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Abstract
While many advanced mixed-effects models have been proposed and are used in fMRI, the simplest,
ordinary least squares (OLS), is still the one that is most widely used. A survey of 90 papers found
that 92% of group fMRI analyses used OLS. Despite the widespread use, this simple approach has
never been thoroughly justified and evaluated; for example, the typical reference for the method is
a conference abstract, (Holmes and Friston, 1998), which has been referenced over 400 times.

In this work we fully derive the simplified method in a general setting and carefully identify the
homogeneity assumptions it is based on. We examine the specificity (Type I error rate) of the OLS
method under heterogeneity in the one-sample case and find that the OLS method is valid, with only
slight conservativeness. Surprisingly, a Satterthwaite approximation for effective degrees of freedom
only makes the method more conservative, instead of more accurate. While other authors have
highlighted the inferior power of the OLS method relative to optimal mixed effects methods under
heterogeneity, we revisit these results and find the power differences very modest.

While statistical methods that make the best use of the data are always to be preferred, software or
other practical concerns may require the use of the simple OLS group modeling. In such cases, we
find that group mean inferences will be valid under the null hypothesis and will have nearly optimal
sensitivity under the alternative.
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1 Introduction
The analysis of multisubject fMRI data presents a number of challenges, in particular the need
to account for two sources of variance: “measurement error” variability in the estimated
response in each subject, and the “individual differences” variability in the true response
between subjects. Appropriately modeling these within- and between-subject variances have
motivated a number of papers on the best way to perform group modeling of fMRI data (Friston
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et al., 2002, 2005; Woolrich et al., 2004; Worsley et al., 2002; Beckmann et al., 2003; Mumford
and Nichols, 2006; Penny and Holmes, 2006). Most of these methods individually weight data
from each subject, down-weighting subjects with relatively high intrasubject variability,
possibly even shrinking intrasubject estimates towards a population estimate. We refer to such
weighted methods generically as generalized least squares (GLS) (Searle, 1971). Although the
GLS methods make fewer assumptions about the distribution of the data, they are
computationally more complicated to employ.

While several software packages have implemented such voxel-wise GLS methods1, the
simpler method, of simply modeling 1st level contrast data with an un-weighted, ordinary least
squares (OLS) analysis is still in widespread use. For example, a small survey of 90 papers
matching the keyword “group fmri” anywhere in the text in NeuroImage, Human Brain
Mapping and Cerebral Cortex 2 found that 92% of group fMRI analyses used OLS. Further,
OLS also forms the core of other methods. For example permutations are generally based on
OLS (though see Mriaux et al. (2006)) and region of interest analyses typically are based on
OLS.

The original reference for OLS analysis for group fMRI is a conference abstract, (Holmes and
Friston, 1998), which has been referenced 448 times according to Google Scholar. While there
are publications on GLS methods that compare to OLS, these comparisons have focused on
the sensitivity but not the specificity (the ability to control false positives accurately) of the
OLS model. Friston et al. (2005) compared thresholded test statistics from both the GLS and
OLS models to determine how robust the OLS model was to violations of the assumption of
homoscedasticity; their study focused on a single real dataset and did not consider the
specificity of OLS when the assumptions were violated. Likewise Beckmann et al. (2003)
compared the power of OLS and GLS under heteroscedasticity and they showed a moderate
increase in power when using GLS. Instead of formally estimating power, their work looked
at the percent change in the Z statistic, which is an approximation to the t-statistic that is used
in standard analyses.

In this paper we provide a detailed description of OLS as it is typically used, focusing on the
assumptions of this model and how well they hold for fMRI data. In particular, we highlight
that the OLS approach always provides unbiased estimates of effect magnitude and, for the
frequently-used one-sample model, unbiased variance estimates. The other possible problem
caused by heterogeneity is disturbance of the distributional accuracy of t- or F-statistics, which
can affect p-value accuracy. The traditional solution is to alter the degrees-of-freedom (DF) as
part of a Satterthwaite adjustment (Satterthwaite, 1946). Satterthwaite has been found to be
useful with the OLS model to protect against false positives in single subject fMRI analysis
when data are temporally autocorrelated (Worsley and Friston, 1995; Kiebel et al., 2003), and
we consider the performance of the Satterthwaite approximation in group fMRI analysis.

2 Methods
2.1 Model for Group fMRI data

Group fMRI data are typically analyzed in a two-stage process. In the 1st level intrasubject
models are fit independently to each subject, and in the 2nd level summary measures from each
subject are modeled.

1FSL (http://www.fmrib.ox.ac.uk/fsl/), fmristat (www.math.mcgill.ca/keith/fmristat/); SPM (www.fil.ion.ucl.ac.uk/spm/), but only
through the hidden spm mfx function.
2The 30 most recent papers from each journal were used including early views of in press articles with dates ranging between December
2007- March 2009.
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2.1.1 First Level: Within-subject Model—For a given voxel, there is a first stage model
for each subject k:

(1)

where Yk is the T × 1 vector containing the blood oxygen level dependent (BOLD) time series,
Xk is the T × p design matrix containing p regressors of interest, βk is a p × 1 vector of parameters
and εk is the T × 1 vector error term. Since fMRI data are temporally autocorrelated, we allow
non-independent errors and write , where  is the within-subject error variance
and Vk is the temporal correlation of the error. For a review of temporal autocorrelation models
used for Vk, see Mumford and Nichols (2006). We assume normally distributed errors and, at
this first level, regard the βk as fixed effects; hence the model can be concisely written as

, where “~” denotes the distribution of a random variable. Note that model
(Xk) and noise (  & Vk) are subject-specific.

While many regressors are needed to fit complex experimental designs and nuisance effects,
an individual research question is usually addressed with 1-dimensional contrast3 c, forming
a linear combination of parameter estimates cβk. The effect magnitude cβk and its variance are
estimated with generalized least squares (GLS) as cβ̂k,

(2)

and its sample variance, for fixed true βk, is

(3)

(4)

Though not recommended, ordinary least squares (OLS) can be used instead of GLS at the first
level by (incorrectly) assuming Vk = IT. This will produce biased standard errors
( ) and effect magnitude estimates that have sub-optimal precision (Var
(cβ̂k) higher than with GLS). As will be seen below, biased standard errors only affect 2nd
level GLS not OLS.

2.1.2 Second Level: Between-subject Model—At the “2nd level” we would ideally
regress the true subject responses, γ = {cβk}k, on a group model

(5)

3In fullest generality, the contrast C and even the number of parameters P may vary between subjects. The only requirement is that the
contrast of parameter estimates has the same units and interpretation across all subjects.
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where XG is N × pG group-level design matrix, βG is the group level parameter vector and εG
is the group error vector with , where  is the between-subject variance and I is
the identity matrix. Crucially, the true subject responses are now regarded as random, with

. While XG is often just a column of ones (for a one-sample t-test) it can
take any form in general.

2.1.3 Second Level: Estimation with OLS—Unfortunately, we only have the estimated
contrasts, YG = {cβ̂k}k, and so the OLS 2nd level model in practice has the form

(6)

where  is the mixed-effects error, , containing variation from both imperfect
intrasubject fit (YG − γ) and the distribution of true responses in the population (εG). Specifically
we have , where

, where diag is the diagonal matrix
operator, and the β subscript denotes that this is an intrasubject variance.

Write the OLS estimate of βG, , where − denotes pseudo inverse, and

 is the estimate of the mixed-effects error variance.

For the OLS approach, it is assumed that the first level variance is homogeneous,

 for all i, j and therefore the second level error variance
can be expressed as , where  is the common within-subject variance.
Therefore the variance can be simplified to , where  is the combined within-
and between-subject variance term. Since there is just a single variance term, this model is
much easier to estimate and does not require iterative maximization techniques.

Without the homogeneity assumption the OLS estimates may not have optimal precision,
though they are unbiased (E(β ̂OLS) = βG). While the standard errors are not unbiased in general,
in the widely-used one-sample t-test the standard errors are unbiased (See Appendix A for full
details).

2.1.4 Second Level: Estimation with GLS—In the GLS approach to the multistage mixed
model, the assumption at the second stage is that . For fMRI software
packages that use a GLS approach, such as FSL or fmristat, the estimates of the variance 
and correlation Vk from the first level analysis are used for

, where the diagonal elements
correspond to the individual estimated variances from equation 3, and  is estimated as part
of an iterative model estimation algorithm, such as restricted maximum likelihood (Harville,
1974).4 GLS estimates of group-level effects are unbiased and have minimum variance among
all linear unbiased estimates (Searle, 1971).

4In standard mixed model estimation both the within- and between-subject variances are estimated iteratively, but this approach is
computationally too intensive for fMRI data and so the within-subject variance is simply set to the value of the first stage variance
estimate.
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2.1.5 Model for Evaluating Heteroscedasticity in the Second Level Model—This
note focuses on the one-sample t-test under the OLS approach, so from this point on we can
assume that x1,…, xN are the N first level contrast estimates from N subjects, previously referred
to as YG. The OLS test statistic is given by

(7)

where  orresponds to and β ̂OLS and

(8)

corresponds to . Inference is carried out by comparing T to a t-distribution with N − 1
degrees of freedom (TN−1).

2.1.6 Satterthwaite Correction to Address Heteroscedasticity—Although the OLS
variance estimate is unbiased in the case of the one-sample t-test (See Appendix A), the
distributional assumptions change under heteroscedasticity. Under homoscedasticity the
sample variance S2 (equation 8) is proportional to a  random variable, where the degrees
of freedom also define the t-distribution used to test the null hypothesis of the t-statistic
(equation 7). Under heteroscedasticity the sample variance is only approximately proportional
to a χ2 random variable. The motivation of the Satterthwaite approach is to estimate the
effective degrees of freedom (eDF) such that the sample variance is proportional to .

The Satterthwaite degree of freedom approximation is based on matching the first and second
moments of S2 and a scaled χ2 distribution, solving for the χ2 degrees-of-freedom νSAT
(Satterthwaite, 1946),

Using the values in Table 1 and after some algebra, one finds that

(9)

In the real data analyses below, we use the FSL estimates for  to compute νSAT.
(FSL’s FEAT analysis software uses GLS to find these quantities and saves these estimates as
var_filtered_func_data and stats/mean_random_effects_var1.)
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2.2 Real data analysis
2.2.1 Data and variance estimation—Our data are from a finger tapping experiment of
the right hand involving 12 normal subjects (Johansen-Berg et al., 2002). This was a block
design study consisting of blocks of rest and 3 pseudorandomly cued tasks: tapping of the index
finger, sequentially tapping fingers, randomly tapping fingers.

The data were analyzed using the fMRIB software library (FSL), using a two-level “FLAME”
model. This model produced 12 contrast estimates, and 12 subject specific mixed-effects
variance estimates for each of the 226,000 voxels. The contrast of interest for our study tested
the difference between the response when randomly tapping the fingers and sequentially
tapping the fingers. For each voxel the p-value for the OLS statistic was calculated using the
Satterthwaite correction and two other methods that are described in the following sections.

2.2.2 Permutation test—The permutation p-values were obtained by comparing the test
statistic, T, to an empirical t-distribution based on permutations. Since we are making inference
on contrasts of parameter estimates involving differences, the order of differencing does not
matter under the null hypothesis of no activation; for example β1 − β2 is equivalent to β2 −
β1. Therefore, by permuting the signs on the contrasts we can construct the null distribution of
the contrast (Nichols and Holmes, 2002). Specifically, all possible 2N permutations are created
by the different +/− combinations of the N contrasts and a test statistic for each permutation is
calculated and Pperm = % of the 2N permuted test statistics as large or larger than the test statistic
T.

2.2.3 Monte Carlo simulation details—Since the true null distribution is unknown under
the heteroscedastic case, we used Monte Carlo to calculate “correct” p-values at each voxel,
assuming the variances of the contrast for each subject, , to be known. For each realization,
we generated 10,000 sets of N(0, ) data for each of the i subjects and used it to calculate
10,000 test statistics. PMC = % of 10,000 test statistics as large or larger than the test statistic,
T, for that voxel.

2.3 Simulated data analysis methods
Simulations were used to study different sample sizes with differing numbers of outliers and
varying degrees of outlying variances. To simulate outlying within-subject variances we used
a mixture of χ2 random variables where, with probability 0.9, the variance was chosen from a

 distribution and, with a probability of 0.1 it was chosen from a  distribution, where
 and  are the within-subject variances for the non-outlying and outlying subjects,

respectively. Between-subject variances were chosen such that the overall variance for each
simulation was kept constant. Therefore across different variance settings a given effect size
would correspond to equivalent statistical power.

Variances that have been found in real data are shown in Table 2 and the range of values for
,  and  were chosen to include these values. The details are described in Appendix B.

While the overall standard deviation was fixed, varying sample sizes required different effect
magnitudes Δ to maintain 80% power across simulations. Specifically, Δ was set to 28.14,
19.04, and 15.34, for 10, 20, and 30 subjects, respectively.
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3 Results
3.1 Real Data

Using the subject-specific first level contrast estimates we calculated TOLS (eq 7) and obtained
four different P-values: P11 found with the usual t-distribution with N − 1 = 11 DF, PSAT found
with a t-distribution with Satterthwaite DF (νSAT ), PMC created with the Monte Carlo simulated
t-distribution, and Pperm computed with the permutation driven null distribution. To evaluate
the accuracy of the p-values at potential signal voxels, we compared both P11 and PSAT to
PMC in the voxels that were found to be significant with PMC < 0.05. The left two panels of
Figure 1 show the boxplots of the ratios of P11/PMC and PSAT/PMC over different ranges of
PMC. The mean corresponding to each boxplot is indicated by a red star. Surprisingly, P11 is
slightly conservative and PSAT is even more conservative, having values larger than PMC on
average. Since νSAT ≤ 11 this indicates that the true degrees of freedom of the null distribution
tends to be larger than N − 1. P-values that are too large indicate that the null distribution used
has tails that are too heavy, in particular, that both DF values of νSAT and 11 are too small and
the effective degrees of freedom that best match the true distribution are yet larger than the
nominal DF.

In order to understand the poor performance of PSAT, we examined the implied distribution of
S2 and T for each method. Figure 2 shows these two distributions, where the blue line is the
probability density estimate based on the Monte Carlo simulation values. The distribution of
S2 under 11 and νSAT degrees of freedom (or in general νmethod) are χ2 distributions scaled by
E(S2)/νmethod, which is a gamma distribution with shape parameter νmethod/2 and scale
parameter 2E(S2)/νmethod. The distribution of S2 based on the Monte Carlo simulation is quite
similar to the distribution of S2 under νSAT, with the mean and variance of the two distributions
matching. Even so, the corresponding t-distributions do not agree in the tails of the distribution,
which is important since it affects the p-values of interest. This is due to the distributions of
S2 not matching well for values near zero. There is a much higher probability of obtaining near-
zero values of S2 under νSAT, which leads to a higher probability of getting larger values in the
corresponding t-distribution, explaining the fatter tails.

The distribution of S2 based on 11 DF does not look as similar to that based on the Monte Carlo
simulation overall, but for the values of S2 that we are interested in, the lower values, the
distributions are much closer and hence p-values are more similar. While nonparametric
inferences are known to be exact, we confirmed this by comparing Pperm to PMC. In the right
panel of Figure 1, the mean of the ratio PMC/Pperm is nearly 1 (means marked with asterisks),
except for the smallest P-values which likely are exhibiting discreteness-induced
conservativeness. One possible limitation of our Monte Carlo simulations is that they assume
that the FLAME-derived variance estimates are the true values of the variances in the real data.
To assess this assumption, we repeated the Monte Carlo simulation using t-statistic values
based on samples from a Normal distribution with known variances and obtained similar results
(see Supplementary Material), suggesting the FLAME variance estimates are accurate.

3.2 Simulations
Simulations were used to study type I error rate and power over a range of degrees of outlying
variance when using TOLS versus TGLS and a null distribution tN−1. Figure 3 shows the type I
error rate and power as a function of the percent difference between the mixed effects variance
for the outliers and non-outliers, . The left panel of Figure 3
supports the finding of our real data analysis, in that when using OLS the type I error rate is
close to the desired level and may be slightly conservative (though note the very tight range
of the y-axis). The type I error is most conservative for smaller sample sizes and larger outlying
variances. Note in each sample size there were 10% outliers.
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The right panel of Figure 3 shows the power under the OLS model, where the true power (under
GLS) was 80% in each case. As found in Beckmann et al. (2003) and Friston et al. (2005)
power can be lost when using OLS under heteroscedasticity. The decrease was as high as 9%
and was worst for the smaller sample size and larger outlying variances.

The x-axis range of Figure 3 can be compared to the values found from real data shown in the
last column of Table 2. We searched over 12 data analyses that were analyzed using the Feat
analysis tool of FSL, including event related and blocked designs and found that 5 of these
studies had subjects with outlying variances. This was determined by subsetting voxels with
nonzero between-subject variances and plotting boxplots of the voxel-averaged within-subject
variances. In cases where outlying variances were found, the within-subject variance
distributions were similar for voxels where the between-subject variance was 0. Table 2 lists
the average within-subject variances for outlying and non-outlying subjects within the
interquartile range of the nonzero between-subject variances, scaled such that  for all
studies.

4 Discussion
We hypothesized that when using a one-sample t-test for a group contrast mean of fMRI data,
simply using N − 1 degrees of freedom would lead to invalid p-values due to the heterogeneity
of variances. Surprisingly, in our data analysis, we found N − 1 degrees of freedom to be slightly
conservative and hence valid when compared to p-values calculated with a Monte Carlo
simulation or permutation test. The 2 moment matching Satterthwaite approximation was even
more conservative than using N − 1 degrees of freedom. Although the Satterthwaite
approximation has been shown to give valid hypothesis tests in single subject fMRI analysis
(Kiebel et al., 2003), it did not perform well in the given situation where observations are
uncorrelated, but have heterogeneous variance. This is even more surprising since the
Satterthwaite approximation was originally developed to handle cases of heteroscedasticity,
but suggests that the approach may not perform well with low degrees-of-freedom. As shown
in our comparison of distributions of S2 and T in Figure 2, the Satterthwaite approximation
only matches the first two moments of the distribution, which does not ensure the left tails of
the distributions of S2 for Satterthwaite and the true distribution match; hence the tails of the
T distributions will not match. Therefore the Satterthwaite approximation tends to be too
conservative in this application.

A three moment matching eDF approach of Scariano and Davenport (1986) was also
considered, but similar to the Satterthwaite approximation the effective degrees of freedom are
always less than N − 1 and so this method was not considered. The permutation test is the only
test that does not assume the T test statistics follow a specific distribution, and its only limitation
is discrete P-values for very small sample sizes (e.g. for 6 subjects all P-values are multiples
of 1/26 = 0.015625).

Our simulation study allowed us to study type I error and power under a range of sample sizes
and outlying variances that are representative of real data findings. Our findings for type I error
supported our real data analysis finding that the OLS-based hypothesis test on the sample mean
was slightly conservative under heteroscedasticity. Although the true type I error rate was most
conservative for small sample sizes and/or the presence of very large outliers, the smallest we
found in our simulations was 0.0456 when the goal type I error rate was 0.05.

Although previous studies by Beckmann et al. (2003) and Friston et al. (2005) implied there
was a loss in power under the OLS model, they did not formally quantify the loss. Our results
show that although there is a loss in power, it was not found to be larger than a 9% in our

Mumford and Nichols Page 8

Neuroimage. Author manuscript; available in PMC 2010 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



simulations and this was for a small sample size of 10 subjects with a very large outlying
variance.

Although we have shown the OLS model is robust to violations of the heteroscedasticity
assumption for the 1-sample t-test, it is probably not the case that this result would also hold
in the case of simple linear regression as the slope of a line is easily influenced by outliers. It
is likely that in the case of simple linear regression the GLS model should be used to ensure
outliers are properly down-weighted.

Finally, we note that these results for fMRI also inform group analyses in other modalities. In
particular, in PET or EEG, where it may be impractical or undesirable to estimate intrasubject
variance, it is useful to know that the OLS model is performing well in the face of any potential
heteroscedasticity.

In conclusion, while a weighted, GLS mixed effects model is the more optimal modeling
approach, we find “plain old” OLS surprisingly robust for the widely-used one-sample model.
We have provided evidence that an OLS model used with varying designs or outlier-induced
heteroscedasticity actually controls false positive risk and has near-optimal power.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

Appendices

A Bias of OLS variance estimators
In this appendix we find the bias of the OLS variance estimators under (unmodeled)
heterogeneous variance. Writing the second level model originally shown in equation 6 using
a simplified notation we have,

(10)

where Y is the N-vector of contrast data fed up from the first level, X is N × p second-level
design matrix, and β are the group-level parameters, and ε are the second-level errors. We
assume that Var(ε) = V σ2, where σ2 is the average mixed effects variance, V = diag(vi), Σi vi
= 1 are the scaling factors for each subject, allowing for heteroscedasticity. Under this model
of the variance we are interested in the properties of the OLS estimators:

(11)

(12)

(13)
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First essential result is that E(β ̂OLS) = β, that is, the estimates of the regression coefficients are
unbiased. However, the estimates of error and parameter variance are not necessarily unbiased.
First

(14)

(15)

where H = X(X′X)−1X′ is the so-called hat matrix, and hi is the ith diagonal element of H, the
leverage of observation i. A basic result of linear models gives Σi(1 − hi) = N − p (Harville,
2008). Thus if the variance scaling factors are not all equal (to unity), then the requirement for
unbiased  is that all leverages hi are all equal. A one-sample model has equal leverage
values, as does any balanced ANOVA design. Except for this balanced ANOVA case, a
regression model will not have all equal leverages.

The estimator variance is

(16)

while

(17)

If there is no bias in , is unbiased when

(18)

This is true for a one-sample problem, but not even for a balanced ANOVA model. However,
for balanced ANOVA models and typical contrasts of interest, there may be no bias. For
example, for a balanced two sample t-test, with design matrix

(19)

and contrast c = [−1 1] can be shown to have  unbiased for cVar(β ̂OLS)c′.

B Simulation details
Using GLS, the group mean and estimated variance have the following form,
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(20)

(21)

where  is the sum of the within- and between-subject variance for subject i. When the variance
is known, this yields the z statistic, . Assuming 90% and 10% of the
within-subject variances are  and , respectively, that  is the between-subject variance
and that xi = Δ for all subjects,

(22)

which corresponds to a test statistic for a group mean whose value is Δ with N subjects and a
standard deviation of

(23)

For our simulations we chose a constant  across all simulations and varied the outlying
variance across the range between 400–3600 and the between subject variance was chosen so
that the overall standard deviation in equation 23 was held constant at 33. This range included
variance combinations that were found in real data analyses with outlying variances shown in
Table 2.
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Figure 1.
Comparisons of P11, PSAT, and Pperm with PMC over values of PMC < 0.05. The x-axis show
the lower bound of the interval for PMC and the red stars indicate the means of the distributions.
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Figure 2.
The distribution of S2 (left) and T (right). Although the mean and variance of the distributions
of S2 for the MC simulation and νSAT are similar, the lower tails do not match as well as ν11.
The larger lower tail of the distribution of S2 causes the tails of the distribution of T to be too
large.
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Figure 3.
Type I error rate (left) and power (right) as a function of the % difference in the mixed effects
variances of outlying and non-outlying variances, , for sample sizes
of 10, 20 and 30. Overall variance was held constant for each sample size over the range of the
x axis to ensure power for each sample size reflected the same effect size.
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Table 1
First two moments of a  random variable and S2

Moment χν
2

S2

First ν 1
N ∑i σi

2

Second ν(ν + 2)

3 N 2 − 2N − 1

N 2 ∑i σi
4 + N 2 − 2N + 3

N 2 ∑i ∑ j σi
2σ j

2
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