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Abstract
In this article, we introduce a multimodal multivariate network analysis to characterize the linkage
between the patterns of information from the same individual’s complementary brain images, and
illustrate its potential by showing its ability to distinguish older from younger adults with greater
power than several previously established methods. Our proposed method uses measurements from
every brain voxel in each person’s complementary co-registered images and uses the partial least
square (PLS) algorithm to form a combined latent variable that maximizes the covariance among all
of the combined variables. It represents a new way to calculate the singular value decomposition
from the high-dimensional covariance matrix in a computationally feasible way. Analyzing
fluorodeoxyglucose positron emission tomography (PET) and volumetric magnetic resonance
imaging (MRI) images, this method distinguished 14 older adults from 15 younger adults (p = 4e-12)
with no overlap between groups, no need to correct for multiple comparisons, and greater power than
the univariate Statistical Parametric Mapping (SPM), multimodal SPM or multivariate PLS analysis
of either imaging modality alone. This technique has the potential to link patterns of information
among any number of complementary images from an individual, to use other kinds of
complementary complex datasets besides brain images, and to characterize individual state- or trait-
dependent brain patterns in a more powerful way.
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INTRODUCTION
Although clinical and research studies commonly acquire complementary brain images from
each participant, the statistical analyses in most studies are performed with the data from
different images analyzed separately (i.e., “unimodal” analyses), and often use “univariate”
methods that treat different voxels or regions-of-interest (ROIs) within an image as
independent. Advances in image-analysis techniques have made it possible to use one image
modality to help support the analysis of a complementary image modality. For instance, co-
registered magnetic resonance images (MRI) can be used to localize anatomical ROIs in
functional brain images, support the anatomical deformation and standardization of functional
brain images, characterize functional brain imaging measurements in segmented brain tissues
and help correct them for the effects of partial-volume averaging, and characterize the
correlations between regional measurements in the complementary datasets (Ashburner and
Friston, 1997; Casanova et al., 2007; Ibanez et al., 1998; Jack, Jr. et al., 2008). Despite these
and other advances, analytical methods are needed to more fully capitalize on the patterns of
information from potentially complementary, complex data sets acquired from the same
individual.

In contrast to univariate image-analysis methods, multivariate image-analysis techniques can
be used to characterize voxel- or region-based patterns of covariance. For instance, multivariate
image-analysis methods have been used to analyze patterns (or networks) of the regional
cerebral metabolic rate for glucose (CMRgl) in fluorodeoxyglucose positron emission
tomography (FDG PET) and gray matter volume in magnetic resonance images (MRI), as well
as patterns of activation in 15O-water PET images and functional MRI (fMRI) (Alexander et
al., 1999; Alexander and Moeller, 1994; Feigin et al., 2001; Habeck et al., 2005; McKeown
and Sejnowski, 1998; Moeller et al., 1987; Smith et al., 2006; Alexander et al., 2006; McIntosh
et al., 1996; Alexander et al., 2008). Multivariate image-analysis methods include principal
component analysis (PCA) (Friston, 1994), the PCA-based Scaled Subprofile Model (SSM),
independent component analysis (Calhoun et al., 2001; Calhoun et al., 2003; Chen et al.,
2002; Esposito et al., 2003; McKeown and Sejnowski, 1998; Moritz et al., 2000; Schmithorst
and Holland, 2004), the Partial Least Squares (PLS) method (Mcintosh et al., 1996; Worsley
et al., 1997), structural equation modeling (Mcintosh and Gonzalez-Lima, 1994), ordinal trend
analysis (Habeck et al., 2005), and dynamic causal modeling (Friston et al., 2003). These
methods have typically been used to characterize regional networks of brain function or
structure and to test their ability to distinguish between groups, states, and/or their interactions,
or to relate patterns of measurements or activation to other (e.g., cognitive, behavioral, or
biological) measurements. These methods have been mostly used in ‘unimodal’ data analyses.

Efforts to apply multivariate image-analysis techniques to simultaneously characterize
multimodal neuroimaging data have been applied successfully to time series of
electroencephalography (EEG) and functional MRI (fMRI) (Martinez-Montes et al., 2004).
Using multi-way PLS approach, the authors attempted to decompose simultaneously the EEG
data into sum of spatial, temporal and spectral components and the fMRI into sum of spatial
and temporal ones. The decomposition was constrained to maximize the covariance of
corresponding temporal components between EEG and fMRI. The authors of that study
concluded that fusing fMRI and EEG meaningfully extends the spatio-temporal resolution and
sensitivity of each of these complementary datasets.

In this article, we introduce a multimodal multivariate data analysis technique to
simultaneously characterize the linkage between the patterns of information from the same
individual’s complementary brain images. We illustrate its potential value by showing its
superiority to conventional methods in distinguish between older and younger adults using
FDG PET and structural MRI, while resulting in similar age-related patterns within each of
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the two imaging modalities. In addition to its recent multimodal application discussed above
(Martinez-Montes et al., 2004), PLS was originally introduced to characterize the pattern of
regional covariance within a single image modality (McIntosh et al., 1996), and has been used
to identify regional patterns of functional brain imaging measurements that best distinguish
different subject groups, states or traits (Anderson et al., 2000; Grady et al., 1998; Habib et al.,
2003; Iidaka et al., 2000; Keightley et al., 2003; McIntosh, 1998; McIntosh, 1999; Nestor et
al., 2002; O’Donnell et al., 1999; Rajah et al., 1999).

Here, we use PLS to simultaneously characterize the linkage between the same individuals’
patterns of resting CMRgl using FDG PET and gray matter using volumetric MRI pattern of
gray matter, applying the method in both an “agnostic” way, blind to known information of
variable of interest (such as the subjects’ characteristics or group membership) and in an
“informed” way, which incorporates the known information of variable of interest about the
subjects. Finally, to illustrate the potential of this multimodal multivariate image analysis
technique, we compare it to conventional unimodal univariate and multivariate analyses in the
discrimination between older and younger age groups.

We take the advantage of the fact that number of subjects is always much smaller than the
number of voxels in the neuroimaging studies (so the rank of the covariance matrix is much
lower than its size) to address the computational efficiency of the agnostic multimodal PLS
method. We then focus our attention on implementing statistical procedures to assess type-I
error for multimodal PLS based imaging markers. In addition, we illustrate how the multimodal
PLS can be used to classify subjects in relationship to categorical older and young group
memberships. Finally, we compare our new method to the independent unimodal analysis of
PET or MRI using unimodal SPM, voxel-wise multimodal SPM, and unimodal, informed PLS
analyses.

MATERIALS AND METHODS
Subjects and data

FDG PET and volumetric MRI images from 15 younger adults, 20–39 (31 ±5) years of age,
and 14 cognitively normal older adults, 65–80 (71±4) years of age are used to evaluate the
ability of the multimodal PLS to discriminate between these two age groups and compare it to
some widely used unimodal univariate and multivariate methods. To minimize the potentially
confounding contribution of preclinical brain changes, the study is restricted to non-carriers of
the apolipoprotein E (APOE) ε4 allele, a common Alzheimer’s disease (AD) susceptibility
gene (Reiman et al., 2004). The subjects agreed that they would not be given information about
their APOE genotype, provided their informed consent, and were studied under guidelines
approved by the institutional review boards at Banner Good Samaritan Medical Center
(Phoenix, AZ) and the Mayo Clinic (Rochester, MN). PET images from the younger subjects
were described in a previous comparison between younger and older carriers and non-carriers
of the APOE ε4 allele (Reiman et al., 2004).

The subjects denied memory concerns, did not satisfy criteria for a current psychiatric disorder,
and did not use centrally acting medications for at least six weeks before their imaging sessions.
Investigators who were unaware of the subjects’ APOE genotype obtained data from medical
and family histories, a neurological examination, and a structured psychiatric interview. All of
the subjects completed the Folstein-modified Mini-Mental State Examination (MMSE) and
the Hamilton Depression Rating Scale and all but one subject completed a battery of
neuropsychological tests. All had a normal neurological examination. There were no significant
differences between the younger and older age groups in their gender distribution (3 males and
12 females versus 5 males and 9 females, respectively, P=0.34), but the older group had a
slightly lower educational level (16.2±1.2 and 14.7±1.9 years, respectively, P=0.019). In this
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methodology oriented study, no attempt was made separate the education effects in contrasting
the two age groups.

PET was performed with the 951/31 ECAT scanner (Siemens, Knoxville, Tenn.), a 20-minute
transmission scan, the intravenous injection of 10 mCi of 18F-FDG, and a 60-min dynamic
sequence of emission scans as the subjects, who had fasted for at least 4 hours, lay quietly in
a darkened room with their eyes closed and directed forward. PET images were reconstructed
using the back projection with Hanning filter of 0.40 cycles per pixel and measured attenuation
correction, resulting in 31 slices with in-plane resolution of about 8.5mm, full width at half
maximum (FWHM), an axial resolution of 5.0–7.1mm FWHM, a 3.375 slice thickness and a
10.4cm axial field of view.

MRI was performed using a 1.5 T Signa system (General Electric, Milwaukee, WI) and a T1-
weighted, three-dimensional pulse sequence (radio-frequency-spoiled gradient recall
acquisition in the steady state [SPGR], repetition time =33 msec, echo time = 5 msec, α=30°,
number of excitations=1, field of view=24cm, imaging matrix=256 by 192, slice
thickness=1.5mm, scan time=13:36 min). The MRI data set consisted of 124 contiguous
horizontal slices with in-plane voxel dimension of 0.94 by 1.25mm.

Data pre-processing
SPM2 (http://www.fil.ion.ucl.ac.uk/spm/) was used for image pre-processing. Automated
segmentation and normalization procedures (Good et al., 2001) were applied to each subject’s
MRI to exclude non-brain tissue and to generate maps of smoothed gray matter density after
spatial deformation into Montreal Neurological Institute (MNI) template space. A common
mask was created and applied to the segmented gray matter density maps to include gray matter
voxels with an intensity value of at least 0.2 in every subject for subsequent analyses.
Automated algorithms were also applied to each subject’s PET image, co-registering it to the
subject’s MRI and deforming it into MNI template space using the normalization parameters
derived using the MRI segmentation and normalization procedures noted above. The PET
images were then resampled to the same slice, matrix, and voxel size and number, and filtered
using the same mask. Finally, PET and MRI images were each smoothed to 15 mm FWHM.

To create XMRI and XPET numerical matrices for subsequent PLS analysis, each respective
MRI or PET voxel within the brain mask was labeled as voxel 1, voxel 2, …, voxel PX (where
PX is the number of voxels inside the brain mask). At each given voxel location, a column
vector of length n, where n is the number of subjects (n=29 for our current study), was formed
whose element i is the voxel intensity from subject i (i=1, …,n). The agnostic multimodal PLS
was used to identify the linkage between XPET (which we treated as the dependent data block)
and XMRI (which we treated as independent data block). The informed multimodal PLS uses
the combined matrix [XPET XMRI] as the independent block, whereas the previously established
unimodal PLS uses either XPET or XMRI for its respective PET or MRI analysis. For the
informed PLS, which incorporated information about the subjects’ group membership, the
dependent block designated younger subjects as 1 and older subjects as 2. We note that our
use of categorical variable in the informed multimodal PLS is inline with the classification of
subjects into younger or older group. The agnostic PLS, on the other hand, is mainly oriented
for extraction of covariance patterns and related latent variables rather than for classifications.
In the following sections, we will refer to the independent block as X and the dependent block
as Y.

PLS with deflation
We adopted the PLS deflation scheme to deflate data matrices by discounting information
projected onto the previous latent variable space, as described below. This computational
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strategy guarantees the orthogonality of the extracted component in all data spaces (Hoegaerts
et al., 2003).

The PLS uncovers the maximal covariance between a pair of latent variables, linearly
constructed from each of the two respective datasets. Beginning with the original spatially
standardized data matrices X and Y, the first latent variable pair is constructed as follows: The
latent variable of X is t = Σ wj xj where wj is a scalar for random variable xj which is the jth
column of X (j=1, 2,… PX). In matrix form, t=Xw where w=(w1, w2, …)T with norm ||w||=1.
For the imaging dataset, index j refers to the jth voxel in the brain volume. Similarly, the Y
latent variable can be expressed as u=Yc (||c||=1). Again, we refer to t and u as the first latent
variable pair. In the context of the agnostic multimodal PLS, we refer to w and c as (the first)
singular image of X and Y, respectively, as w and c can be mapped back to image space,
displayed and interpreted. Assuming a zero mean, the covariance of the two latent variables,
t and u, is therefore cov(t,u)=w′X′Yc. The maximal covariance value, with respect to w and c,
can be proven to be the square root of the largest eigenvalue of the matrix Ω=[X′YY′X] with
w being the corresponding eigenvector of Ω, and c being the corresponding eigenvector of Y′
XX′Y. The second latent variable pair can be constructed in a similar way after the contributions
of the first latent variable are regressed out (deflated) from X and Y as follows: Express

 and calculate new X1 and Y1 as X1 = X − tp1 ′, Y1 = Y − tr1′. The same
procedure is then repeated for the new X1 and Y1 matrix pair to construct each subsequent latent
variable pair, up to the Lth pair, where L=rank(X). (The deflation scheme described here reflects
the fact that Y is designated as the dependent datablock and X as the independent datablock.)

Multi-block PLS
We use the term “dual-PLS” (DPLS) to refer to the previously described analysis of two
complementary datasets, including one dependent datablock and one independent datablock.
The DPLS is suitable for the agnostic multimodal PLS of the linkage between the patterns in
two complementary imaging datasets (e.g., XPET and XMRI). In this case, DPLS is also suitable
for the informed analysis of a single imaging data set since it is restricted to two complementary
datasets. In order to analyze more than two complementary datasets (i.e., more than one
independent block, X1, X2, …, Xm), we introduce the “multi-block PLS”. The multi-block PLS
is suitable for the agnostic analysis of three or more complementary imaging datasets, and it
is suitable for the informed analysis of two or more datasets. Beginning with the original
standardized data matrices X and Y, the multi-block PLS uncovers the first latent variable
between Y and X=[X1 X2 …Xm] in exactly the same way as the DPLS. The previously described
DPLS deflation step would mix contributions from different X blocks, making the results
difficult to interpret. We implemented a previously suggested approach (Westerhuis and
Smilde, 2001) for the multi-block PLS, deflating only the Y-block while keeping X-blocks
untouched.

Implementing the Agnostic Multimodal PLS by Reducing Matrix Size, a Computationally
Efficient Method

The data matrix XPET is n by PX with n≪Px and consequently rank(X)≤n. Without losing
generality (as is usually the case with real data), we assume rank(X)=n. The matrix Y′X (or X′
Y) is prohibitively large for direct computation of its singular value (Bookstein, 1994) using
the MATLAB built-in command svds.

To take advantage of the fact that n≪Px in the Ω=X′YY′X related eigen-computation, we note
that matrix YY′ in the middle of X′YY′X is n by n and is a positive definite with full rank. Thus,
there exists an n×n positive definite (symmetric) matrix Z such that YY′=ZZ. Thus, Ω=X′Z′
ZX=(ZX)′ZX=A′A, where we have A=ZX which is n×Px. The eigenvalue computation of the
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huge matrix A′A is equivalent to the eigenvalue computation of the much smaller matrix AA′
which is n by n. In fact, let v1 be an eigenvector of A′A with eigenvalue α: A′ Av1 = α v1. Then,
AA′ Av1 = α Av1. In other words, w1 = Av1 is the eigenvector of the matrix AA′ corresponding
the same eigenvalue α, and the inverse is, of course, also true. We numerically examined the
computational stability of this approach by generating pairs of matrices, Y and X, of various
sizes (but small enough to be handled by MATLAB. For this evaluation, the number of columns
is greater than the number of rows of the generated matrices Y and X, and their ranks equal the
number of rows. Both direct SVD of Y′X the largest singular value) and the largest eigenvalue
of Y′XX′Y were calculated. We found out that the two approaches produced numerically
equivalent results.

Based on this mathematical reasoning, while the computation of the agnostic multimodal PLS
may appear to be prohibitively expensive, it is actually quite manageable and requires no
specialized or unusually high-performance computing hardware. (While the above procedure
solves the PLS singular image w1 for data matrix X, the singular image c1 for data matrix Y
can be simply obtained as  where t1 = Xw1) Moreover, this computationally
efficient process can also be used for the non-parametric computation of linkage type-I errors,
as described below.

Agnostic Multimodal PLS versus Informed Multimodal PLS: Addressing Type I Errors
Three type-I errors, each with a unique nature, need to be considered in analyzing dual-imaging
datasets via multimodal PLS. One of these three is related to agnostic multimodal PLS only
and the other two to both agnostic and informed multimodal PLS.

Linkage type-I error—The agnostic multimodal PLS computes the linkage (as the maximal
covariance) between patterns in these two complementary images blind to the subjects’
information such as group membership or age. We define the linkage type-I error as the one
for the squared correlation coefficient between the latent variable pair, t and u. The squared
correlation coefficient characterizes the linkage between two complementary imaging datasets
(We refer to it as the linkage index between the MRI and the PET datasets), and its type-I error
is the probability of an observed/estimated linkage under the null hypothesis that there is no
linkage between the two datasets (see our definition of non-linkage between two datasets in
the Discussion session). Since t and u are constructed to maximize the covariance between
them, the conventional parametric or non-parametric test cannot be used to assess the linkage
type-I error. In the Discussion sections, we will propose a Monte-Carlo simulation procedure
for assessing the linkage type-I error. Additional linkage type-I error assessment validation,
however, will not be addressed in the current study. (We note that characterizing linkage type-
I errors is only possible for the agnostic multimodal PLS, and not for the informed multimodal
PLS.)

Marker type-I error—The multimodal PLS derived measurements, the numerical values of
the latent variables, have the potential to be used to detect or track biologically or clinically
relevant changes (e.g., distinguish different subject groups as demonstrated in this current
study, characterize an individual’s age or other state, and potentially tracking changes over
time with additional validation we intend to conduct in future studies) with greater statistical
power than conventional approaches. We characterize the type-I errors associated with the use
of multimodal PLS-derived measurements as biological markers, which we call “marker type-
I errors.” In contrast to the agnostic multimodal PLS that permits us to estimate this type-I
error conventionally as they are generated blind to the information for this subsequent usage,
the informed multimodal PLS does not, since it identifies the linkage that most strongly
distinguished, for example as in this current study, the two age groups. Thus, to assess informed
multimodal PLS-derived marker type-I errors, non-parametric permutation strategies
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(McIntosh et al., 2004; McIntosh and Lobaugh, 2004) will be used. To characterize the marker
type-I error associated with the distinction between older and younger age groups for the
informed multimodal PLS, 10,000 row-wise random permutations were performed on matrix
Y and the multimodal PLS procedure was run for each of this permuted Y block and the
unchanged X blocks. After performing the 10,000 permutations, we counted the number of
permutations which misclassified a subject’s age-group membership and used the histogram
of unpaired t-test p-values over the 10,000 permutations to assess the marker type-I errors.

Pattern type-I error—This is the voxel-wise type-I errors in the singular images (the w and
c singular images). It reflects the robustness of the regional/voxel-wise contribution to the inter-
modality covarying patterns. With the data from all 29 subjects included in the agnostic
multimodal PLS, the bootstrap resampling procedure proposed by a number of previous studies
(McIntosh and Lobaugh, 2004) was run 100 times to estimate the voxel-wise standard deviation
of the singular images. The Bootstrap estimated standard deviation was then used to scale the
singular image pair for statistical significance assessment and visual inspection.

Characterizing the Agnostic multimodal PLS Power to Distinguish Subject Groups using
Jacknife Method

Although we are primarily interested in the marker type-I error assessment for the agnostic
multimodal PLS, we also used a Jacknife procedure to examine the index/marker performance
in terms of its power to classify the two age-groups. Agnostic multimodal PLS analysis was
repeated 29 times, leaving one subject out each time. The resulting latent variable pair from
the remaining 28 subjects was used to construct a linear discriminator which was then applied
to determine the age-group membership of the excluded subject. This procedure allowed us to
assess the classification accuracy of our PLS-derived measurements while considering
potential cross-validation shrinkage for this sample.

Comparing the Agnostic multimodal PLS to SPM Analyses and Comparing Informed
multimodal PLS to Unimodal Informed PLS

We compared the agnostic and informed multimodal PLS approaches to established methods
in terms of statistical power (i.e., statistical effect sizes in the discrimination between our older
and younger subject groups) and type-I errors (i.e., the likelihood that the reported group
difference is false). Effect sizes were characterized and compared using the conventional two-
sample independent T-test or Hotelling T2 test. Since the correction for multiple comparisons
for SPM analyses in calculating the effect is not feasible, the reported effect sizes for SPM
analyses could be inflated, but still provide a measure by which to compare the different
methods (or understate the superiority of the multimodal PLS method). Type-I errors for the
informed multimodal PLS, which simultaneously generates latent variables for the subjects’
PET and MRI images, the informed unimodal PLS analysis of their PET images, and the
informed unimodal PLS analysis of the subjects’ MRI gray matter images were characterized
and compared using random permutation testing. We compared the Hotelling T2 test-based
marker type-I errors associated with the agnostic multimodal PLS-derived latent variable pair,
which is free of inflated effect sizes and free of multiple comparisons, --to those associated
with the respective unimodal SPM analyses of the subjects’ PET or MRI images (in the latter
case using voxel-based morphometry) and with those using bi-modal SPM. To be consistent
with the multimodal PLS analysis, the whole brain PET measurements and the total intracranial
volume (TIV) were used to normalize the PET and MRI data respectively by proportional
scaling together with the mask used in the multimodal PLS analysis. For the unimodal SPM
analyses, coordinates with maximally significant differences were used to extract the data from
each subject to characterize effect sizes for between-group differences, and compute the type-
I errors with and without multiple comparison corrections. For the bi-modal SPM analyses,
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PET and MRI measurements were treated as bi-variates at each voxel and to examine that dual-
measurements are different between the two age groups.

We visually inspected and compared the spatial (parametric or covarying) patterns generated
by each of the image-analysis algorithms. The spatial pattern is represented as a t-score map
for each of the unimodal SPM analyses, as an F-score map for the bi-modal SPM analyses, as
the simultaneously generated singular image pair for the agnostic multimodal PLS, as the
simultaneously generated PET and MRI covariance patterns for the informed multimodal PLS,
and as the independently generated covariance patterns for unimodal PET PLS and unimodal
MRI PLS separately.

RESULTS
Figure 1 shows each of the subjects’ agnostic multimodal PLS-generated PET versus MRI
latent variable subject scores (the numerical values of the variables t and u), demonstrating no
overlap between the older and younger subject groups. Figure 2 shows the distinction between
older and younger subjects using the informed MRI PLS, informed PET PLS and informed
PET-MRI multimodal PLS latent variable scores, demonstrating greatest separation between
older and younger subjects using the informed multimodal PLS. Figure 3 shows the MRI and
PET patterns generated using the agnostic multimodal PLS, the age-group-related MRI and
PET patterns generating using informed multimodal PLS, unimodal MRI or PET PLS, and the
conventional unimodal univariate MRI or PET SPM, and the age-group-related composite
image generated using bi-modal PET-MRI SPM. This figure shows that the MRI and PET
patterns simultaneously generated using multimodal PLS, with or without prior information
about the subjects’ age group, are similar to those MRI and PLS patterns independently
generated from SPM or PLS analyses of either imaging modality alone. Finally for the agnostic
multimodal PLS, we note that the overall linkage strength index, the squared correlation
coefficient for the latent variable pair t and u, is R2=0.73 (p<3.77e-9 and see Discussion Section
for more on the marker type-I error).

Agnostic multimodal PLS versus SPM in the discrimination between older and younger subject
groups. For unimodal univariate SPM PET, the maximally significant group difference (one-
tailed, in right fronto-temporal cortex) was p=2e-7 and 0.004, before and after correction for
multiple comparisons, and the corresponding effect size was 2.43. For unimodal univariate
SPM MRI (i.e., gray matter VBM), the maximally significant group difference (one-tailed, in
right parietal cortex) was p=1e-11 and 1e-5, before and after multiple comparisons, and the
effect size was 4.11). For bi-modal SPM, the maximally significant group difference (in right
frontal cortex) was p=1e-12 and 1e-7, before and after multiple comparisons and the effect size
was 5.01. By comparison, for agnostic multimodal PLS, the significant group difference was
p=4e-13 and the effect size was 5.21 without the need to correct multiple comparisons. Note
the effect sizes associated with all three SPM analyses were performed without adjustment for
multiple comparisons and are thus likely to be inflated. As shown in figure 1, when we plot
the respective PET and MRI latent variable scores for the younger and older subjects, there
was no overlap between groups.

In addition to assessing the statistical inference type-I error, we used Jacknife analysis to
evaluate its ability to classify subjects into older and younger age groups. For each iteration,
data from one subject was left out, a linear classifier was computed, and we calculated the
accuracy of the classifier to predict the remaining subject’s age group. Using this approach,
the agnostic multimodal PLS procedure permitted us to accurately classify the left out subject’s
age group 100% of the time.
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Informed PLS using PET only, MRI only, or PET and MRI together in the discrimination
between older and younger subject groups. Out of 10,000 random permutations in which
subject age group-membership was exchanged, we computed the number of permutations
associated with a distinction in group membership as strong as the original comparison,
providing information about type-I errors. Using this approach, the type-I error rate was 30
(p=0.003) for unimodal PET PLS, 2 (p=0.0002) for unimodal MRI PLS and 0 (p=0.0000) using
PET-MRI multimodal PLS. Effect sizes for the discrimination between older and younger
subjects was 3.25 using informed PET PLS, 4.27 using informed MRI PLS, and 4.85 using
informed PET-MRI PLS.

As shown in figure 3, the MRI and PET patterns simultaneously generated using either the
agnostic or informed multimodal PLS were quite similar to those generated in independent
analyses of either the subjects’ MRI or PET images using the conventional PLS and SPM
methods, providing support for the use of our new multimodal image-analysis technique. For
example, agnostic multimodal PLS simultaneously generated the PET and MRI covariance
patterns (i.e., singular images) shown in the top row of figure 3. These images were created
with a threshold of p=0.05 for both positive and negative values using bootstrap-generated
standard errors and 100 iterations. The covarying pattern revealed significantly lower medial
and superior frontal, anterior and middle cingulate measurements (negative pattern weights)
in both the MRI and PET singular maps, consistent with the pattern in the other maps and
findings from previous MRI, PET, and neuropathological studies suggesting that normal aging
preferentially affects frontal regions. In addition, the covarying pattern revealed significantly
lower inferior frontal and posterior cingulate measurements only in the PET singular image--
indeed, with increased measurements, reflecting relative sparing in inferior frontal cortex,
again consistent with the pattern found in the other maps.

Computational Speed
For both the agnostic multimodal PLS and informed multimodal PLS, the computational speed
is compatible to the statistical part of a routine SPM analysis.

DISCUSSION
In this study, we proposed the use of multimodal PLS to characterize the covarying patterns
among two or more complementary complex data sets. The technique could be used to
characterize the linkage between the patterns of functional and structural brain images in a
group analysis, or as previously suggested, between a person’s EEG data and fMRI time series
(Martinez-Montes et al., 2004). Further, it could be used to combine, and capitalize on,
information from complementary data sets independent of any additional information (i.e.,
agnostically) or in relationship to known information (e.g., “informed” about a person’s age,
genetic background, or clinical, biological, or neuropsychological state). PLS is one of several
tools which can be potentially used for studying the inter-modality multi-imaging datasets. Not
only can it be used to analyze multiple data sets in an exploratory fashion to generate
information for subsequent model-based analyses and hypothesis testing (see (Rajah and
McIntosh, 2005) as in intra-modality PLS), but more importantly, it can construct a latent
variable-based index/marker that could subsequently be used to characterize group differences
(e.g., AD patients versus controls), longitudinal changes (e.g., the progression of AD-
associated brain changes), and effects of putative treatments (e.g., putative AD-slowing, risk-
reducing or prevention therapies).

As a proof-of-principle, we illustrated the promise of the multimodal PLS by the improvement
of our ability to distinguish between 15 younger and 14 older subjects (applying it with or
without the subjects’ age information). Since the current findings may be driven partly by the
distinct subject groups, additional studies will be needed to determine the extent to which it
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improves power to characterize more subtle effects. In a preliminary study, we found that
multimodal PLS provided better power than FDG-PET or MRI alone in discriminating carriers
from non-carriers of apolipoprotein E (APOE) ε4 gene, the major genetic risk factor for
Alzheimer’s disease (unpublished data). Additional studies are needed to compare the
multimodal PLS with other multi-modal multivariate image-analysis techniques, such as
Fisher discriminant analysis and support vector machine. Additional studies are also needed
to determine the extent to which the multimodal PLS could be improved by incorporating other
procedures, such as penalized logistic regression (Fort and Lambert-Lacroix, 2005) and
smoothness constraints (Kustra and Strother, 2001).

The observed different performances by the agnostic multivariate multimodal PLS and the
general linear model-based massive univariate SPM can be partially explained by the different
theories of these two approaches. For multimodal PLS, pieces of information from all voxels
over the whole brain volume are combined and differential contribution of each voxel is
reflected by its weight. Instead of combining all voxels to generate an integrated index, the
massive univariate SPM approach with correction of family-wise error selects only few of the
most significant ones among all voxels. This selection process could be thought of as an
extreme case of combination of voxels with weight 1 for the most significant voxel and weight
0 for all others. Instead of performing complementary multivariate or univariate analyses
separately, additional future studies are needed to examine the possibility of combining these
two techniques to further improve sensitivity.

As indicated in the method section, while the dual-block PLS is a special case, it is also the
foundation for the general multi-block PLS which can handle data from more than two
complementary data sets. In this study, we used the multi-block PLS for informed multimodal
PLS to find the linkage between FDG PET and volumetric MRI patterns that best distinguished
subjects in older and younger subject groups, such that age group membership was an additional
(and only dependent) data set. Considering the successful application of multi-block PLS
analysis in the field of chemometrics (Lopes et al., 2002; Westerhuis et al., 1996; Westerhuis
et al., 1997; Westerhuis and Smilde, 2001), we are interested in extending the multi-block PLS
to other brain imaging and non-imaging data sets. For instance, we are interested in
characterizing the linkage among three complementary data sets (e.g., FDG PET, fibrillar
amyloid images, and volumetric MRI) in either the agnostic or informed mode (i.e., with or
without the use of additional dependent information, such as a person’s clinical classification).

In this study, the comparison between younger and older subjects was used to provide face
validity for our proposed multimodal PLS and demonstrate both its potential advantages and
comparability to conventional unimodal image-analysis techniques. Thus, we demonstrated
the superiority of the multimodal PLS to discriminate between older and younger subject
groups, free from multiple comparisons, and simultaneously generated covariance patterns in
the subjects’ MRI and PET images which resembled those generated interdentally in the MRI
or PET images using either unimodal SPM and unimodal PLS. In doing so, it found lower
CMRgl and gray matter covariance patterns in frontal regions. Like previous FDG PET,
volumetric MRI, and neuropathological studies measuring reductions in synaptic density
(Alexander et al., 2006; Good et al., 2001; Hof and Morrison, 2004; Kuhl et al., 1982; Loessner
et al., 1995; Moeller et al., 1996; Reiman et al., 1996; Reiman et al., 2004; Salmon et al.,
1991; Terry et al., 2004; Alexander et al., 2008), our studies suggest that normal aging
preferentially affects these and other brain regions. While this example illustrates the potential
to relate covariance patterns to biological features of the condition being studied, additional
research is needed to determine the biological significance of multimodal PLS-derived subject
scores and the covariance patterns to which they are related to.
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We introduced the squared correlation coefficient of the latent variable pair as one linkage
index between two image modalities for agnostic multimodal PLS. Another one, an image-
wise index, provides information about explanatory power of the independent X datablock as
a whole for each voxel location in the dependent Y datablock. This index consists of a
correlation coefficient map over Y. For each voxel in Y, the correlation coefficient is the one
between the single latent variable of the X-block and the measurement from this voxel. In our
agnostic PLS where MRI was treated as an X-block, the overall explanatory power is the overall
anatomical influence on the FDG-PET spatial pattern. The explanatory power maps can be
interpreted easily as correlation maps. We calculated this image-wise index and found it was
very similar to the singular image in Figure 3. The image-wise index provides localized effects
on one image modality by the overall influence of another (however, we caution the
interpretation of this relationship as causality). With further validation, the alternation of the
localized effects can possibly be used as a marker for disease diagnosis and monitoring of
disease progressions.

We demonstrated the superior performance of multimodal PLS in distinguishing the two age
groups. The multimodal PLS not only extracted the covarying patterns within each image
modality but also integrated them across modalities. Since it is voxel-based, the multimodal
PLS method ensures the richness of information in the neuroimaging data is utilized to its
fullest extent. Moreover, the multivariate approach (the use of the summarized index) is free
of multiple comparisons. Therefore, it may be possible to characterize the longitudinal changes
in multimodal PLS-derived subject scores (and the covariance patterns to which they are
related), and subsequently test the efficacy of putative AD-slowing treatments to modify these
particular scores and covariance patterns without the need to correct for multiple comparisons.

In addition to introducing the multimodal PLS, we have suggested how it can be performed
with rigorous statistical type-I error evaluations. We distinguished three different type-I errors,
placing particular emphasis on marker type-I errors, and suggested how multimodal PLS-
derived subject scores could capitalize on all of the information in a subject’s images. A
conventional parametric strategy was used to estimate the marker type-I errors for the agnostic
multimodal PLS, and the previously proposed permutation method (McIntosh et al., 2004;
McIntosh and Lobaugh, 2004) was used to do so for the informed multimodal PLS. For both
agnostic multimodal PLS and informed multimodal PLS, pattern type-I error can be evaluated
using the bootstrap resampling technique (McIntosh et al., 2004). A potential alternative to this
computationally expensive approach is the random matrix theory based statistical inference
method (Johnstone, 2001) which we will investigate in future studies. The linkage type-I
error, is unique to the agonistic multimodal PLS and was not fully investigated in the current
study. As mentioned earlier, the conventional parametric assessment of the linkage type-I error
is problematic since the agnostic multimodal PLS seeks to maximize covariance between the
latent variable pair. Nevertheless, we suggested the use of the Monte-Carlo simulation as a
way to assess this type-I errors. In performing the Monte-Carlo simulation, we assume that the
two imaging datasets are uncorrelated (any variable in dataset X has zero correlation with any
variable in dataset Y). The Monte-Carlo simulation could also be used to assess the type-I
errors associated with any null hypothesis such as the mean/median/minimum correlation
coefficient among cross dataset variable pairs is with a given value, or the correlation
coefficient is with a specific statistical distribution. Although the Monte-Carlo simulation
procedure is computationally complex, it is feasible to use in conjunction with our
computationally efficient algorithm, which can be used whenever the number of subjects and
scans is much smaller than the number of voxels. Furthermore, it is theoretically possible that
the dimensions used in the Monte-Carlo simulation can be reduced even further. While we
have outlined the linkage type-I error issues here, we believe that this interesting and
challenging topic merits further study.
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The multimodal PLS can be performed either informed to the variable of interest or agnostic
to this additional information. Investigators may want to pre-specify which of these two
methods to use in the data analysis. The informed PLS will find the linkage pattern most
strongly associated with the variable of interest; but it requires additional computations for
non-parametric test (e.g., permutation) or Monte Carlo simulation to properly estimate Type
1 error. The informed PLS may not be associated with significantly better discrimination power
than the agnostic PLS when, for example, the contribution of the variable of interest to the
linkage pattern far outweighs the contributions of other variables.

In conclusion, we introduce a new voxel-based multivariate image analysis technique to
simultaneously characterize covarying patterns in complementary brain images from the same
person. It capitalizes on all of the information available from these complementary data-sets.
In our very first application of this method, we found that it distinguished between older and
younger subjects with better power than unimodal SPM and PLS analyses of the subjects’ PET
or MRI images alone, and with no need to correct for multiple comparisons. While the superior
performance of multimodal PLS method was demonstrated in the current study using data pre-
processed by the SPM2 software package, we expect multimodal PLS to be useful using other
versions of SPM and potentially with other image processing platforms. Further, we believe
this technique has the potential to link patterns of information among any number of
complementary images from an individual, use other kinds of complementary complex datasets
besides brain images, and characterize individual state- or trait-dependent brain patterns in a
more powerful way.
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Figure 1.
Scatter graph of MRI-PET subject (i.e., latent variable pair) scores generated using the agnostic
multimodal PLS, corresponding to t, the MRI latent variable on the x-axisand u, the PET latent
variable, on the y-axis). Solid circles denote subjects in the older age group and open circles
denote those in the younger age group. Note the complete separation (indicated by the dashed
line) between the older and younger subjects. The solid line is the latent variable line of
regression between MRI and PET subject scores.
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Figure 2.
Scatter graph of subject scores generated using the informed unimodal PET PLS (left panel),
the informed unimodal MRI PLS (central panel), and the informed multimodal PLS (right
panel). Note the greater separation between the multimodal PLS-generated older and younger
subject scores.
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Figure 3.
MRI and PET spatial patterns simultaneously characterized using the agnostic multimodal PLS
(Panel A) and informed multimodal PLS (Panel B), the MRI and PET spatial patterns
independently characterized using the unimodal PLS (Panel C) and SPM (Panel D) and the
combined MRI and PET pattern generated using bi-variate SPM (Panel E)
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