et al., 1998b) with the least squares with intensity rescaling cost function. The resulting
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transformations were averaged and all pre-injection images were aligned to the average with
a 12-parameter full-affine model. The resulting transformations for each cohort were averaged
and the pre-injection images were then warped into this MDT common space beginning with
a 2nd order 30 parameter model and ending with a 5th order 168 parameter model using
Align_warp (AIR 5.2.5). For each sample, the post injection images were linearly aligned (12
parameter model) to the pre-injection image using Alignlinear, followed by the polynomial
warp field used to transform that sample’s pre-injection image into the MDT. All automated
image processing was performed in the LONI Pipeline Processing Environment (Rex et al.,
2003) using either a 32-processor Onyx 200 or 64-processor Origin 3000 supercomputer (SGI).
This process placed all the images in the same space so that voxel-wise comparisons could be
made among the different data sets. Final images were blurred with a 0.3mm Gaussian kernel
and a paired Student’s t-test, as implemented in SPM5 (Wellcome Trust Centre for
Neuroimaging, University College London), was used to determine which voxels increased in
intensity when comparing one time point to the next. Similar processing was used to compare
rotationally invariant indices derived from DTI datasets, except that an unpaired Student’s t-
test was used to compare knock-out and normal cohorts. Parametric maps of voxels with
statistically significant changes in intensity were created to display the results and to correlate
increases with underlying anatomy (Bearer et al., 2007b). Anatomy was determined with
reference to Hoff et al (Hof et al., 2000) and the Allen Brain Atlas (Dong, 2008)
(http://www.brain-map.org/welcome.do). Sagittal sections were typically more helpful than
coronal in identifying and comparing anatomical structures in the in vivo MR images.

Tensor Based Morphometry
A deformation field analysis implemented by Thompson and coworkers (Lepore et al., 2008)
was used to analyze whether MRI scans of the SERT knock-out differ anatomically from
normal mouse brain scans. This approach has been used previously in studies of both mouse
(Kovacevic et al., 2005; Ma et al., 2005; Spring et al., 2007; Verma et al., 2005) and human
(Lepore et al., 2008; May and Gaser, 2006; Perani et al., 2005; Reading et al., 2005). Briefly,
all scans of a particular contrast (e.g. pre-injection, iDWI) were mapped into an MDT. The
resulting displacement field (JTJ, with J the deformation Jacobian) for each scan was employed
in the actual analysis. Maps of the determinant of JTJ were used in a voxel-wise Hotteling’s
T2 test yielding p-value maps to gauge statistical differences between the two cohorts at each
voxel in the image.

Determination of relative metabolite concentrations
For each mouse brain the spectrum of the relative amount of metabolites inside the experimental
PRESS volume was quantified using the QUEST (quantitation based on quantum estimation)
module (Ratiney et al., 2005) available inside the Java Magnetic Resonance User Interface
(JMRUI) package (Naressi et al., 2001). A basis set comprising nine metabolites was used to
perform the fit. To this end PRESS spectra of creatine, choline, N-acetyl aspartate (NAA),
taurine, myo-inositol, lactate, glutamine, glutamate and gamma-amino-butyric acid (GABA)
were simulated using the NMR-SCOPE (Graveron-Demilly et al., 1993) simulation package
within JMRUI. The spin parameters (number of spins, chemical shifts, J-couplings) were
obtained from Govindaraju (Govindaraju et al., 2000). The choice to use a simulated basis set
rather than a measured one was based on recent results showing no statistically significant
differences between estimates obtained using either basis set (Cudalbu et al., 2007). Metabolite
amounts obtained by the QUEST were normalized to creatine.

Diffusion tensor image construction
Reconstruction of the apparent diffusion-weighted images included spatial radial Gaussian
filtering (0.25 voxel width) to smooth the co-registration cost-function and improve the SNr
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of all subsequent calculations. The apparent diffusion tensor was calculated conventionally by
inversion of the encoding b-matrix. The b-matrix for each diffusion encoding was determined
by numerical simulation of the pulse sequence k-space trajectory in order to account for
gradient cross-terms (Mattiello et al., 1997). Eigenvalues, eigenvectors, tensor trace and
fractional anisotropy were calculated conventionally using built-in and custom Matlab
functions (The Mathworks Inc., Natick MA). The six diffusion weighted images were averaged
to generate a high SNr isotropic diffusion weighted image (iDWI). Diffusion tensor images
(and associated images of eigenvalue, λi; trace, Tr(D); and fractional anisotropy, FA) were
placed into the same space for voxel-wise comparisons using the methods outlined above for
in vivo MR images.

Rendering
Visualization of the MR images and statistical parametric maps was performed with
ResolveRT4 (Mercury Computer Systems, Inc., Hudson, NH) and MRIcro (Rorden and Brett,
2000).

Results
Injection site location and condition

The injection sites were within a 0.3 mm radius for all 20 animals, as demonstrated in MR
images recorded 1 hour after Mn2+ injection into the PFC (Figure 1). The average injection
site for all 20 animals was: x (lateral) +0.45±0.16mm, y (A–P), +0.92±0.28mm, z (D–V) −0.86
±0.27mm; for the SERT knockouts: x +0.43±0.16mm, y +0.74±0.25mm, z −0.83±0.26mm;
and for the normals: x +0.47±0.17mm, y +1.1±0.18mm, z −0.88±0.29mm. Co-injection of
fluorescent dextran allowed identification of the injection site by histology. We therefore
performed a comprehensive histological analysis of all 20 brains to verify the location of the
injection site, detect any morphologic evidence of injury, and validate that the injectate was
delivered into the pathway previously identified by traditional tracers (Gabbott et al.,
2005;Sesack and Pickel, 1992). The injection site could only be identified in 8 of 20 brains (4
normals and 4 SERT) that were fixed at 1–8 days after injection. At later time points, the
injection site could not be identified. In 4 of the 20 brains, the injection site was only identifiable
by the presence of fluorescent dextran as no other sign could be found in our serial histologic
sections, whether stained for morphology with DAPI or with Nissl/Thionine (Figure 2). Nor
could any gliosis, an indicator of brain injury, be found at later time points (Figure 2). In those
brains where the injection site was identified by the presence of rhodamine-dextran, the
surrounding tissue showed no increased cellularity, evidence of bleeding, or other damage/
injury response, although the injectate did appear as a small droplet (50–100 μm diameter)
displacing brain tissue at 1 day post injection. The location of identified injection sites in the
PFC matched the injection position in MR images.

In both SERT knock-out and normal mice microscopic examination of locations distant from
the injection site showed a significant number of rhodamine positive cells. These areas were
restricted to regions representing predicted targets in the pathway from PFC, such as the globus
pallidus (Figure 3).

Metabolite concentrations are similar in SERT and wild-type mice
In vivo magnetic resonance spectroscopy offers a means to monitor non-invasively low
molecular weight metabolite levels within the intact brain (Choi et al., 2003; Jansen et al.,
2006; Maudsley, 2002; Tkac et al., 2004). In this study we determined concentrations of
metabolites relative to creatine, which is assumed to remain constant among mice and between
the two cohorts (Figure 4). All spectra were recorded from a 2mm3 volume centered in the
striatum (Figure 4B). Although Student’s t-test statistical comparisons between the metabolite
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levels from the SERT knock-out and normal cohorts indicate that none of the metabolites are
statistically different at a p<0.05 level, the choline and taurine levels are different at p<0.053;
both being larger in the SERT knock-out versus normals.

Voxelwise Analysis detects no anatomical differences in SERT compared to normal mice
We aligned 3D MR images of 20 living mice, 10 for each genotype, into a single 3D atlas and
used statistical parametric mapping to compare brain structure between genotypes. Two
separate statistical analyses were performed. In the first, the extent of anatomical morphometric
alterations undergone by the SERT knock-out was determined by tensor-based morphometry
(TBM) of both in vivo and fixed MRI data sets. Secondly, the impact of SERT knock-out on
tissue structure manifest in altered water diffusional characteristic was determined by image
alignment and statistical parametric mapping of images of FA and Tr(D) (Verma et al.,
2005).

The TBM analysis revealed that both the pre-injection in vivo scans and iDWI ex vivo scans
had an extremely small number (less than 0.1% of the brain volume) of statistically different
(p<0.01) voxels randomly scattered about the brain (colored areas in Figure 5). For the TBM
analysis all the pre-injection data sets were mapped to the same MDT, the Jacobian of the
deformation field calculated, and p-value maps noting statistical significance of differences in
the deformations of the two cohorts determined. A similar calculation was done beginning with
the iDWI data sets measured on fixed brains. In Figure 5 green areas denote voxels that differ
significantly between the SERT knock-out and normal mouse brain scans at p<0.01.

After warping into the same space, an unpaired Student’s t-test was used to gauge whether the
normal and SERT knock-out have different patterns of FA or Tr(D). No patterns of differences
were observed with either FA or Tr(D) measurements with very few significantly different
voxels between the brains of SERT knock-out and normal mice: 0.4% for FA and 0.2% for Tr
(D) (Figure 6). Colored voxels show the differences between the SERT knock-out and normal
mouse at a significance level of p<0.01.

Visualization of Mn2+ transport in the limbic system of living mice
In contrast to the results of spectroscopy and DTI imaging, where little to no differences
between SERT knock-out and normal mice were found, Mn2+ accumulation over time was
profoundly different in SERT knock-outs compared to normals. Alignment and a consistent
intensity scaling allowed us to visually and computationally follow the changes due to the
appearance of Mn2+ induced hyperintensity in structures distant from the injection site in
averaged co-aligned images, such as the slices shown in Figure 7. We aligned all of the SERT
knock-out in vivo MR images, then at each time point averaged the images from the 10
individual SERT knock-out mice. The averaged images preserve the fidelity of the original
images – anatomical structures are clear and distinct (e.g. ventricles, corpus callosum,
hippocampus, internal and external capsule are all easily identifiable) (Figure 7). Signal
intensities in the globus pallidus (GP) and substantia nigra (SNr) regions are qualitatively
unchanged from pre-injection to the 3 hour time point, then increase at 4 hours and increase
again at 24 hours (Figure 7A). Intensity measurements in a region of interest (ROI) within the
GP ipsilateral to the injection site as a function of time after injection in averaged images from
each time point and genotype confirm the visual assessment (Figure 7B)

Statistical mapping of Mn2+ tracing from PFC injection: Profound differences between SERT
knock-out and normal mice

For an unbiased assessment of the whole brain, we performed automated voxel-wise statistical
parametric mapping to determine the spatial extent of Mn2+ accumulation as a function of time
after injection (Figure 8 and Supplemental Data). For clarity, normal and SERT knock-out
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cohorts are shown separately, and volumes with significant increases (p<0.025) are color
coded. Comparisons between the earliest two time periods are shown in pure green for both
the SERT knock-out and normal animals, while later times are displayed with increasing
amounts of blue for the SERT knock-out and red for the normal animal.

The injection site was readily detected in the 1hr compared to pre-injection statistical map, as
shown in green in Figure 8. The pure green colored regions are voxels that are significantly
more intense immediately post injection than before injection of a small amount of Mn2+ into
the prefrontal cortex. As the green areas (1hr>pre) show in slice 1 of the coronal view (Figure
8A and 8B) and slices 3–5 of the sagittal view (Figure 8C and 8D), after the injection a spheroid
of hyperintensity in the MR image appears, likely due to Mn2+ diffusion. Comparison of the
1hr40m image data sets with those recorded at 1hr post-injection reveals no significant changes
in either the SERT knock-outs or normal animals.

By 2hr20m post-injection, Mn2+-induced intensity changes had already progressed from the
injection point to more distal locations. Wide spread changes were already apparent at 2hr20m
post injection between the two genotypes. (Figure 8. 2hr20m>1hr40m). For the SERT
knockouts, at the most dorsal level of the injection site on the ipsilateral side only, the
hyperintensity increase expands outward through layers 3 and 4 of the cortex (blue-green
regions in Figure 8B slices 1 and 2, Figure 8D slices 1–3). At 1.5mm off midline, the
hyperintensity increase dips into the dorsal anterior portion of the caudate putamen (CP),
courses across the CP and down into the globus pallidus (GP), bed nucleus of the stria terminalis
(BST), and most rostral portion of the thalamus (TH). These changes are especially apparent
in the ipsilateral sagittal slices (Figure 8D slices 1–5). For the normal animals, we see relatively
small isolated volumes of hyperintensity increase in the CP ipsilateral to the injection site and
just outside the injection volume on the contralateral side (Figure 8A slice 1; Figure 8C slices
2, 7, 8).

From 2hr20m to 3 hours post-injection, the SERT knock-outs show additional hyperintensity
increase in the ipsilateral CP; spreading ipsilateral to contralateral in a discontinuous arc
through several nuclei of the anterior TH (Figure 8B slices 2–4). For the normal cohort, we
note hyperintensity increase dorsal to ventral across the anterior third of the ipsilateral CP,
connecting to the medial edge of the CP and down through the BST with a small amount in
the paraventricular TH; and hyperintensity increase contralateral in the dorsal and mid level
CP, medial portion of the GP, and more ventrally in the BST with small amounts in the TH
and the nucleus accumbens (ACB). See Figure 8A slices 3–5 and Figure 8C slices 1–4.

From 3 hours to 4hr20m post-injection, the SERT knock-outs have additional hyperintensity
increase with more volume occupied in the same locations as 3hr>2hr20m statistical parametric
map (SPM). The arc through the TH is now broader and continuous to the contralateral GP.
For the normal animals, hyperintensity increases are displayed in major portions of the
ipsilateral CP and medial portions of the GP, leading down to the BST, then into the reticular
nucleus (RT) and central portions of the TH with additional intensity increases in dorsal regions
of the hypothalamus (HY). No changes are seen contralateral to the injection site in this
comparison (Figure 8. 4hr20m>3hr).

Major differences in the accumulation of Mn2+ signal evolved throughout the time course of
the experiment in both cohorts. The extent and location of these changes become increasingly
different between the two cohorts over time. Between 4hr20m and 24 hours, widespread
changes were seen in images from both knock-out and normal cohorts (pure red and blue in
Figure 8).

In the normal animals, three significant threads of hyperintensity can be identified, with none
extending further posterior than the TH at −2.5mm Bregma. One thread runs from Layer 5
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cortex at 0.5mm Bregma tracing diagonally back to the midline at −1.6mm Bregma in the
retrospinal cortex (Figure 8A slices 2–4). The second thread is ipsilateral to the injection site
filling much of the CP, and large portions of the GP, ACB, and substantia innominata (SI);
plus the claustrum (CLA) and nearby cortex. This thread further expands to fill half the TH
farthest from the midline (Figure 8A slices 4 and 5, 8C slices 1 and 2). The third thread is
contralateral to the injection site and somewhat smaller than the second thread but occupies
substantially the same anatomy (Figure 8A slices 4 and 5, Figure 8C slice 8 and 9).

In the SERT knock-outs by 24 hr, three distinct differences with normals become obvious.
First, instead of distinct threads progressing from the injection site, in the knock-outs we note
a more general spread of the hyperintensity posterior to the mid level TH with a larger volume
occupied contiguously across the entire TH, i.e. compare the 24hr>4hr30m SPM with the
4hr20m>3hr SPM (Figure 8B slice 5). Second, the enhanced region extends more ventrally to
occupy much of the substantia nigra (SNr) both ipsilateral and contralateral to the injection
site (Figure 8B slices 6 and 7, Figure 8D slices 2 and 3), as well as the ipsilateral ventral
tegmental area (VTA) (Figure 8B slice 8, Figure 8D slice 4). Finally, significant intensity
increases are observed far posterior into the dorsal nucleus Raphé (DNR), red nucleus (RN)
and pontine reticular nucleus (PRN) (Figure 8B slices 9–12, Figure 8D slices 3–5). This
accumulation of Mn2+ in the posterior regions of the brain was not detected in normals.

Discussion
Here we show profound differences in the neuronal circuitry caused by a genetic disruption of
the serotonin transporter in a mouse model system using a panel of magnetic resonance
methods. Both metabolite detection by MRS and anatomy by TBM and DTI demonstrated no
detectible differences between SERT knock-out and normal mice. In contrast, widespread
differences were revealed by neuronal transport of the MR contrast agent, Mn2+. After injection
of Mn2+ into the prefrontal cortex of living mice, the classic pathway to the limbic system
became highlighted over 24 hours in normal mice, whereas in SERT knock-out, Mn2+-induced
increased intensity occurred more caudally, progressing into the dorsal nuclei Raphé of the
brain stem. Thus by 24 hours little overlap in the highlighted anatomy between the two types
of mice was found. This dramatic difference in Mn2+ accumulation cannot be explained by
alterations in metabolite levels or anatomy of the mutants.

MRS detectable metabolite levels in the caudate putamen of knock-out mice are similar to
normals. Thus neuronal viability (indicated by NAA/Cr), excitatory and inhibitory system
integrity (indicated by Glu/Cr and GABA/Cr), membrane turnover (indicated by Cho/Cr), and
glial volume (indicated by Tau/Cr) are not significantly different between the SERT knock-
out and normal animal (Brian Ross, 2001; Dedeoglu et al., 2004; Hetherington et al., 1997;
Lyoo and Renshaw, 2002; Marjanska et al., 2005; Morris, 1999; Rothman et al., 2003; Rudin
et al., 1995).

Histology also demonstrated no detectible toxic effect of the injectate containing 3 nmol of
Mn2+ on the brain parenchyma in either genotype. This agrees with work of Canals and
coworkers who found a threshold for neuronal cell death of 16nmol and for astrogliosis of
8nmol Mn2+ (Canals et al., 2008). Thus differences in MEMRI delineated pathways are not
due to selective anatomical damage by the injection in either genotype.

Tensor-based morphometry (TBM) also failed to show any gross anatomical differences
between the two cohorts, i.e. no differences in the size or shape of structures, no missing
structures, no cerebellar or hippocampal dysmorphism. We used TBM to compare the SERT
knock-out and the normal mouse brain based on in vivo pre-injection MRI and ex vivo iDWI
data sets. Thus, the lack of change must be viewed within the context of the limited spatial
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resolution (100μm) and contrast of the images. Histological examinations reveal that SERT
knock-out mice have altered barrel field morphology (Persico et al., 2001) and other cellular
level changes in the cortex and other parts of the brain (Altamura et al., 2007; Li, 2006; Persico
et al., 2000a; Wellman et al., 2007). The TBM methodology as implemented here is insensitive
to changes at the higher resolution used to detect these microscopic anatomical differences.

Fractional anisotropy (FA) and the trace of the water diffusion tensor (Tr(D)) have been used
to gain insight into changes in white matter tracts and other ordered brain structures
(Drobyshevsky et al., 2005; Tyszka et al., 2006; Wieshmann et al., 1999). FA and Tr(D) are
two rotationally invariant indices derived from the diffusion tensor that provide information
about underlying tissue characteristics (Alexander et al., 2001; Basser, 1995; LeBihan, 1995;
Mori et al., 2001; Papadakis et al., 1999; Pfefferbaum et al., 2000; Song et al., 2002; van Doorn
et al., 1996). Fractional anisotropy is a scalar measure of the diffusion anisotropy (i.e.
propensity of water to diffuse along, rather than perpendicular to, nerve bundles). Tr(D) is a
measure of the orientation-independent mean diffusivity of water in the tissue. Statistical
parametric maps of our data failed to detect any meaningful differences between FA and Tr
(D) datasets from SERT knock-out and normal mice. Hence the tracts and ordered structures
detected by FA and Tr(D) are essentially normal in the SERT knock-out. Thus, anatomical
differences at the 100μm resolution of this data are unlikely to contribute to the large differences
in Mn2+ distribution.

The dramatic differences in Mn2+ enhanced MR images in the SERT knock-out mice compared
to normal animals were found both in the anatomical distribution of Mn2+-induced intensity
increases and in the time course of their appearance. After introduction of nanoliter amounts
of Mn2+ into the prefrontal cortex, both knock-out and normal mice displayed Mn2+

accumulation in the CP, GP, and thalamus; while only the knock-out showed additional
accumulation further basal and posterior in the hypothalamus, SNr, VTA, RN, and PRNr over
time.

Mn2+ is an anterograde trans-synaptic tracer thought to be selectively taken up through Ca2+

or other divalent cation channels and transported via fast axonal transport within neurons to
accumulate at distant sites in sufficient amounts to produce significant intensity changes
detected by T1-weighted MRI (Murayama et al., 2006; Silva et al., 2004; Van der Linden et
al., 2007). Moreover, Mn2+ is an activity dependent tracer, as it is taken up by active neurons
via voltage gated Ca2+ channels (Aoki et al., 2002; Drapeau and Nachshen, 1984; Narita et al.,
1990) and crosses active synapses (Bearer et al., 2007a; Pautler et al., 2003; Saleem et al.,
2002). There is no known specificity of Mn2+ for any particular type of neuron. Thus, the
projections observed in this work likely arise from all neurons at the forebrain injection site,
regardless of their neurotransmitter specificity. In this regard, several cellular level differences
in the prefrontal cortex have been observed between SERT knockout and normal mice,
including increased neuronal density, changes in layer thickness, and increased branch length
in pyramidal neuron dendrites (Altamura et al., 2007; Persico et al., 2003; Persico et al.,
2001; Wellman et al., 2007). These cellular differences must modulate to some extent the initial
uptake and, thus, could modulate the temporal distribution of Mn2+ originating in the forebrain.
Cellular differences due to SERT knock-out have also been noted in locations such as the
somatosensory cortex, amygdala, hypothalamus, striatum, and dorsal Raphe (Kim et al.,
2005; Li, 2006; Li et al., 2003; Lira et al., 2003; Persico, 2004; Persico et al., 2000b; Wellman
et al., 2007). These structural, cellular, and molecular differences all contribute to the functional
differences in neuronal circuits in the two cohorts of mice that affect the transport/relocation
of Mn2+. This interpretation is consistent with other studies of SERT knock-out mice showing
that they exhibit significant adaptive changes at the molecular/synaptic/cellular level; including
region specific changes in various serotonin receptor densities and altered responses in other
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neurotransmitter systems (Fox et al., 2007; Kim et al., 2005; Li, 2006; Murphy et al., 2004;
Murphy and Lesch, 2008; Shen et al., 2004; Wellman et al., 2007).

Mn2+ transport in the normal animal delineates some, but not all, of the expected connections
between the neocortex and the basal ganglia of the rodent brain (Carr and Sesack, 2000; Gabbott
et al., 2005; Paxinos, 2004). Over the course of 3 hours, Mn2+ is transported from the prefrontal
cortex to the caudate putamen (CP) and then onto the globus pallidus (GP), nucleus accumbens
(ACB), and thalamus (TH). Similar connections were observed in the rat after stereotaxic
injection on Mn2+ into the CP (Soria et al., 2008). By 4 hours post-injection hyperintensity is
seen in the bed nucleus of the stria terminalis (BST) and dorsal regions of the hypothalamus
(HY). We interpret the large volume of the striatum occupied in the 24hr>4hr20m statistical
parametric map (SPM) of the normal mice to be a consequence of three factors: 1) continued
input from the prefrontal cortex; 2) transfer among striatal interneurons; and 3) feedback along
the thalmo-striatal pathway. Likewise, feedback along the thalmo-cortical pathway accounts
for highlighted voxels in the retrospinal cortex. We do not observe the pathways (direct or
indirect) to the substantia nigra (SNr) or projections to the ventral tegmental area (VTA) in
these experiments, implying relatively lower activity of neurons projecting to these locations
in the normal mouse.

Both temporal and spatial patterns of Mn2+ accumulation in the serotonin transporter knock-
out mouse were profoundly different than those observed in the normal mouse. As noted by
others, lifelong lack of SERT causes rearrangement of the relative concentrations and
distributions of the various serotonin receptors (Gobbi et al., 2001; Holmes et al., 2003; Li et
al., 2003; Mathews et al., 2004; Montanez et al., 2003; Murphy and Lesch, 2008) that are
thought to lead to a loss of functional integration and inhibitory regulation in neural circuitry
related to emotion and effects of drugs of abuse (Hariri and Holmes, 2006; Uhl et al., 2002).
Moreover, SERT knock-out mice show changes in dendritic morphology in the PFC (longer
apical dendritic branches in the knockout) and the basolateral amygdala (greater neuronal
density) (Wellman et al., 2007); as well as significant increases in neuronal cell density in the
neocortex (Altamura et al., 2007). Although neurons in the PFC are known to project to the
basolateral amygdala (BLA) (Gabbott et al., 2005), no Mn2+ transport to the BLA from the
injection site in the PFC is seen in the knock-out mouse and only very minor amounts in the
normal mouse at 24 hours after injection. We conclude from this that the PFC-BLA circuit is
less robust than connections to the more medial structures (CP, ACB, and TH) in both the
normal and SERT knock-out mice.

If activity dependent uptake and release are dominant factors determining the Mn2+

distribution, then differences in the statistical parametric maps of the normal and SERT knock-
out mice likely reflect differences in neuronal circuit activity. At early times, we observed
Mn2+ accumulation in the CP of SERT knock-outs well before normal mice; indicative of
increased activity in the PFC (thus increased Mn2+ uptake) and/or more functionally dense
connections between the PFC and CP in SERT knock-outs as compared to normal mice.
Increased uptake of Mn2+ in the PFC of the SERT knock-out is consistent with changes in
dendrite morphology and cortical neuronal cell densities observed by others (Altamura et al.,
2007; Wellman et al., 2007).

Subsequent connections from the CP to the GP and TH were also found to be more active (and/
or denser) in the SERT knock-out versus normal, as evidenced by the occurrence of Mn2+

induced intensity increases in GP and TH of the SERT knock-out well before the normal
(appearing 2–3 hours post-injection in SERT knock-out versus 3–4 hours post-injection in the
normal mice). Although the normal animals are known to have important circuits involving
the SNr, VTA, and DNR; no hint of Mn2+ transport to these locations was observed in the
normal animal. In contrast, at 24 hours post-injection we do note Mn2+ accumulation in these
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same structures in the SERT knock-out. Thus, one or more of three conditions apply in the
SERT knock-out when compared with the normal mouse: 1) increased uptake because of
increased activity in neurons projecting from CP/GP to SNr/VTA/DNR and subsequent
delivery of Mn2+; 2) more neurons projecting to these areas; and/or 3) increased dendritic
uptake by neurons in these areas.

Mn2+ labels a well defined subset of the known projections from the PFC. Labeled projections
are qualitatively different in normal as compared to SERT knock-out animal. The schematic
in Figure 9 shows the three most striking general differences observed between the SERT
knock-out and normal mouse: 1) connections from the PFC to the ACB are observed in normal,
but not the SERT knock-out; 2) connections from the PFC to the VTA and SNr are observed
in the SERT knock-out, but not the normal mouse; 3) connections in the SERT knock-out
progress as far posterior as the dorsal nucleus Raphé and PRN, but stop mid thalamus in the
normal mouse. Although connections from the VTA to the ACB are well known in the rodent
(Carr and Sesack, 2000;Gabbott et al., 2005;Gerfen, 2004;Sesack and Pickel, 1992), they are
not observed here in either the normal or knock-out mice. These findings imply that in the
SERT knock-out the mesocortical and nigrostriatal pathways are emphasized at the expense
of the mesolimbic pathway. Morphological changes noted by others (e.g. changes in barrel
field density, neuronal density, and dendritic morphology) likely influence the functional
responses reported by Mn2+ enhanced MRI. Thus, we predict that PFC projections terminating
in the SNr, VTA and PRNr will have different morphology in the SERT knock-out compare
to the normal mouse: likely greater neuronal and or dendritic spine density.

The limbic cortical-ventral striatopallidal circuitry is intimately involved in addiction,
aggression, and affective disorders (Berton and Nestler, 2006; Everitt and Robbins, 2005;
Murphy and Lesch, 2008; Nelson and Trainor, 2007; Robbins and Everitt, 2002). The SERT
knock-out animal model used here reflects many human traits associated with particular human
SLC6A4 variants (Murphy et al., 2004; Murphy et al., 2003; Uhl, 2006). We have employed
Mn2+ enhanced MRI to investigate descending neuronal projections originating in the most
anterior part of this circuit: the prefrontal cortex. Using MRS, TBM, and DTI we observe
similar metabolite profiles, gross anatomy, and structural characteristics in both normal and
SERT knock-out mice. MRI provides a view of the brain bridging its cellular-molecular and
the behavioral aspects. From the mesoscopic view afforded by MRI, we observe that active
circuitry originating in the prefrontal cortex in the SERT knock-out is biased towards more
posterior areas (substantia nigra, ventral tegmental area, and dorsal nucleus Raphé) directly
involved in the reward circuit pointing to specific modulation of this circuit by the altered
lifelong serotonin tone. As illustrated in this work, MRI can be used to link the micro level and
macro level aspects of animal models of disease; in this case providing important insights into
how a specific molecular alteration (SERT knock-out) is manifested in the complicated and
critically important cortico-limbic circuit.
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Figure 1. Injection sites are closely grouped within the prefrontal cortex
Location of the injection site is measured as the center of the hypointense region in the MR
image recorded 1 hour post–injection. In the three projections, injection sites for individual
animals are shown as orange spheres for SERT knock-outs and gray spheres for normal mice.
Scale bar = 1mm.
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Figure 2. Injection site shows minimal injury
All 20 brains were examined by histology. Examples of a section through the PFC of brains
imaged by MR and then fixed for histology, sectioned coronally in the same block in register,
and stained in parallel for Nissl/Thionine are shown. The brain in (A) was fixed at 2 days and
(B) 16 days after injection. At 2 days (A) an apparent needle track is found in the Nissl/Thionine
stained section and confirmed as the injection site in a parallel section imaged by fluorescence
(C). The fluorescent tracer has already traveled along neural processes into deeper regions of
the brain and along the corpus callosum. Higher magnification (D) reveals no hemorrhage, or
evidence of inflammation at the injection site or along the track. At 16 ddays (B) no histologic
evidence of the injection can be found nor is any evidence of residual injury detected. Bar =
500μm.
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Figure 3. Neuronal transport of rhodamine-dextran and Mn2+ overlap in the globus pallidus (GP)
Panel A shows fluorescence microscopy of a coronal section through Bregma −0.3 mm in the
GP lateral to the internal capsule. It reveals a cluster of rhodamine-positive neurons ipsilateral
to the injection in the same normal mouse as shown in Figure 2A that was co-injected with
Mn2+ and rhodamine-dextran, imaged by MR and fixed by perfusion 48 hr later. Rhodamine
dextran (red) appears as fluorescent particles in the neuronal cell bodies (insert at 2X). Nuclei
are stained blue with DAPI. Note the normal neuronal morphology of the dextran-positive
cells. Panel B shows the corresponding MR image slice from the 3D data set of the average
24-hour post injection normal mouse that includes the images from the mouse shown in (A).
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Note enhanced intensity in the GP. The rectangle in the MR image corresponds to the location
and size of fluorescence image in (A).
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Figure 4. MR spectroscopy detects little difference between SERT knock-out and normal brains
A. Typical in vivo proton spectra from a small volume in the striatum reveal good signal-to-
noise ratio. Metabolite relative concentrations shown in B are determined from these spectra.
B. Metabolite concentrations relative to creatine determined from analysis of in vivo
spectroscopy data. Only choline and taurine verge on being different in the SERT knock-out
(knock-out - shaded bars) versus the normal (normal - unshaded bars) mouse. Student’s t-test
comparison reveals p<0.054 (*) for these two metabolites. Only the major peak(s) for each
metabolite are noted. Lac: lactate, NAA: N-acetylaspartate, Glu: glutamine, Gln: glutamate,
Cr: creatine, Cho: choline, Tau: taurine, GABA: γ-aminobutyric acid, M-Ins: myoinositol.
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Figure 5. Tensor-based morphometry from in vivo 3D-RARE and isotropic diffusion-weighted
MRI data of SERT knock-out and normal mice reveal no meaningful anatomic differences
A and B show para-sagittal and coronal sections, respectively, from the average of all pre-
injection 3D RARE in vivo MR scans from both cohorts. C and D show para-sagittal and
coronal sections, respectively, from the average of all iDWI ex vivo MR scans from both
cohorts. Green areas denote those voxels that differ (p<0.01) between cohorts in their
transformation to the same canonical mouse brain. Scale bar = 1mm.
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Figure 6. Statistical parametric mapping comparisons of Tr(D) and FA data of SERT knock-out
and normal mice exhibit no meaningful differences
A and B show para-sagittal and coronal sections, respectively, from the average of all Tr(D)
images derived from ex vivo DTI scans from both cohorts. C and D show para-sagittal and
coronal sections, respectively, from the average of all FA images derived from ex vivo DTI
scans from both cohorts. Colored areas show Student’s t-test comparisons of the FA and Tr
(D) values between the two cohorts where red implies SERT knock-out values are greater than
normal animal values and blue less. Only p<0.01 values are shown and they comprise less than
0.5% of the brain volume. Scale bar = 1mm.
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Figure 7. Vizualization of MEMRI shows Mn2+ accumulation over time far from the injection site
A. Coronal slices show Mn2+ induced hyperintensity near and far from the original injection
site. The left and right columns show slices at 0.4mm and 3.5mm posterior to bregma,
respectively. Slices are derived from the averaged aligned in vivo 3D MR images of 10 SERT
knock-out mice. Hyperintensity in the cortex (arrowhead - left column 2nd row) is due to
Mn2+ passive diffusion from the injection site (Bregma +0.92mm, 0.5mm off midline, 0.9mm
from surface), while hyperintensity far from the injection site (e.g. GP and SNr) is due to active
transport and accumulation. A sagittal slice from the pre-injection image at the bottom notes
the locations of the slices. Red circle in the GP notes the location of the center of volume of
interest (VOI) used in B. Scale bar =1mm. GP: globus pallidus; SNr: substantia nigra. B.
Average intensity in a 0.065μl volume of interest centered in the globus pallidus (red circle in
A) increases significantly as a function of time after injection. Squares: SERT knock-out mice;
diamonds: normals. Error bars are one standard deviation. Scale bar = 1mm.
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Figure 8. Color-coded statistical parametric maps of the time dependence of Mn2+ accumulation
after injection in the prefrontal cortex show widespread differences between normal and SERT
knock-out mice
A) and B) show coronal slices from normal and SERT knock-out mice, respectively. In both
panels coronal slices proceed anterior to posterior from upper left to lower right with placement
as shown in the sagittal section. C) and D) show sagittal slices from normal and SERT knock-
out mice, respectively. In both panels sagittal slices proceed ipsilateral to contralateral of the
injection site with placement as shown in the coronal section. Colored areas denote those
regions with significant (p<0.025) intensity change between consecutive time points indicating
Mn2+ tracing to those locations. The 1 hour versus pre-injection comparison is shown in pure
green for both the SERT knock-out and normal animals, while later times are displayed with
increasing amounts of blue for the SERT knock-out and red for the normal animal. The average
pre-injection MR image is show as grayscale background.
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Figure 9. Overview of difference in Mn2+ accumulation between SERT knock-out and normal mice
A) Side view of increase in Mn2+ hyperintensity at 24hr compared to 4hr20m post injection
with normal animals shown in red, SERT knock-out shown in blue, injections site is shown as
a brown sphere, and gray semi-transparent background is the average normal animal brain. B)
Schematic of circuitry delineated by Mn2+ tract tracing shows significant differences between
the normal animal and the SERT knock-out. In B) the red arrows denote pathways highlighted
in the normal animal, which include the nucleus accumbens (ACB) and extend only as far
posterior as the mid thalamus (TH). Blue arrows denote pathways highlighted in the SERT
knock-out, which include the ventral tegmental area (VTA) and extend as far posterior as the
pontine reticular nucleus (PRNr). Basil nuclei of the stria terminalis: BST; caudate putamen:
CP; hypothalamus: HY; prefrontal cortex: PFC; red nucleus: RN; substantia nigra: SNr;
substantia innominata: SI.
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