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Abstract

The synchronous brain activity measured via MEG (or EEG) can be interpreted as arising from a

collection (possibly large) of current dipoles or sources located throughout the cortex. Estimating

the number, location, and time course of these sources remains a challenging task, one that is

significantly compounded by the effects of source correlations and unknown orientations and by

the presence of interference from spontaneous brain activity, sensor noise, and other artifacts. This

paper derives an empirical Bayesian method for addressing each of these issues in a principled

fashion. The resulting algorithm guarantees descent of a cost function uniquely designed to handle

unknown orientations and arbitrary correlations. Robust interference suppression is also easily

incorporated. In a restricted setting, the proposed method is shown to produce theoretically zero

reconstruction error estimating multiple dipoles even in the presence of strong correlations and

unknown orientations, unlike a variety of existing Bayesian localization methods or common

signal processing techniques such as beamforming and sLORETA. Empirical results on both

simulated and real data sets verify the efficacy of this approach.

I. Introduction

Magnetoencephalography (MEG) and related electroencephalography (EEG) use an array of

sensors to take electromagnetic field (or voltage) measurements from on or near the scalp

surface with excellent temporal resolution. In both MEG and EEG, the observed field can in

many cases be explained by synchronous, compact current sources located within the brain.

Although useful for research and clinical purposes, accurately determining the spatial

distribution of these unknown sources is an a challenging inverse problem. The relevant

estimation problem can be posed as follows: The measured electromagnetic signal is B ∈

ℝdb×dt, where db equals the number of sensors and dt is the number of time points at which

measurements are made. Each unknown source Si ∈ ℝdc×dt is a dc-dimensional neural

current dipole, at dt timepoints, projecting from the i-th (discretized) voxel or candidate

location distributed throughout the brain. These candidate locations can be obtained by
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segmenting a structural MR scan of a human subject and tesselating the brain volume with a

set of vertices. B and each Si are related by the likelihood model

(1)

where ds is the number of voxels under consideration and Li ∈ ℝdb×dc is the so-called lead-

field matrix for the i-th voxel. The k-th column of Li represents the signal vector that would

be observed at the scalp given a unit current source/dipole at the i-th vertex with a fixed

orientation in the k-th direction. It is common to assume dc = 2 (for MEG) or dc = 3 (for

EEG), which allows flexible source orientations to be estimated in 2D or 3D space. Multiple

methods based on the physical properties of the brain and Maxwell's equations are available

for the computation of each Li [25]. Finally, ℰ is a noise-plus-interference term where we

assume, for simplicity, that the columns are drawn independently from  (0, Σε). However,

temporal correlations can easily be incorporated if desired using a simple transformation

outlined in [10] or using the spatio-temporal framework introduced in [3].

To obtain reasonable spatial resolution, the number of candidate source locations will

necessarily be much larger than the number of sensors (ds ≫ db). The salient inverse

problem then becomes the ill-posed estimation of regions with significant brain activity,

which are reflected by voxels i such that ‖Si‖ > 0; we refer to these as active dipoles or

sources. Because the inverse model is severely underdetermined (the mapping from source

activity configuration  to sensor measurement B is many to one), all

efforts at source reconstruction are heavily dependent on prior assumptions, which in a

Bayesian framework are embedded in the distribution p(S). Such a prior is often considered

to be fixed and known, as in the case of minimum ℓ2-norm estimation (MNE) [1], minimum

current estimation (MCE) [30], minimum variance adaptive beamforming (MVAB) [27],

FOCUSS [13], and sLORETA [19]. Alternatively, empirical Bayesian approaches have been

proposed that attempt a form of model selection by using the data, whether implicitly or

explicitly, to guide the search for an appropriate prior. Examples include a rich variety of

variational Bayesian methods and hierarchical covariance component models [10], [16],

[20], [24], [26], [36], [37]. These hierarchical models can also be handled by replacing

variational inference and related procedures with Markov-Chain Monte Carlo sampling [18].

In general, these approaches differ in the types of covariance components that are assumed,

the cost functions and approximations used to estimate unknown parameters, and in how

posterior distributions are invoked to affect source localization. While advantageous in

many respects, none of these methods are explicitly designed to handle complex, correlated

source configurations with unknown orientation in the presence of background interference

(e.g., spontaneous brain activity, sensor noise, etc.).

There are two types of correlations that can potentially disrupt the source localization

process. First, there are correlations within dipole components (meaning the individual rows

of Si are correlated), which always exists to a high degree in real data (i.e., dc > 1). For

example, dipoles with a fixed unknown orientation will have a correlation coefficient of 1.0;

for rotating or wobbling dipoles this value will typically be smaller. Secondly, there are
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correlations between different dipoles that are simultaneously active (meaning rows of Si are

correlated with rows of Sj for some voxels i ≠ j). These correlations are more application

specific and may or may not exist. The larger the number of active sources, the greater the

chance that both types of correlation can disrupt the estimation process. This issue can be

problematic for two reasons. First, and most importantly, failure to accurately account for

unknown orientations or correlations can severely disrupt the localization process, leading to

a very misleading impression of which brain areas are active. Secondly, the orientations and

correlations themselves may have clinical significance, although this will not be our focus

herein.

In this paper, we present an alternative empirical Bayesian scheme that attempts to improve

upon existing methods in terms of source reconstruction accuracy and/or computational

robustness and efficiency. Section II presents the basic generative model which underlies the

proposed method and describes the associated inference problem. This model is designed to

estimate the number and location of a small (sparse) set of flexible dipoles that adequately

explain the observed sensor data. Section III derives a robust algorithm, which we call

Champagne, for estimating the sources using this model and proves that each iteration is

guaranteed to reduce the associated cost function. It also describes how interference

suppression is naturally incorporated. Section IV then provides a theoretical analysis of

conditions under which perfect reconstruction of arbitrary, correlated sources with unknown

orientation is possible, demonstrating that the proposed method has substantial advantages

over existing approaches. Finally, Section V contains experimental results using our

algorithm on both simulated and real data, followed by brief conslucsions in Section VI.

II. Modeling Assumptions

To begin we invoke the noise model from (1), which fully defines the assumed likelihood

(2)

where ‖X‖W denotes the weighted matrix norm . The unknown noise

covariance Σε will be estimated from the data using a variational Bayesian factor analysis

(VBFA) model as discussed in Section III-C below; for now we will consider that it is fixed

and known. Next we adopt the following source prior for S:

(3)

This is equivalent to applying independently, at each time point, a zero-mean Gaussian

distribution with covariance Γi to each source Si. We define Γ to be the dsdc × dsdc block-

diagonal matrix formed by ordering each Γi along the diagonal of an otherwise zero-valued

matrix. This implies, equivalently, that .
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If Γ were somehow known, then the conditional distribution p(S|B, Γ) ∝ p(B|S)p(S|Γ) is a

fully specified Gaussian distribution with mean and covariance given by

(4)

where L ≜ [L1, …, Lds] and sj denotes the j-th column of S (i.e., the sources at the j-th time

point) and individual columns are uncorrelated. However, since Γ is actually not known, a

suitable approximation Γ̂ ≈ Γ must first be found. One principled way to accomplish this is

to integrate out the sources S and then maximize

(5)

This is equivalent to minimizing the cost function

(6)

where  is the empirical covariance. This process is sometimes referred to as

type-II maximum likelihood, evidence maximization, or empirical Bayes [2].

The first term of (6) is a measure of the dissimilarity between the empirical data covariance

Cb and the model data covariance Σb; in general, this factor encourages Γ to be large

because it is convex and nonincreasing in Γ (in a simplified scalar case, this is akin to

minimizing 1/x with respect to x, which of course naturally favors x being large). The second

term provides a regularizing or sparsifying effect, penalizing a measure of the volume

formed by the model covariance Σb.1 Since the volume of any high dimensional space is

more effectively reduced by collapsing individual dimensions as close to zero as possible (as

opposed to incrementally reducing all dimensions isometrically), this penalty term promotes

a model covariance that is maximally degenerate (or non-spherical), which pushes elements

of Γ to exactly zero (hyperparameter sparsity). This intuition is supported theoretically by

the results in Section IV.

Given some type-II ML estimate Γ̂ computed by minimizing (6), we obtain the attendant

empirical prior p(S|Γ̂). To the extent that this ‘learned’ prior is realistic, the resulting

posterior p(S|B, Γ̂) quantifies regions of significant current density and point estimates for

the unknown source dipoles Si can be obtained by evaluating the posterior mean computed

using (4). If a given Γ̂i → 0 as described above, then the associated Ŝi computed using (4)

also becomes zero. It is this pruning mechanism that naturally chooses the number of active

dipoles and is consistent with the hypothesis that most regions of the brain are

approximately inactive for a given task.

1The determinant of a matrix is equal to the product of its eigenvalues, a well-known volumetric measure.
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III. Algorithm Derivation

Given Σε and Γ, computing the Gaussian posterior on S is straightforward as outlined above.

Consequently, determining these unknown quantities is the primary estimation task. We will

first derive an algorithm for computing Γ assuming Σε is known. Later in Section III-C, we

will describe a powerful procedure for learning Σε.

A. Learning the Hyperparameters Γ

The primary objective of this section is to minimize (6) with respect to Γ. Of course one

option is to treat the problem as a general nonlinear optimization task and perform gradient

descent or some other generic procedure. Alternatively, several methods in the MEG

literature rely, either directly or indirectly, on a form of the expectation maximization (EM)

algorithm [10], [26]. However, these algorithms are exceedingly slow when ds is large and

they have not been extended to handle arbitrary, unknown orientations. Consequently, here

we derive an optimization procedure that expands upon ideas from [26], [36], handles

arbitrary/unknown dipole orientations, and converges quickly.

To begin, we note that ℒ(Γ) only depends on the data B through the db × db sample

correlation matrix Cb. Therefore, to reduce the computational burden, we replace B with a

matrix e B ̃ ∈ ℝdb×rank(B) such that B̃B̃T = Cb. This removes any per-iteration dependency on

dt, which can potentially be large, without altering that actual cost function. It also implies

that, for purposes of computing Γ, the number of columns of S is reduced to match rank(B).

We now re-express the cost function ℒ(Γ) in an alternative form leading to convenient

update rules and, by construction, a proof that ℒ (Γ(k+1)) ≤ ℒ (Γ(k)) at each iteration.

The procedure we will use involves constructing auxiliary functions using sets of

hyperplanes; an introduction to the basic ideas can be found in Appendix A. First, the log-

determinant term of ℒ(Γ) is a concave function of Γ and so it can be expressed as a

minimum over upper-bounding hyperplanes via log

(7)

where  is a matrix of auxiliary variables that differentiates each

hyperplane and h*(Z) is the concave conjugate of log |Σb|. While h*(Z) is unavailable in

closed form, for our purposes below, we will never actually have to compute this function.

Next, the data fit term is a concave function of Γ−1 and so it can be also be expressed using

similar methodology as

(8)

where  is a matrix of auxiliary variables as before. Note that in this

case, the implicit concave conjugate function exists in closed form.
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Dropping the minimizations and combining terms from (7) and (8) leads to the modified

cost function

(9)

where by construction ℒ(Γ) = minX minZ ℒ(Γ, X, Z). It is straightforward to show that if {Γ̂,

X̂, Ẑ} is a local (global) minimum to ℒ(Γ, X, Z), then Γ̂ is a local (global) minimum to ℒ(Γ).

Since direct optimization of ℒ(Γ) may be difficult, we can instead iteratively optimize ℒ (Γ,

X, Z) via coordinate descent over Γ, X, and Z. In each case, when two are held fixed, the

third can be globally minimized in closed form. This ensures that each cycle will reduce

ℒ(Γ, X, Z), but more importantly, will reduce ℒ(Γ) (or leave it unchanged if a fixed-point or

limit cycle is reached). The associated update rules from this process are as follows.

The optimal X (with Γ and Z fixed) is just the standard weighted minimum-norm solution

given by

(10)

for each i. The minimizing Z equals the slope at the current Γ of log |Σb|, which follows

from simple geometric considerations [4]. As such, we have

(11)

With Z and X fixed, computing the minimizing Γ is a bit more difficult because of the

constraint Γi ∈ H+ for all i, where H+ is the set of positive-semidefinite, symmetric dc × dc

covariance matrices. To obtain each Γi, we must solve

(12)

An unconstrained solution will satisfy

(13)

which, after computing the necessary derivatives and re-arranging terms gives the equivalent

condition

(14)

There are multiple (unconstrained) solutions to this equation; we will choose the unique one

that satisfies the constraint Γi ∈ H+. This can be found using
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(15)

This indicates (via simple pattern matching) the solution (or update equation)

(16)

which satisfies the constraint. And since we are minimizing a convex function of Γi (over

the constraint set), we know that this is indeed a minimizing solution.

In summary then, to estimate Γ, we need simply iterate (10), (11), and (16), and with each

pass we are guaranteed to reduce (or leave unchanged) ℒ(Γ); we refer to the resultant

algorithm as Champagne. The per-iteration cost is linear in the number of voxels ds so the

computational cost is relatively modest (it is quadratic in db, and cubic in dc, but these

quantities are relatively small). The convergence rate is orders of magnitude faster than EM-

based algorithms such as those in [10], [26] (Section V contains a representative example).

B. Simplifications Using Constraints on Γ

Here we consider two constraints on the parameterization of Γ that lead to much less

complex updates and provide connections with existing algorithms. First, we can require

that off-diagonal terms of each Γi are equal to zero, i.e., the prior covariance of each source

Si is diagonal. We then restrict ourselves to learning the diagonal elements of Γi via

simplified versions of those presented above. A second possibility is to further constrain

each Γi to satisfy Γi = γiI, where γi is a scalar non-negative hyperparameter. In both cases,

the resulting cost functions and algorithms also fall out of the framework we discuss in [31],

[36]. These variants are also similar to the covariance component estimation model used in

[16], [10], albeit with a much larger number of components.

As we will see in Sections IV and V, the reduced parameterization associated with these

models can potentially degrade performance in some of situations. Nonetheless, these

approaches are very useful for comparison purposes. To distinguish all three cases, we use

the designations CHAMPS for the scalar version, CHAMPD, for the arbitrary diagonal case,

and CHAMPM when the matrices Γi are unrestricted. For the special case where dc = 2, this

gives the following parameterizations:

(17)
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C. Learning the Interference Σε
The learning procedure described in the previous section boils down to fitting a structured

maximum likelihood covariance estimate Σb = Σε + LΓLT to the data covariance Cb. The

idea here is that LΓLT will reflect the brain signals of interest while Σε will capture all

interfering factors, e.g., spontaneous brain activity, sensor noise, muscle artifacts, etc. Since

Σε is unknown, it must somehow be estimated or otherwise accounted for. Given access to

pre-stimulus data (i.e., data assumed to have no signal/sources of interest), stimulus evoked

partitioned factor analysis provides a powerful means of decomposing a data covariance

matrix Cb into signal and interference components. While details can be found in [17], the

procedure computes the approximation

(18)

where E ∈ ℝdb×de represents a matrix of learned interference factors, Λ is a diagonal noise

matrix, and F ∈ ℝdb×df represents signal factors. Both the number of interference factors de

and the number of signal factors df are learned from the data via a variational Bayesian

factor analysis procedure. Using a generalized form of the expectation maximization

algorithm, the method attempts to find a small number of factors that adequately explains

the observed sensor data covariance during both the pre- and poststimulus periods. The pre-

stimulus is modeled with a covariance restricted to the terms Λ + EET, while the post-

stimulus covariance, which contains the signal information FFT we wish to localize, is

expressed additively as in (18).

There are two ways to utilize the decomposition (18). First, we can simply set Σε → Λ +

EET and proceed as in Section III-A. Alternatively, we can set Σε → 0 (or set it to a small

diagonal matrix for robustness/stability) and then substitute FFT for Cb, i.e., run the same

algorithm on a de-noised signal covariance. In practice, both methods have been successful;

however, a full technical discussion of the relative merits is beyond the scope of this paper.

IV. Conditions for Perfect Reconstruction

Whenever a new inverse algorithm is proposed, it is often insightful to know what source

configurations it can recover exactly and under what conditions. While in general this will

require unrealistic assumptions such as zero noise and a perfect forward model, the

underlying idea is that if only implausible source configurations can be recovered even

given these strong simplifications, then perhaps the algorithm may have serious difficulties.

For example, consider the classical MNE method [1]. Here exact recovery of the true

sources requires that columns of the source activity matrix S lie in the null space of the lead-

field, i.e., S = LT , for some coefficient matrix . But this is a very contrived requirement,

because the lead-field transpose is highly overdetermined (many more rows than columns)

meaning that the true S must be constrained to a small subspace of the total possible source

space, i.e., a subspace of ℝdsdc×dt. But this subspace has nothing to do with any source

activity or neurophysiological plausibility. The lead-field, which determines this subspace,

only specifies how a given source configuration maps to the sensors, it is unrelated to what
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the actual activity is. Therefore, MNE is effectively constraining the possible source space in

an ad hoc manner even before confounding noise or forward modeling errors are introduced.

A related concept is the notion of localization bias, which is basically a way of quantifying

the ability of an algorithm to accurately (or sometimes perfectly) estimate a single dipolar

source. Recently it has been shown, both empirically and theoretically [19], [28], that the

MVAB and sLORETA algorithms have zero location bias given noiseless data and an ideal

forward model, meaning their respective source estimates will peak exactly at the true

source. Note that this is a slightly different notion than perfect reconstruction, since both

methods will still (incorrectly) produce nonzero source estimates elsewhere. These ideas

have been extended to include certain empirical Bayesian methods [26], [36]. However,

these results assume a single dipole with fixed, known orientation (i.e., dc = 1), and therefore

do not formally handle more complex issues that arise when multiple dipoles with unknown

orientations are present. The methods from [24], [37] also purport to address these issues,

but no formal analyses are presented.

Despite its utilization of a complex, non-convex cost function ℒ(Γ), we now demonstrate

relatively general conditions whereby Champagne can exhibit perfect reconstruction. We

will assume that the full lead-field L represents a sufficiently high sampling of the source

space such that any active dipole component aligns with some lead-field columns (the ideal

forward model assumption). Perfect reconstruction can also be shown in the continuous

case, but the discrete scenario is more straightforward and of course more relevant to any

practical task.

Some preliminary definitions are required to proceed. We define the empirical intra-dipole

correlation matrix at the i-th voxel as ; non-zero off-diagonal elements imply

that correlations are present. Except in highly contrived situations, this type of correlation

will always exist. The empirical inter-dipole correlation matrix between voxels i and j is

; any non-zero element implies the existence of a correlation. In practice, this

form of correlation may or may not be present. With regard to the lead-field L, spark is

defined as the smallest number of linearly dependent columns [8]. By definition then, 2 ≤

spark(L) ≤ db + 1. Finally, da denotes the number of active sources, i.e., the number of

voxels whereby ‖Si‖ > 0.

Theorem 1: In the limit as Σε → 0 (high SNR) and assuming dadc < spark(L) − 1, the cost

function ℒ(Γ) maintains the following two properties:

1. For arbitrary Cii and Cij, the unique global minimum Γ* produces a source estimate

S* = Ep(S|B,Γ*) [S] computed using (4) that equals the generating source matrix S,

i.e., it produces a perfect source reconstruction.

2. If Cij = 0 for all active dipoles (although Cii is still arbitrary), then there are no local

minima, i.e., the cost function is unimodal.

See the Appendix B for the proof. In words, this theorem says that intra-dipole correlations

do not disrupt the estimation process by creating local minima, and that the global minimum
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always achieves a perfect source reconstruction. In contrast, inter-dipole correlations can

potentially create local minima, but they do not affect the global minimum. Empirically, we

will demonstrate that the algorithm derived in Section III is effective at avoiding these local

minima (see Section V). With added assumptions these results can be extended somewhat to

handle the inclusion of noise.

The cost functions from [26], [36] bear the closest resemblance to ℒ(Γ); however, neither

possesses the second attribute from Theorem 1. This is a significant failing because, as

mentioned previously, intra-dipole correlations are always present in each active dipole.

Consequently, reconstruction errors can occur because of convergence to a local minimum.

The iterative Bayesian scheme from [37], while very different in structure, also directly

attempts to estimate flexible orientations and handle, to some extent, source correlations.

While details are omitted for brevity, we can prove that the full model upon which this

algorithm is based fails to satisfy the first property of the theorem, so the corresponding

global minimum can fail to reconstruct the sources perfectly. In contrast, beamformers and

sLORETA are basically linear methods with no issue of global or local minima. However,

the popular sLORETA and MVAB solutions will in general display peaks that may be

misaligned from the true sources for multi-component dipoles (dc > 1) or when multiple

dipoles (da > 1) are present, regardless of correlations (they will of course never produce

perfect reconstructions of dipolar sources because of spatial blur).

So in summary, our analysis provides one level of theoretical comparison. In some sense it

is relevant to questions of the sort, do we expect the underlying true current sources to lie in

the subspace formed by S = LT , where LT is essentially an arbitrary overdetermined matrix

in this context, or will they more likely be of the form S equals the sum of 

arbitrary dipoles with unconstrained orientations and locations? This latter configuration is a

actually equivalent to the union of a large number of dadc-dimensional subspaces (in fact the

number is combinatorial, , which represents all possible unique configurations of da

dipoles), a far more complex, and in some sense richer, set of possible sources. Champagne

is designed to recover sources resembling the latter, an approximation to ‘real’ source

configurations that many neurophysiologists would say is both plausible and useful

clinically.

V. Empirical Evaluation

In this section we test the performance of our algorithm on both simulated and real data sets.

We focus here on localization accuracy assuming strong source correlations and unknown

orientations. Note that the primary purpose of the proposed algorithm is not really to

estimate the actual orientations or correlations per se. It is to accurately estimate the location

and power of sources confounded by the effects of unknown orientations and correlations.

Consequently, accurate localization estimates implicitly indicate that these confounds have

been adequately handled, hence orientation (or correlation) estimates themselves are not

stressed.
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A. Simulated Data

We first conducted tests using simulated data with realistic source configurations. The brain

volume was segmented into 5mm voxels and a two orientation (dc = 2) forward lead-field

was calculated using a single spherical-shell model [25]. The data time course was

partitioned into pre- and post-stimulus periods. In the pre-stimulus period (263 samples)

there is only noise and interfering brain activity, while in the post-stimulus period (437

samples) there is the same (statistically) noise and interference factors plus source activity of

interest. The pre-stimulus activity consisted of the resting-state sensor recordings collected

from a human subject presumed to have spontaneous activity (i.e., non-stimulus evoked

sources) and sensor noise; this activity was on-going and continued into the post-stimulus

period, where the simulated source signals were added. Source time courses were seeded at

locations in the brain with damped-sinusoidal signals and this voxel activity was projected to

the sensors through the lead-field. The locations for the sources were chosen so that there

was some maximum distance between sources and a maximum distance from the center of

the head. We could adjust both the signal-to-noise-plus-interference ratio (SNIR), the

correlations between the different voxel time courses (inter-dipole), and the correlations

between the two orientations of the dipoles (intra-dipole) to examine the algorithm

performance on unknown correlated sources and dipole orientations. For our purposes,

SNIR is defined as

(19)

To obtain aggregate data on the performance of our method on many different dipole

configurations and noise levels, we ran 100 simulations of three randomly (located) seeded

sources at SNIR levels of −5, 0, 5, 10dB. The sources in these simulations always had an

inter-dipole correlation coefficient and an intra-dipole correlation coefficient of 0.95. We

chose to test our algorithm against five representative source localization algorithms from

the literature: minmum variance adaptive beamforming (MVAB) [27], two non-adaptive

spatial filtering methods, sLORETA [19] and dSPM [6], and two variants of minimum

current estimation (MCE) specially tailored to handle multiple time-points and

unconstrained dipoles [31], [34]. These two methods extend standard MCE by applying a ℓ2

norm penalty across time (an ℓ1 norm over space and an ℓ2 norm over time, sometimes

called an ℓ1,2 norm in signal processing). In one case both dipole components are also

included within the ℓ2 penalty (MCE1), in the other case they are treated individually

(MCE2). Similar to Champagne, both versions of MCE favor sparse/compact source

reconstructions. Related algorithms are discussed in [3], [14].

We ran the simulations using a total of eight algorithms, the five above plus the three

variants of our Champagne method: CHAMPS, CHAMPD, and CHAMPM (see Section III-B

for a description of these variants). In order to evaluate performance, we used two features:

source localization accuracy and time course estimation accuracy. To assess localization

accuracy, we used the A′ metric [29] and to assess the estimation of the time courses, we

used the correlation coefficient between the true and estimated time courses.

Wipf et al. Page 11

Neuroimage. Author manuscript; available in PMC 2014 July 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



When assessing the localization accuracy, it is important to take into account both the

number of hits (sources that were correctly localized) and the presence of false positives or

spurious localizations. A principled way to take these two features into account is the ROC

(receiver-operator characteristic) method modified for brain imaging results [7], which is a

measure of hit rate (HR) versus false positive rate (FR). Specifically, we used the A′ metric

which is a way to approximate the area under the ROC for one HR/FR pair. We determined

the HR and FR at each SNIR level and each algorithm in the following way. For each

simulation, we calculated all the local peaks in the image. A local peak is defined as a voxel

that is greater than its 30 three-dimensional nearest neighbors and is at least 10 percent of

the maximum activation of the image. (This thresholding at 10 percent is designed to filter

out any spurious peaks or ripples in the image that are much weaker than the maximum

peak.)

After all the local peak locations were obtained, we tested whether each true source location

has at least one local peak within a centimeter of it. (We also tested the performance at a

radius of half a centimeter and the trends were similar for all algorithms.) If there were

multiple local peaks within one centimeter of a particular true source, we counted it as one

hit. Each image has the possibility of having 0, 1, 2, or 3 hits and we divided the number of

hits by three to get the HR. Determining the false positive rate is more tenuous. There is not

a clear maximum number of possible false positives, as there is with hits. We decided that

given the spatial smoothness of the images, we could place a ceiling on the number of local

peaks in an image at 5 percent of the total number of voxels or 100 voxels in the case of our

simulations. Thus we divided the number of false positives, those local peaks not within one

centimeter of a seeded source location, by 100 to get the FR. Since each algorithm was

treated the same for the determination of the FR, we do not think that this estimated ceiling

on the false positives caused any bias in our performance evaluation.

For evaluating the time-course reconstruction we used the correlation coefficient between

the true time course seeded for the simulations and the estimated time series from each

algorithm. Both the A′ metric and correlation coefficient range from 0 to 1, with 1 implying

perfect localization and time course estimation. For both the localization accuracy and the

time course estimation assessments 100 simulations were averaged. Figure 1 displays

comparative results for the eight algorithms at different SNIR levels with standard errors.

Figure 1 Left demonstrates the A′ metric and Figure 1 Right shows the time-course

correlation coefficients. All three variants of Champagne quite significantly outperform the

others. For all further analyses, only CHAMPM was used because of its superior

performance.

Figures 2 and 4 show sample reconstructions of three correlated dipoles at 5dB and -5dB

SNIR respectively. The associated sensor data is depicted in Figures 3 and 5. Inter- and

intra-dipole correlation coefficients were 0.90 in each case. All of the surface plots are

maximum-intensity projections of estimated power maps onto the coronal plane. These

power maps were obtained by calculating the average power at every voxel from the

reconstructed voxel time courses. The green circles indicate the projection of the true

locations of the sources and the surface plot shows the maximum-intensity projection of the

power-map. For these images the black/dark red regions are the maximum and the minimum
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is pale yellow/white. The figures show reconstructions from CHAMPM against MVAB,

MCE1, and sLORETA/dSPM. In practice, the localization maps for sLORETA and dSPM

are nearly identical (e.g., see Figure 1), so we chose to only show the sLORETA images to

represent both methods. CHAMPM performs significantly better at localizing the activity at

both high and low SNIR levels with highly correlated dipoles.

Figure 6 shows a sample reconstruction of a much more complex source configuration

involving 10 dipolar sources. We compared CHAMPM versus MVAB, MCE1, and

sLORETA/dSPM assuming (i) the dipoles had zero inter- and intra-dipole correlations, and

(ii) they had a correlation coefficient of 0.5 for both inter- and intra-dipole interactions. The

SNIR for these simulations was 10dB. CHAMPM performs significantly better than the other

algorithms on both the correlated and uncorrelated cases. Note that the reason superficial

sources are easier to find via Chamgpagne (and with many other methods) is simply because

the effective SNIR of deep sources is significantly lower. This occurs because deep sources,

when combined with superficial ones, contribute very little to the numerator of (19) because

the norm of the associated lead-field columns is relatively small. It is not because there is an

intrinsic bias favoring superficial dipoles; in fact, the global minimum of ℒ(Γ) is invariant to

the lead-field column norms in the sense that the activation/sparsity pattern is completely

unaffected.

As evidence that deeper sources need not necessarily be more difficult to find for a fixed

SNIR, consider a scenario with three sources that are all reasonably deep. In this situation,

the relative SNIR of each source will be comparable, meaning the overall source power is

somewhat evenly distributed. If we are assuming a fixed SNIR for three superficial sources

versus three deep ones, then the power associated with the deep ones will necessarily be

larger to compensate for the small lead-field values. As a result, these deep sources will be

of similar difficulty to find. So it is really in the situation where the SNIR is fixed but both

deep and superficial sources are present that trouble arises. The shallow sources will

dominate the SNIR calculation and will be readily located, while the deep ones contribute

almost nothing to the data covariance and will likely be overlooked.

Figure 7 shows recovery results using three deep sources with 0.5 correlation (inter- and

intra-dipole) and 2dB SNIR, with interference from real brain noise as in previous

experiments. Clearly Champagne has no difficulty in this scenario while the other

algorithms struggle. Of course in a practical situation, the SNIR for deep sources may be

well below 2dB, rendering them more difficult to find.

We also tested Champagne on more distributed source configurations. Previously, we

created sources constrained to one voxel; now we consider sources formed from activity in

10 adjacent voxels to form clusters. We seeded 10 of these source clusters throughout the

brain volume of interest. The lead-field used for this experiment is the same as the previous

experiments with a spatial resolution of 5mm. The SNIR was 10dB and the intra-dipole

correlation was 0.5 in all cases. The inter-dipole correlation was 0.8 for dipoles within the

same cluster and 0.5 between dipoles in different clusters. We visualized the clusters by

projecting the source-power estimates to the surface of the 3-D rendered MRI.
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From Figure 8 we observe that Champagne was able to resolve much of each cluster and 80

of the 100 voxels were found to be significantly active above any small spurious peaks.

Comparing with the ground truth plot, Champagne was able to reconstruct the clusters quite

accurately, while MCE, sLORETA, and MVAB are not able to do so. Consequently,

Champagne is found to be both applicable to focal sources as well as small diffuse clusters.

Finally, Figure 9 gives an example of the improvement in convergence rate afforded by our

method relative to an EM implementation analogous to [10], [26]; the per-iteration cost is

the same for both methods. A simulated 2D dipolar source was generated and projected to

the sensors using the experimental paradigm described in [37] with ds = 1725 voxels. The

signal was corrupted by 10dB additive Gaussian sensor noise. Figure 9 displays the

reduction in the Champagne cost function ℒ(Γ) as a function of the iteration number.

Consistent with previous observations, the EM updates are considerably slower in reducing

the cost. While the detailed rationale for this performance discrepancy is beyond the scope

of this paper, ultimately it is a consequence of the different underlying bounds being used to

form auxiliary functions. EM leads to slower convergence because it is effectively using a

much looser bound around zero than the bound described in Section III-A and therefore fails

to fully penalize redundant or superfluous components. This prevents the associated

hyperparameters from going to zero very quickly, drastically slowing the convergence rate.

More details on this topic can be found in [35].

B. Real Data

Three stimulus-evoked data sets were collected from normal, healthy research subjects on a

275-channel CTF System MEG device. The first data set was a sensory evoked field (SEF)

paradigm, where the subject's right index finger was tapped for a total of 240 trials. A peak

is typically seen 50ms after stimulation in the contralateral (in this case, the left)

somatosensory cortical area for the hand, i.e., dorsal region of the postcentral gyrus.

Champagne and MCE1 were able to localize this activation to the correct area of

somatosensory cortex as seen in Figure 10 and the estimated time course shows the typical

50ms peak Figure 13 (Left). The other algorithms were also able to localize this activity, but

the estimated activations are much more diffuse. Champagne and MCE’s sparsity

characteristics result in focal activations that do not have spatial blur like MVAB and

sLORETA/dSPM. Note that for these examples, we do not perform a maximum intensity

projection. Instead, we simply find the voxels with maximum power (obtained from the

estimated time courses). Champagne and MCE’s activations were very focal, but for the

other two algorithms we thresholded the image of estimated source power to obtain a focal

activation around the maxima.

The other two data sets analyzed were from an auditory evoked field (AEF) paradigm,

where two subjects were presented tones binaurally for a total of 120 trials. There are two

typical peaks seen after the presentation of an auditory stimulus, one at 50ms and one at

100ms, called the M50 and M100 respectively. The auditory processing of tones is bilateral

at early auditory cortical areas and the activations are correlated. Champagne was able to

localize activity in both primary auditory cortices for both subjects, Figures 11 and 12, and

the time courses for these two activations reveal the M50 and M100 Figure 13 (Middle) and
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(Left). In general, these figures demonstrate that ChampM outperforms both MVAB, MCE,

and sLORETA/dSPM. The analysis of simple auditory paradigms is problematic for MVAB

because it cannot handle the bilateral correlated sources well. sLORETA/dSPM does show

some degree of bilateral activation but there is a large amount of spatial blur, while

Champagne is focal in its localization. Note that the first iteration of Champagne is very

related to sLORETA/dSPM (see [36]) so this result is perhaps not surprising. Finally, MCE

like Champagne produces focal estimates, but with additional spurious peaks and bilateral

activations outside of auditory cortical areas.

VI. Conclusion

This paper derives a novel empirical Bayesian algorithm for MEG source reconstruction that

readily handles multiple correlated sources with unknown orientations, a situation that

commonly arises even with simple imaging tasks. Based on a principled cost function and

fast, convergent update rules, this procedure displays significant theoretical and empirical

advantages over many existing methods. We have restricted most of our exposition and

analyses to MEG; however, preliminary work with EEG is also promising. For example, on

a real-world passive visual task where subjects viewed flashing foreground/background

textured images, our method correctly localizes activity to the lateral occipital cortex while

two state-of the-art beamformers fail. This remains an active area of research.

There are a number of directions for future research. First, while not the focus of this paper,

our model can readily be augmented to produce model evidence approximations, which have

been proposed for Bayesian model comparison/selection purposes [10], [11], [34]. While

here such approximations emerge from the concavity bounds associated with the derivation

of Champagne in Section III-A, in [10], [11], related bounds follow from factorial (or mean-

field) assumptions built into a variational free energy framework. The connection between

these two different types of bounds, as well as their relative performance in model selection

tasks, has not been explored to our knowledge.

Secondly, a full investigation of the effects of the temporal windowing of sensor time

courses, and algorithmic extensions for learning optimal windows, is very important to

empirical Bayesian methods such as Champagne. There is an intrinsic trade-off here. Large

windows are most effective for localizing stationary sources that remain active across the

whole window length; however, if a source has limited temporal extent or is moving,

extending the window size can drastically reduce performance. In contrast, small windows

are optimal for non-stationary, ephemeral sources, but the effective SNIR will generally be

worse. In preliminary studies with data from facial processing experiments, adjusting the

window size has been crucial for localizing regions such as the fusiform face area. This

issue is implicitly considered in [3], where temporal basis functions are used in extended

MCE framework (a notion that could potentially be applied to Champagne as well). Spatial

basis functions can also be incorporated to allow more flexible estimation of distributed

sources, a useful notion that has been applied in a wide variety of settings [3], [15], [21],

[22], [34].
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Appendix A: Introduction to Conjugate Duality

At the heart of the algorithm derived in Section III is the ability to represent a concave

function in its dual form. For example, given a concave function f(y) : ℝ → ℝ, the dual form

is given by

(20)

where f*(υ) denotes what is called the conjugate function. Geometrically, this can be

interpreted as representing f(y) as the lower envelope or infimum of a set of lines

parameterized by υ. The selection of f*(υ) as the intercept term ensures that each line is

tangent to f(y). If we drop the maximization in (20), we obtain the bound

(21)

Thus, for any given υ, we have a rigorous bound on f(y); we may then optimize over υ to

find the optimal or tightest bound in a region of interest. In higher dimensions, the strategy

is the same, only now the bounds generalize from lines to hyperplanes.

Appendix B: Proof of Theorem 1

We begin with Property 1. While it is possible to prove this result using manipulations of

ℒ(Γ) in Γ-space, it is convenient to transform the problem to an equivalent one in S-space.

Specifically, the solution S* will be the global minimum of the dual optimization problem

(22)

where

(23)

and Σb = Σε + LΓLT as defined in the main text. The global and local minima of (22)

correspond with those of ℒ(Γ) by straightforward extension of results in [33]. Therefore, we

only need to show that the global minimizer of (22) S* satisfies Property 1. For simplicity,

we will assume that Σε = εI with ε → 0 and that spark(L) = db + 1 (i.e., every subset of db

lead-field columns are linearly independent). The more general case is trivial to handle but

complicates notation and exposition unnecessarily.

To begin we require two intermediate results:

Lemma 1: The function g(S) satisfies
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(24)

where D equals the cardinality of the set {Si : ‖Si‖ > 0}, i.e., D is the number of Si not equal

to zero.23

In words this result states that g(S) will be O(1) unless Ddc < db, in which case g(S) will be

dominated by the log ε term when ε is small.

Proof : Computing g(S) via (23) involves a minimization over two terms. The first term

encourages each Γi to be large, the second encourages each Γi to be small. Whenever a given

Si = 0, the first term can be ignored and the associated Γi is driven to exactly zero by the

second term. In contrast, for any Si ≠ 0, the minimizing Γi can never be zero for any ε ≥ 0 or

the first term will be driven to infinity. This a manifestation of the fact that

(25)

Consequently, for any given S, the associated minimizing Γ will necessarily have a matching

sparsity profile, meaning the indices of zero-valued Si will align with zero-valued block-

diagonal elements in Γ.4

Whenever Ddc > db, the above analysis (and the assumption that spark(L) = db +1) ensures

that the minimizing Σb will be full rank even for ε = 0. This implies that g(S) = O(1) for

essentially the same reason that

(26)

In contrast, when Ddc < db, the minimizing Σb will become degenerate when ε → 0. Let λi

denote the i-th nonzero eigenvalue of LΓLT at the minimizing Γ. The spark assumption

(coupled with the analysis above) guarantees that there will be Ddc such eigenvalues. Then

we have

(27)

This gives g(S) = O(1) + (db − Ddc) log ε.

Lemma 2: For any solution S such that B = LS, D will always satisfy D ≥ da. The sources S

that achieve equality are unique and satisfy S = Sgen.

Proof: This result represents a simple extension of uncertainty principles detailed in [5], [8].

In particular, based on Lemma 1 in [5], if Sgen satisfies

2Here we have adopted the notation f(x) = O(h(x)) to indicate that |f(x)| < C1|h(x)| for all x < C2, with C1 and C2 constants
independent of x.
3If S = Sgen, then by definition D = da.
4This point can be made more rigorous as shown in the first author’s PhD thesis, but we omit lengthy details here.
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(28)

then no other solution S can exist such that B = LS and D ≤ da. Additionally, by directly

applying results from [9], we find that this condition will also hold for all S, except a set

with measure zero, if

(29)

Given these two results, the proof of Property 1 is simple. In the limit as ε → 0, Lemma 1

dictates that g(S) is minimized when D is minimized. Lemma 1 then shows that D is

uniquely minimized (with D = da) when S = Sgen.

Property 2 is relatively easy to show by leveraging Theorem 2 from [32]. For our purposes,

this result implies that if the data covariance Cb satisfies Cb = Σb for some Γ, then the cost

function ℒ(Γ) is unimodal and Cb = Σb at any minimizing solution. When ε → 0, the data

covariance satisfies

(30)

Given the conditions of Property 2,  will be zero except for dc × dc block diagonal

elements. Therefore, if  (which is allowable given the specified block-

diagonal structure of Γ), then Σb = LΓLT = Cb and we have no local minima.
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Fig. 1.
Performance evaluation: Left Aggregate localization results (A′ metric) for MVAB,

sLORETA, dSPM, two variants of MCE (MCE1 and MCE2), and the three variants of

Champagne (CHAMPS,CHAMPD, and CHAMPM) for recovering three correlated sources

with unknown orientations. Right Estimated time-course correlation coefficient results for

the eight algorithms. Error bars denote the standard error over 100 simulations.
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Fig. 2.
Localization of three highly Correlated Dipoles at SNIR = 5dB, the green circles denote the

true locations of the sources and the red-to-white colored surface plot shows the maximum-

intensity projection of the source power estimates produced by each algorithm. The color

scale gradation goes from dark being the maximum to light being the minimum.
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Fig. 3.
Sensor data from all 275 MEG channels associated with Figure 2 example. The red line

denotes the pre- and post-stimulus periods.
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Fig. 4.
Localization of 3 highly Correlated Dipoles at SNIR = −5dB, the green circles denote the

true locations of the sources and the red-to-white colored surface plot shows the maximum-

intensity projection of the source power estimates produced by each algorithm. The color

scale gradation goes from dark being the maximum to light being the minimum.
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Fig. 5.
Sensor data from all 275 MEG channels associated with Figure 4 example. The red line

denotes the pre- and post-stimulus periods.

Wipf et al. Page 25

Neuroimage. Author manuscript; available in PMC 2014 July 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 6.
Localization of 10 dipoles Left Column: Uncorrelated sources; Right Column: Correlated

sources. The green circles denote the true locations of the sources and the red-to-white

colored surface plot shows the maximum-intensity projection of the source power estimates

produced by each algorithm. The color scale gradation goes from dark being the maximum

to light being the minimum.
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Fig. 7.
Deep source example.
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Fig. 8.
Localization of diffuse sources. 10 clusters of 10 dipoles each were seeded in the brain and

reconstructed using various algorithms. True and estimated sources were then projected to

the rendered surface of the brain. Champagne comes the closest to matching the true

sources.
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Fig. 9.
Convergence rate of proposed update rules relative to a conventional EM implementation

based on [10], [26], [31].
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Fig. 10.
Localization of SEF data. All four algorithms localize to somatosensory cortical areas, but

Champagne and MCE are the most focal.
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Fig. 11.
Localization of AEF data (subject 1). Only Chamgagne is able to localize bilateral activity in

primary auditory cortex.
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Fig. 12.
Localization of AEF data (subject 2). Only Chamgagne is able to localize bilateral activity in

primary auditory cortex.
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Fig. 13.
Top Row: Sensor data from all 275 MEG channels associated with Figures 10, 11, and 12.

Bottom Row: Recovered timescourses at the maximum intensity voxels as estimated via

CHAMPM. Left: Left somatosensory cortex showing peak at 50ms. Middle: Left auditory

cortex from subject 1 (right auditory cortex, not shown, is similar) showing M50 and M100.

Right: Right auditory cortex from subject 2 (left auditory cortex, not shown, is similar)

showing M50 and M100
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