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Abstract
Speech production demands a number of integrated processing stages. The system must encode the
speech motor programs that command movement trajectories of the articulators and monitor transient
spatiotemporal variations in auditory and somatosensory feedback. Early models of this system
proposed that independent neural regions perform specialized speech processes. As technology
advanced, neuroimaging data revealed that the dynamic sensorimotor processes of speech require a
distributed set of interacting neural regions. The DIVA (Directions into Velocities of Articulators)
neurocomputational model elaborates on early theories, integrating existing data and contemporary
ideologies, to provide a mechanistic account of acoustic, kinematic, and functional magnetic
resonance imaging (fMRI) data on speech acquisition and production. This large-scale neural
network model is composed of several interconnected components whose cell activities and synaptic
weight strengths are governed by differential equations. Cells in the model are associated with
neuroanatomical substrates and have been mapped to locations in Montreal Neurological Institute
stereotactic space, providing a means to compare simulated and empirical fMRI data. The DIVA
model also provides a computational and neurophysiological framework within which to interpret
and organize research on speech acquisition and production in fluent and dysfluent child and adult
speakers. The purpose of this review article is to demonstrate how the DIVA model is used to motivate
and guide functional imaging studies. We describe how model predictions are evaluated using voxel-
based, region-of-interest-based parametric analyses and inter-regional effective connectivity
modeling of fMRI data.
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Introduction
The theoretical foundations of speech comprehension and production modeling date back to
the nineteenth century when it was observed that language disorders resulted from lesions to
particular cortical regions (Broca, 1861; Wernicke, 1874). These observations led to the first
modeling frameworks that linked independent brain regions with speech comprehension and
production (Lichtheim, 1885). Since that time, pioneering human electrical stimulation studies
mapping cortical representations of the speech articulators (Penfield and Rasmussen, 1950;
Penfield and Roberts, 1959) and investigations on patients with stroke-related lesions (Damasio
and Damasio, 1980; Goodglass, 1993) have elaborated initial theories, providing greater detail
into the functional segregation of brain regions involved in speech production and perception.
With the advent of functional brain imaging techniques and associated computational modeling
methods (e.g., Friston et al., 1993; McIntosh et al., 1994; Friston et al., 1997; McKeown et al.,
1998; Friston et al., 2003), new empirical research has stimulated a theoretical shift in the field
of speech neuroscience from functional segregation to functional integration. Modern
theoretical perspectives propose that speech perception and production might be more
accurately characterized by a large network of interacting brain areas rather than local
independent modules (e.g., Gracco, 1991; Baum and Pell, 1999; Hickok and Poeppel, 2000;
Sidtis and Van Lancker Sidtis, 2003; Friederici and Alter, 2004; Riecker et al., 2005; Indefrey
and Levelt, 2004; Pulvermüller, 2005).

Despite the growing consensus that multiple, interacting cortical and subcortical brain areas
are associated with the coordination of speech, a complete account of how the regions interact
to produce fluent speech is still lacking. The DIVA (Directions into Velocities of Articulators)
neural network model of speech acquisition and production attempts to bridge this gap by
characterizing different processing stages of speech motor control both computationally and
neurophysiologically (Guenther, 1994, 1995; Guenther et al., 1998, 2006). The model,
schematized in Figure 1, learns to control the movements of a computer-simulated vocal tract
(a modified version of the synthesizer described by Maeda, 1990) in order to produce an
acoustic signal. Since the model can generate a time-varying sequence of articulator positions
and formant frequencies, the kinematics and acoustics of an extensive set of speech production
data may be simulated and tested against that of both fluent (Guenther, 1994, 1995; Guenther
et al., 1998, 2006; Nieto-Castanon et al., 2005) and dysfluent adult speakers (Max et al.,
2004; Robin et al., 2008; Civier et al., submitted). The model can also account for aspects of
child development that influence speech production (e.g., Guenther, 1995; Terband et al., in
press) such as the dramatic restructuring of the size and shape of the vocal tract over the first
few years of life (Callan et al., 2000).

The DIVA model is comprised of several interconnected components that are associated with
cortical, subcortical, and cerebellar human brain regions. The model's neural substrates,
projections, and computational characterizations are based, when possible, on the structural
and functional descriptions of regions and projections in the human brain from human clinical,
neuroimaging, and microstimulation studies and non-human primate single cell recording and
anterograde and retrograde tracing studies (Guenther et al., 2006). Model cells are mapped to
locations in Montreal Neurological Institute (MNI; Mazziotta et al., 2001) stereotactic space,
a standard reference frame often used when analyzing neuroimaging data. Since the model's
components represent clusters of neurons, and cell activities are both mathematically and
stereotactically defined, it is possible to generate simulated functional magnetic resonance
imaging (fMRI) activations at specific anatomical locations (Guenther et al., 2006). The
resulting simulated fMRI activations can then be compared to the results of neuroimaging
studies of speech production (Guenther et al., 2006; Tourville et al., 2008) and used both to
interpret the neuroimaging data and further refine the model (when imaging results are not
fully captured by the model). The DIVA model can also assist in motivating inter-regional
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effective connectivity modeling of functional imaging data and, likewise, effective
connectivity modeling can be used to test the DIVA model's predictions of modulated
projections (Tourville et al., 2008). Therefore, the model is particularly well-suited for guiding
and interpreting neuroimaging studies of speech acquisition and production.

In this review, we attempt to demonstrate that large-scale computational neural network
modeling can act as a structuring framework for neuroimaging research. Together empirical
research and neural network modeling can contribute more to our understanding of the
underlying functional neural networks than either one separately.

Materials and Methods
DIVA model overview

A schematic representation of the DIVA neural network model is illustrated in Figure 1. The
system is composed of thirteen modules encompassing two types of motor control schemes:
feedforward and feedback control. Under feedforward control, speech production is based on
well-learned speech motor programs that are acquired through previous attempts at producing
the speech sound targets. The feedback control subsystem iteratively guides the articulators by
monitoring mismatches between the sensory expectations of a speech motor program and the
incoming sensory feedback associated with that speech motor program. In DIVA, the
feedforward and feedback commands are integrated when generating speech motor commands.
As a result, the model remains sensitive to errors during speech production, while maintaining
the ability to produce fluent speech.

The combined feedforward and feedback signals constitute the total speech motor command
that originates from cells within the Articulator Velocity and Position Maps. The term map is
used here to refer to a set of neurons. The Articulator Velocity and Position Maps each consist
of eight antagonistic pairs of cells corresponding to the eight degrees of freedom of the vocal
tract model (Maeda, 1990). Activity in the Position Map represents a motor command
describing jaw height, tongue shape, tongue body position, tongue tip position, lip protrusion,
larynx height, upper lip height, and lower lip height. This command is sent to the articulatory
synthesizer, resulting in movements of the vocal tract model. The neurons within the
Articulator Velocity and Position Maps are hypothesized to lie in overlapping positions along
the caudoventral portion of the precentral gyrus (See Figure 4 for a schematic of the DIVA
model components to their hypothesized neuroanatomical locations). Montreal Neurological
Institute (MNI) coordinates for the proposed location of these cells in the SPM2 canonical
brain are provided in Table 1 along with a selection of the citations used to estimate these
locations. A more detailed description of the mapping of the DIVA model cells onto specific
neuroanatomical locations is provided in Guenther et al. (2006).

In order to generate spatio-temporally varying commands to the articulators, the DIVA model
must first learn the relationship between movements of the speech articulators and the
corresponding sensory feedback, a mapping that subserves both the feedforward and feedback
control subsystems. After this initial “babbling” stage, the DIVA model learns the sensory
expectations, or targets, for frequently encountered speech sounds and the speech motor
programs that effectuate these sensory targets. The model takes as input an acoustic speech
sound target representing a phoneme, syllable, word, or short phrase to be produced. Through
a process of trial and error, the model learns to acquire each speech target over the course of
several production attempts largely relying on auditory feedback control. Gradually, these
commands are subsumed by the feedforward control subsystem and, under normal conditions,
the model can rely primarily on feedforward control.
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The feedforward control subsystem is initiated by the activation of a cell in the Speech Sound
Map. The cells of the Speech Sound Map correspond to the “mental syllabary” described by
Levelt and colleagues (e.g., Levelt and Wheeldon, 1994; Levelt et al., 1999). In particular, each
cell in this map represents a phoneme or frequently encountered multi-phonemic speech sound,
with syllables being the most typical sound type represented. The activation of one of these
cells will result in the production of the corresponding speech sound. Cells in the Speech Sound
Map are also hypothesized to be active during speech perception when the auditory
expectations of the active speech sound target are tuned. These cells are hypothesized to lie in
the left posterior inferior frontal gyrus and adjacent ventral premotor cortex.

The excitatory feedforward commands projecting from the Speech Sound Map to the
Articulator Velocity and Position Maps can be thought of as a “motor program” or “gestural
score” (e.g., Browman and Goldstein, 1989), i.e., a time series of articulatory gestures used to
produce the corresponding speech sound. The feedforward control subsystem is also mediated
by a trans-cerebellar pathway. Projections from the cerebellum are thought to contribute
precisely-timed feedforward commands (Ghosh, 2005). The cells within the cerebellum are
hypothesized to lie bilaterally in the anterior paravermal cerebellar cortex.

Commands from the Articulator Velocity and Position Maps are released to the articulators
when the activity of the appropriate cell in the Initiation Map is non-zero. According to the
model, each speech motor program in the Speech Sound Map is associated with a cell in the
Initiation Map. Motor commands associated with the selected speech motor program are
released when the corresponding Initiation Map cell becomes active. The Initiation Map is
hypothesized to lie bilaterally within the supplementary motor area. The timing of the Initiation
Map activation and the release of a speech motor program is hypothesized to be dependent on
a reciprocal connection with the basal ganglia, including bilateral caudate, putamen, pallidum,
and thalamus.

When confronted with a novel speech task or an unexpected change in environmental settings,
the DIVA model is able to detect and correct the current speech motor program using feedback
control. Studies have demonstrated that both auditory (Houde and Jordan, 1998; Jones and
Munhall, 2005; Bauer et al., 2006; Purcell and Munhall, 2006) and proprioceptive and tactile
afferent feedback (MacNeilage et al., 1967; Lindblom et al., 1979; Gay et al., 1981; Kelso and
Tuller, 1983; Abbs and Gracco, 1984; Gracco and Abbs, 1985; Tremblay et al., 2003; Nasir
and Ostry, 2006) are used to guide articulator movements during speech. Accordingly, the
feedback control subsystem is further divided into two independent pathways responsible for
auditory and somatosensory feedback control.

The auditory and somatosensory feedback control subsystems utilize a similar set of cortical
computational mechanisms along each of their respective pathways, but the reference frames
in which these two subsystems operate are dependent on the sensory modality. The feedback
control subsystem computes the difference between the sensory feedback and sensory
expectations of the speech target to detect errors in these reference frames and correct the
current speech motor program when it is off-target. In the current implementation of the model,
the acoustic reference frame corresponds to the first three formant frequencies of the acoustic
signal while the somatosensory reference frame corresponds to proprioceptive and tactile
feedback from the articulators.

The sensory response to self-generated speech is represented in the Auditory and
Somatosensory State Maps which are hypothesized to lie along the supratemporal plane and
the inferior postcentral gyrus, respectively. Expected sensory consequences of the sounds to
be produced are encoded in the forward model projections from the Speech Sound Map to the
Somatosensory and Auditory Target Maps. These expectations correspond to a convex target
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region that encodes acceptable ranges (in acoustic and somatosensory reference frames) for
the current speech target (Guenther, 1995). The cells of the Auditory Target Map are
hypothesized to lie in bilateral planum temporale and superior temporal gyrus while the cells
of the Somatosensory Target Map are hypothesized to lie in bilateral ventral somatosensory
cortex and anterior supramarginal gyrus. An additional trans-cerebellar pathway is also
hypothesized to contribute to the sensory predictions that form the auditory and somatosensory
targets. The cerebellar cells are hypothesized to lie bilaterally in the superior lateral cerebellar
cortex.

Activity within the Auditory and Somatosensory Error Maps represents the difference between
the realized and expected sensory responses for the current speech sound. The cells of the
Auditory and Somatosensory Error Maps are topographically superimposed on the cells of the
Auditory and Somatosensory Target Maps. The Error Maps receive inhibitory inputs from the
Target Maps and excitatory inputs from the State Maps. If the incoming sensory response falls
outside of the expected target region, the net activity in the Error Map represents an error
signal. This error is transformed into corrective motor commands via projections from the
sensory Error Maps to the articulator velocity cells in the Feedback Control Map. These
transformations constitute inverse models. In the Results section we demonstrate how the
DIVA model was used to guide a functional MRI experiment and how the results of that
experiment motivated the inclusion of the right-lateralized Feedback Control Map in ventral
premotor cortex.

Generating DIVA model simulations
The neural network model is described by a system of ordinary differential equations that are
provided in Table 2. A more detailed description of the mathematical formulation of the DIVA
model is provided in Guenther et al. (2006). Model simulations may be generated using the
source code developed in our laboratory and publicly available at the website
http://speechlab.bu.edu/DIVAcode.php. The current release of the model includes a graphical
user interface to assist researchers in running simulations and in changing parameters. The
articulatory synthesizer and a library of learned speech sounds are also included.

Generating simulated fMRI activations
Since the model's components correspond to neurons at specific anatomical locations and their
activities are mathematically defined, it is possible to generate simulated fMRI activations
during a DIVA model simulation of a speech production task. Simulating fMRI activations
requires an understanding of the relationship between neural activity and the fMRI blood
oxygen level dependent (BOLD) signal. This relationship remains an issue of some debate. It
has been proposed that neurophysiological correlates of the behaviorally evoked blood flow
changes are the spiking activity or the neuronal output (Heeger et al., 2000; Rees et al., 2000;
Mukamel et al. 2005). However, this claim has recently been challenged by research using
simultaneous electrophysiological and BOLD measurements in primary visual cortex of alert
behaving monkeys (Goense and Logethetis, 2008). Goense and Logothetis (2008)
demonstrated that there were periods when the time course of the average neuronal output (the
multiple-unit activity) diverged from that of the local field potentials and did not remain
elevated for the time course of the stimulus. Local field potentials are thought to reflect a
weighted average of input signals on the dendrites and cell bodies of neurons (Raichle and
Minton, 2006). Since the transient response of the multiple-unit activity was not reflected in
the BOLD response, the researchers suggest that the BOLD response was likely driven by a
more sustained mechanism such as the local field potentials (Goense and Logothetis, 2008).
Similar results have been reported by other studies (Mathiesen et al., 1998; Logothetis et al.,
2001; Viswanathan and Freeman, 2007), providing growing evidence that the BOLD signal is

Golfinopoulos et al. Page 5

Neuroimage. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://speechlab.bu.edu/DIVAcode.php


more representative of synaptic activity as reflected by local field potentials than spiking
activity.

In accordance with this conclusion, the fMRI activations in the DIVA model are determined
by using the total synaptic inputs to our modeled cells, rather than their activity. Each model
cell is hypothesized to correspond to a population of neurons that fire together. The output of
the model cell is analogous to a neuron's firing rate (the number of action potentials per second)
of the population of neurons. This output is then multiplied by synaptic weights, forming
postsynaptic inputs to other cells in the network. In order to generate simulated fMRI
activations in the DIVA model, a cell's activity level is calculated as the sum of the cell's
synaptic inputs (both excitatory and inhibitory). If the net activity of the cell's synaptic inputs
is less than zero, the cell's activity level is considered to be zero.

The brain's vascular response to a transient change in neural activity is delayed, and this delay
has been estimated at four to seven seconds depending on the brain region and task (Belin et
al., 1999; Yang et al., 2000). To account for this hemodynamic delay in the DIVA model, fMRI
activity is simulated using an idealized hemodynamic response function (HRF; Friston et al.,
1995). The HRF function is convolved with the activity of each cell over the course of the
entire speech task, in order to transform the cell activity into a temporally smoothed time series
of simulated fMRI activity. A surface representation is then rendered with a corresponding
hemodynamic response value at each cell location for each condition. Responses are then
spatially smoothed with a spherical Gaussian point spread function. Activity in the modeled
regions can then be compared across conditions, and the resulting simulated contrast image
can be superimposed on a co-registered anatomical dataset. By default, simulated BOLD
responses are superimposed on a cortical surface representation of the canonical anatomical
volume included in the SPM software package. The voxel-based time series data can also be
displayed as a movie of simulated fMRI activity over the time course of the speech task.

Results
Integrating modeling and fMRI

Voxel-based analysis—Localization of statistically significant behaviorally evoked
changes in the brain using voxel-based analysis of fMRI data continues to produce a host of
new findings regarding brain–behavior relationships in speech production and perception. In
this approach, functional volumes are first spatially normalized to match a standard template.
This step is performed so that data collected from multiple subjects are aligned in a common
space, permitting intersubject comparisons. Spatial normalization also provides a means for
reporting activation sites according to coordinates in a standard space, allowing for comparison
of findings across studies. Task-related effects are then estimated for every voxel in the
acquired functional volumes. For every subject, a set of contrast volumes is created that
represents a specified comparison of task-related effects. Group-level significance tests are
then based on comparisons of each voxel in each subject's contrast volume. The resulting
parametric map is then thresholded to indicate which voxels differ significantly across the
contrasted conditions.

Alone, the voxel-based analysis can provide an automated and standardized means of assessing
the effects of variables on the activity of voxels at specific stereotactic locations across the
entire brain. In combination with large-scale computational neural network modeling, the
voxel-based method is valuable for comparing peak locations from experimental studies of
individual conditions and groups of subjects with simulated fMRI activations. These
comparisons can corroborate and strengthen initial model-based hypotheses or assumptions,
generate new insights about functional neural networks, and result in the design of new
experimental or model-based investigations. Combining model simulations with experimental
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voxel-based results, therefore, can provide a synergistic approach to clarifying the neural
substrates underlying a specific variable under study.

As an illustrative example, DIVA simulations were used to motivate a recent fMRI
investigation to test model predictions regarding the brain regions involved in auditory
feedback-based control of speech (Tourville et al., 2008). The model was trained to pronounce
the monosyllabic word /bεd/ with normal auditory feedback. Following successful training,
the first formant of the model's auditory feedback of its own speech was shifted upward and
downward by 30% in two additional simulations (See Tourville et al., 2008 for more details).
According to the model, the mismatch between expected and actual auditory feedback will
result in activation of cells in the Auditory Error Map which, in turn, drive compensatory motor
commands issued from Articulator Velocity and Position Maps. The simulations indicated that
the DIVA model compensated for the auditory perturbation by shifting the first formant of the
model's acoustic output in the direction opposite the shift. The compensatory response was
associated with increased activation in bilateral posterior peri-Sylvian cortex (the location of
the Auditory Error Map), ventral Rolandic cortex (the location of the Articulator Velocity and
Position Maps), and superior lateral cerebellum (the location of the Auditory Feedback Control
Subsystem's Cerebellar Module).

These predictions were compared to data acquired in an fMRI study involving eleven
neurologically normal, right-handed speakers of American English (Tourville et al., 2008). In
the experiment, auditory feedback of self-produced speech was perturbed on randomly
distributed trials while subjects read monosyllabic words from a screen. All words had the form
consonant-vowel-consonant with /ε/ (as in “bed”) as the center vowel. The perturbed feedback
trials were randomly interspersed with trials in which normal auditory feedback was provided
so that subjects could not anticipate the perturbations. Speakers compensated for the altered
feedback, as the model predicted, by shifting the first formant of their output in the direction
opposite the induced perturbation. Moreover, the fMRI results of a fixed effects voxel-based
analysis demonstrated that during the conditions in which there was a mismatch between the
expected and actual auditory feedback, there was increased activity in bilateral higher-order
auditory cortical areas, including the posterior superior temporal gyrus and planum temporale.
Furthermore, activity was found in the precentral gyrus as predicted, though the relatively low
anatomical precision of voxel-wise group analysis prevents distinguishing between primary
motor cortical activity (predicted by the model) and premotor cortical activity. Compensating
for the shift in auditory feedback was also associated with increased activity in right lateral
prefrontal cortex and right inferior cerebellum, regions that were not predicted by the model.

A comparison of the simulated and empirical data is illustrated in Figure 2. The correspondence
between the model and human subject voxel-based results, particularly within the peri-Sylvian
areas, illustrates the ability of the DIVA model to qualitatively account for speech production-
related neuroimaging data at a voxel-wise level. By specifying a computational neuroanatomy
using MNI coordinates, the model-based framework can be tested more directly with voxel-
based empirical data. Moreover the agreements in functional localization between the model
simulations and the fMRI experiment strengthen and confirm the model-based hypotheses of
the neural mechanisms proposed to underlie those areas that the model accurately predicts.
Since the DIVA model correctly predicted the neural responses in higher-level auditory cortical
areas, the theoretical basis upon which these neural predictions were made was reinforced.
These results demonstrate how a large-scale computational neural network modeling
framework in conjunction with empirical data can be used to substantiate hypotheses and
assumptions and therefore offer a validated framework in which to interpret future voxel-based
results.
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While it is informative to identify which regions with increased activity were successfully
predicted by the DIVA model, it is equally important to note the activity for which the model
failed to account. One of the main unpredicted voxel-based results was that frontal cortex
activity in response to the perturbation was right-lateralized and consisted primarily of
premotor, rather than primary motor, activity. However voxel-based group analyses have
inherent problems when one attempts to make fine anatomical distinctions (Nieto-Castanon et
al., 2003) such as distinguishing between primary motor and premotor cortex in the precentral
gyrus. For this reason we supplement voxel-wise analysis with region-of interest (ROI) based
analyses as discussed next.

ROI-based analysis—Although voxel-based analysis is widely used, it suffers from well-
known limitations. Chief among these is its inability to account for the substantial anatomical
variability across subjects, despite non-linear warping of data prior to analysis. Nieto-Castanon
and colleagues (2003) provided a measure of the extent of inter-subject variability for a number
of easily-identified anatomical regions of interest (ROIs). For example, the mean overlap of
voxels common to Heschl's gyrus, an ROI representing primary auditory cortex, across two
subjects following normalization was 31% of the total voxels belonging to Heschl's gyrus in
both subjects. The overlap dropped to 13% for three subjects and across nine subjects, a
relatively small population for imaging studies, no overlap was found. In other words, there
was not a single voxel in the standard stereotactic space that fell within Heschl's gyrus across
all subjects. This variability was typical of the 12 temporal and parietal lobe regions of interest
that were analyzed in the left and right hemispheres (see Nieto-Castanon et al., 2003).
Therefore, the standard normalization procedure falls short of ensuring alignment of the
structural, and presumably functional, regions across even a small subject cohort.

The standard means of accounting for inter-subject anatomical variability is to spatially smooth
functional data after normalization with an isotropic smoothing kernel of 6–12 mm. While
increasing the power of voxel-based analyses, this method has the effect of blurring regional
boundaries. The blurring effect is particularly problematic across the banks of major sulci. For
instance, two adjacent points along the dorsal and ventral banks of the Sylvian fissure that are
separated by less than a millimeter in the 3-D volume space may lie several centimeters apart
with respect to distance along the cortical sheet. Their cortical distance is a much better measure
of their “functional distance:” the adjacent dorsal and ventral points could be the somatosensory
larynx representation and the auditory association cortex, respectively. Isotropic smoothing in
the 3-D volume ignores this distinction, blurring responses from the two regions, resulting in
loss of statistical sensitivity and, perhaps, misleading findings.

The problems associated with voxel-based analysis can be overcome by comparing functional
responses within like anatomical regions of interest across subjects. This region-of-interest
(ROI)-based method eliminates the need for non-linear warping and smoothing of functional
data. By eliminating these preprocessing steps, ROI-based analysis greatly improves the
statistical sensitivity over standard voxel-based techniques and avoids potential erroneous
anatomical localization of functional data due to imperfect spatial normalization procedures
(Nieto-Castanon et al., 2003).

By itself, ROI analysis provides a means of assessing the effects of variables on the activity of
like anatomical regions across subjects. In combination with large-scale computational neural
network modeling, the ROI analysis permits the comparison of significant regions for particular
conditions or contrasts from an experiment with like neuroanatomical regions hypothesized to
be modulated in the model under the same conditions. When anatomical ROIs correspond to
regions hypothesized to underlie the model, a direct comparison can be made between the
regional BOLD responses and simulated activity. Like the voxel-based method, these
comparisons should corroborate and strengthen initial model-based hypotheses and
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assumptions, generate new insights about functional neural networks that guide improvements
to the model, and result in the design of new experimental or model-based investigations. An
advantage of ROI analysis over the voxel-based method, however, is that by testing hypotheses
regarding the response of a specific set of ROIs, the number of statistical tests performed is
greatly reduced compared to a typical voxel-based analysis, increasing statistical sensitivity.

We have developed a region-of-interest parcellation scheme that demarcates anatomical
boundaries for the cerebral cortex and cerebellum based on an individual subject's
neuroanatomical landmarks (See Figure 3; Tourville and Guenther, 2003). This parcellation
scheme is a modified version of the scheme described by Caviness et al. (1996) and was
designed to provide an automatic and standardized method to delineate ROIs that are
particularly relevant for neuroimaging studies of speech. For example, the modified system
distinguishes between superior temporal gyrus and superior temporal sulcus (a partition that
is not included in the Caviness et al. scheme). The decision to partition these ROIs was based
on results of imaging studies that suggest a phoneme processing center within the superior
temporal sulcus (e.g., Binder et al., 2000;Scott et al., 2000). The parcellation scheme includes
many of the regions hypothesized to underlie the DIVA neural network model, including the
anterior supramarginal gyrus, pallidum, Heschl's gyrus, inferior frontal gyrus pars
opercularis, frontal operculum, posterior superior temporal gyrus, planum temporale,
putamen, superior lateral cerebellum, superior medial cerebellum, supplementary motor area,
thalamus, ventral motor cortex, ventral premotor cortex, and ventral somatosensory cortex.
Therefore, the modified parcellation scheme provides a means to compare functional responses
in like anatomical regions across subjects and permits the testing of predictions generated from
the DIVA model.

In the auditory feedback perturbation study, ROI analysis was used to determine which ROIs
were significant for each contrast of interest, to test the laterality of responses in the auditory
feedback control network (shift – no shift contrast), and to extract data for effective connectivity
analysis (Tourville et al., 2008). Like the results from the voxel-based analysis, results from
the ROI analysis for the auditory feedback control network supported the DIVA model's
prediction for increased mediation of bilateral posterior superior temporal gyrus and planum
temporale. Significant responses were also noted in right ventral motor cortex, right ventral
premotor cortex, and right anterior medial cerebellum. Figure 5 illustrates the inter-hemispheric
response differences of the regions tested that were found to significantly differ in at least one
of the three contrasts of interest (no shift – baseline, shift – baseline, shift – no shift). Significant
right lateralization for the auditory feedback control network was apparent only in the ventral
premotor cortex (ttwo-tailed > 2.23; df = 10; p < 5%). This contrasts with significant left
hemisphere lateralization of inferior frontal gyrus pars opercularis, ventral premotor cortex,
and ventral motor cortex in the normal (unperturbed) speech production network (no shift –
baseline contrast), indicating that auditory feedback control of speech is right-lateralized in
the frontal cortex. This finding was not predicted by the DIVA model. In the next subsection
we discuss effective connectivity analyses that were used to further characterize this auditory
feedback control network and to motivate modifications to the DIVA model.

Effective connectivity analysis—Whereas voxel-based and ROI-based analyses of
neuroimaging data focus on the functional specialization of brain regions, inter-regional
effective connectivity analyses focus on the functional integration of brain regions. Structural
equation modeling (SEM) provides a means to quantitatively assess the interactions between
a number of preselected brain regions and is widely used to make effective connectivity
inferences from neuroimaging data (Penny et al., 2004). SEM requires the specification of a
causal, directed anatomical model. The relative strength of the directed connections is
determined by path coefficients, which are estimated by minimizing the difference between
the observed inter-regional covariance matrix and the covariance matrix implied by the model.
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If the data are partitioned into two different task manipulations, a stacked model approach can
be used to make inferences about changes in effective connectivity between the task
manipulations (Della-Maggoire et al., 2000).

Structural equation modeling is a confirmatory tool; effective connectivity is assessed to test
the feasibility of hypothesized path, or structural, models. SEM is therefore well-suited for
testing the connectivity implied by a large-scale computational model. While it would be just
as feasible to test the connectivity implied by the DIVA model using other connectivity analysis
techniques including dynamic causal modeling (DCM; Friston et al., 2003), in the discussion
to follow we show how SEM can be used to confirm or rebut hypothesized connections since
this technique, unlike DCM, can be used with the sparse sampling fMRI paradigms typically
used in our speech production studies.

In the auditory feedback perturbation study, SEM was used to assess projections between five
sensory and motor cortical regions, including the left and right superior temporal gyrus, the
right inferior frontal gyrus pars triangularis, the right ventral premotor cortex, and the right
ventral motor cortex. Network connectivity, schematized in Figure 6, was constrained by
interactions conceptualized within the DIVA model as well as consideration of the voxel-wise
and ROI analysis results. For example, the DIVA model describes reciprocal connections
between ventral frontal and posterior temporal cortex that enable a comparison of expected
and realized acoustic consequences and drive compensatory movements in the event an error
is detected. Effective connectivity was therefore assessed between those ventral frontal and
posterior temporal regions that were found to be significantly more active in the shift – no
shift contrast.

The implied covariance of the network provided a good fit to the empirical covariance across
all conditions and met all goodness-of-fit criteria (see Tourville et al., 2008 for details).
Estimates of the path coefficients for the shift (red) and no shift (green) conditions are provided
in Figure 6. Pair-wise comparisons of the coefficients demonstrated that connection strengths
from the left posterior superior temporal gyrus to the right posterior superior temporal gyrus,
from the left posterior superior temporal gyrus to the right ventral premotor cortex, and from
the right posterior superior temporal gyrus to the right inferior frontal gyrus pars
triangularis were significantly greater in the shift condition, indicating that these pathways
were engaged to a greater degree when auditory feedback control was invoked.

Based on the results of the effective connectivity analysis and recent findings in our laboratory
on somatosensory feedback control (Golfinopoulos et al., in preparation), we determined that
extensions should be made to the DIVA model to include projections from bilateral sensory
cortical areas to right ventral premotor cortex. This constituted a change in the model since the
earlier version included projections from the sensory error maps directly to primary motor
cortex bilaterally, rather than to right-lateralized ventral premotor cortex. In the next subsection
we describe the model modification process.

Computational Model Refinement—The utility of a large-scale computational neural
network model lies in its testability. We have demonstrated how predictions of the DIVA model
are well-suited for testing in neuroimaging experiments. In our illustrative example, several
hypotheses generated from the model were supported. However, the empirical data made it
clear that feedback-based articulator control relied on right-lateralized contributions of the
ventral premotor and inferior frontal cortex. Based on this finding, we added the right-
lateralized Feedback Control Map, highlighted in Figure 7, to the model. Projections from
bilateral Auditory and Somatosensory Error Maps convey error information to the Feedback
Control Map. The projections from the Feedback Control Map to the Articulator Velocity and
Position Maps transform these error signals into feedback-based articulator velocity commands
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that contribute to the outgoing motor program. Activation within the Feedback Control Map
is hypothesized to maintain representations of higher order aspects of movement such as full
articulatory gestures and/or their auditory correlates.

The Feedback Control Map is hypothesized to lie in the right ventral premotor cortex and its
location in MNI space (MNI xyz = [60, 14, 34]) was based on the peak ventral premotor
activation noted in the shift – no shift contrast of the auditory feedback control study. However,
the location and function of this map were not based solely on the auditory feedback
perturbation study. Recent work in our laboratory has demonstrated the recruitment of right-
lateralized inferior frontal gyrus pars triangularis and ventral premotor cortex for feedback-
based correction of speech motor commands to somatosensory perturbations (Golfinopoulos
et al., in preparation). Right-lateralized contributions from ventral premotor cortex and/or
adjacent inferior frontal cortex to feedback-based control of vocal fundamental frequency (Fu
et al., 2006; Houde and Nagarajan, 2007; Toyomura et al., 2007) and visuomotor tracking
(Grafton et al., 2008) has also been demonstrated. Ventral premotor activity was found to
correlate with the magnitude of compensatory responses to fundamental frequency
perturbations (Houde and Nagaragan, 2007) and feedback-based learning of arm movements
(Grafton et al., 2008). The addition of a right-lateralized Feedback Control Map to the DIVA
model, therefore, is consistent with a number of experimental findings.

The addition of the Feedback Control Map improves the model's functional neuroanatomical
account of feedback control without reducing the model's other functional capabilities. This
modification demonstrates an additional, powerful advantage of integrating large-scale
neurocompuational modeling with empirical research. Modifications motivated by the most
recent research must fit within an established theoretical framework and maintain the
explanatory power of the model. With the addition of the Feedback Control Map, for instance,
it was necessary to ensure that the model could capture the findings of both auditory and
somatosensory feedback-based control of speech, since both sensory reference frames were
originally accounted for by the model. Ultimately, a robust large-scale computational model
is one that not only fits existing data, but may also be modified to fit new findings. It is
necessary, however, that these modifications accommodate initial model capabilities so that
the model can continue to account for a diverse and extensive data set.

Although we have limited our examples in this article to fitting fMRI data, it is also as feasible
to test DIVA model predictions using empirical data from other techniques such as
electroencephalography (EEG), magnetoencephalography (MEG), electrocorticography
(ECOG), and transcranial magnetic stimulation (TMS). It is our hope that this review will
inspire other researchers to use the DIVA model to motivate and guide their experiments, using
any technique available to them. In the end, our goal is to successfully integrate experimental
research and theory to develop a valid and comprehensive model that withstands the test of
time.

Discussion
Classical theories of speech production and perception attributed particular speech and
language disorders to dedicated, independent regions in the brain (Lichtheim, 1885). Modern
theory posits a more distributed network that involves multiple interacting cortical and
subcortical brain areas (e.g., Gracco, 1991; Baum and Pell, 1999; Hickok and Poeppel, 2000;
Sidtis and Van Lancker Sidtis, 2003; Friederici and Alter, 2004; Riecker et al., 2005; Indefrey
and Levelt, 2004; Pulvermüller, 2005). Although most models of speech production and
perception rely on simplified frameworks and certain fallible constraints, many have been
catalysts for innovative investigations and empirical findings that either confirmed or refuted
initial predictions. To do so, the model must be specified in enough detail to generate testable
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predictions and amenable to modifications in the (inevitable) event that some new empirical
data do not support the model's predictions.

The DIVA neural network model proposes a control scheme using a dual-sensory (auditory
and somatosensory) reference frame interacting with a feedforward control subsystem to
account for speech acquisition and production. Through numerous computer simulations over
the past two decades, the DIVA model architecture has succeeded in accounting for a very
wide range of kinematic (Guenther, 1994; 1995; Guenther et al., 1998; Callan et al., 2000;
Guenther et al., 2006), acoustic (Guenther et al., 1998; Tourville et al., 2008), and fMRI data
(Guenther et al., 2006; Tourville et al., 2008), as well as aspects of communication disorders
that can be simulated through damage to the model's components (e.g., Max et al., 2004; Civier
et al., submitted; Terband et al., in press). The model thus constitutes a “unifying theory” that
accounts for a far wider range of empirical findings from disparate fields (including
neuroimaging, communication disorders, and motor control) than prior models of speech.

Nonetheless, it is important to note that the model in its current form still provides an incomplete
account of the neural bases of speech. For example, there is evidence that the inferior
cerebellum, anterior insula, and anterior cingulate gyrus may also be involved in the detection
of sensory error in speech production, based on recent fMRI studies (Christoffels et al.,
2007; Tourville et al., 2008; Golfinopoulos et al., in preparation). Clarifying the functional and
computational contributions of these regions through carefully designed experiments may
make the model more comprehensive and may also provide greater functionality to the current
circuitry. In addition, while the DIVA model incorporates brain regions that mediate the
acquisition and execution of sensorimotor programs of speech sounds, it does not account for
those brain areas likely responsible for higher-level syllable sequence planning. We have
recently developed a new neural network model of the mechanisms underlying the selection,
sequencing, and initiation of speech movements, termed GODIVA (Bohland et al., in press),
to account for areas such as the inferior frontal sulcus, the pre-supplementary motor area, and
the caudate nucleus which are hypothesized to contribute to sequence planning and timing the
release of planned speech movements to the vocal tract. Once these two models are fully
integrated, the computational characterizations of regions that contribute to the Initiation
Map, which are elaborated in the GODIVA model, will be more thoroughly described in the
DIVA model.

An additional aspect of the neural control of speech not yet included in the DIVA model is the
possible interaction between auditory and somatosensory reference frames. Currently, the
DIVA model employs two independent sensory reference frames. It seems unlikely, however,
that these two sensory reference frames influence feedback-based motor control independently
(e.g., see Hickok and Poeppel, 2000, 2004). Evidence for connections between the superior
temporal and inferior parietal regions is not substantial in the non-human primate literature,
but Aboitiz and García (1997) have proposed that in human evolution these connections
became increasingly developed, linking the auditory system with inferior parietal regions such
as the supramarginal gyrus. Whether this linkage underlies a combined somato-auditory
reference frame and whether such a combined reference frame is functionally critical for the
production of speech sounds remains to be clarified.

We are also implementing improvements to the DIVA model software to incorporate simulated
ROI-based analysis in addition to the simulated voxel-based analysis. The ROI analysis permits
the omission of such pre-processing steps as non-linear normalization and smoothing and
would provide an additional quantitative measure to assess significant regions and significant
laterality effects in the simulated activations acquired from the DIVA model. Such a simulated
ROI analysis could then be compared quantitatively with region of interest analyses of
neuroimaging data acquired from speech production experiments. In the long run, we anticipate
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adding new ROIs to the model as well as partitioning certain ROIs into smaller regions when
motivated by experimental results.

Despite many outstanding issues concerning the neural bases of speech, we believe
neuroanatomically and computationally driven approaches such as that embodied by the DIVA
model are essential for moving research into the neural bases of complex perceptual, motor,
and cognitive tasks beyond simplistic “box and arrow” characterizations. Such
neurocomputational models not only theoretically motivate experiments to test model
predictions, but they also offer empirical research a framework in which to understand the
relationship between neural dynamics and behavior in both neurologically normal and
disordered populations.
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Figure 1.
Schematic of the DIVA neural network model. Each box corresponds to a set of neurons (or
map) and arrows between the boxes correspond to synaptic projections that transform one type
of neural representation into another. The model is divided into two basic systems: the
Feedforward Control Subsystem on the left and the Feedback Control Subsystem on the right.
The neural substrates underlying this integrated control scheme include the premotor and
primary motor cortices, somatosensory cortices, auditory cortices, the cerebellum, and the basal
ganglia. Matlab source code for the DIVA model and a version of the Maeda (1990) vocal tract
that may be used to produce simulated speech output is available at our website
(http://speechlab.bu.edu/software.php). Abbreviations: aSMg = anterior supramarginal gyrus;
Cau = caudate; Pal = pallidum; Hg = Heschl's gyrus; pIFg = posterior inferior frontal gyrus;
pSTg= posterior superior temporal gyrus; PT = planum temporale; Put = Putamen; slCB =
superior lateral cerebellum; smCB = superior medial cerebellum; SMA = supplementary motor
area; Tha = thalamus; VA = ventral anterior nucleus of the cerebellum; VL = ventral lateral
nucleus of the thalamus; vMC = ventral motor cortex; vPMC = ventral premotor cortex; vSC
= ventral somatosensory cortex.
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Figure 2.
Empirical (A) and simulated (B) fMRI data demonstrating the comparable responses for the
shift – no shift contrast. Figure is reprinted from Tourville et al. (2008) with permission from
the authors.
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Figure 3.
A cortical and cerebellar parcellation scheme based on the Caviness et al. (1996) parcellation
scheme. Dashed lines indicate boundaries between adjacent regions. The intra-Sylvian region
is schematized as an exposed flattened surface as indicated by the red arrow. The detached
labeled cerebellum is also shown in the lower left and lower right. ROI abbreviations: aCGg
= anterior cingulate gyrus; aCO = anterior central operculum; adPMC = anterior dorsal
premotor cortex; adSTs = anterior dorsal superior temporal sulcus; Ag = angular gyrus; aIFs
= anterior inferior frontal sulcus; aINS = anterior insula; aITg = anterior inferior temporal
gyrus; alCB = anterior lateral cerebellum; amCB = anterior medial cerebellum; aMFg = anterior
middle frontal gyrus; aMTg = anterior middle temporal gyrus; Amyg = amygdala; aPH =
anterior parahippocampal gyrus; aSMg = anterior supramarginal gyrus; aSTg = anterior
superior temporal gyrus; aTFg = anterior temporal fusiform gyrus; avSTs = anterior ventral
superior temporal sulcus; Caud = caudate; DCN = deep cerebellar nuclei; dIFo = dorsal inferior
frontal gyrus, pars opercularis; dIFt = dorsal inferior frontal gyrus, pars triangularis; dMC =
dorsal primary motor cortex; dSC = dorsal somatosensory cortex; FMC = frontal medial cortex;
FO = frontal operculum; FOC = fronto-orbital cortex; FP = frontal pole; Hg = Heschl's gyrus;
Hip = hippocampus; iplCB =inferior posterior lateral cerebellum; ipmCB = inferior posterior
medial cerebellum; ITO = inferior temporal occipital gyrus; Lg = lingual gyrus; mdPMC =
middle dorsal premotor cortex; MTO = middle temporal occipital gyrus; OC = occipital cortex;
Pal = pallidum; pCGg = posterior cingulate gyrus; pCO = posterior central operculum; PCN
= precuneus cortex; pdPMC = posterior dorsal premotor cortex; pdSTs = posterior dorsal
superior temporal sulcus; PHg = parahippocampal gyrus; pIFs = posterior inferior frontal
sulcus; pINS = posterior insula; pITg = posterior inferior temporal gyrus; pMFg = posterior
middle frontal gyrus; pMTg = posterior middle temporal gyrus; PO = parietal operculum; PP
= planum polare; pPH = posterior parahippocampal gyrus; preSMA = pre-supplementary motor
area; pSMg = posterior supramarginal gyrus; pSTg = posterior superior temporal gyrus; PT =
planum temporale; pTFg = posterior temporal fusiform gyrus; pvSTs = posterior ventral
superior temporal sulcus; Put = putamen; SCC = subcallosal cortex; SFg = superior frontral
gyrus; slCB = superior lateral cerebellum; SMA = supplementary motor area; smCB = superior
medial cerebellum; SPL = superior parietal lobule; splCB = superior posterior lateral
cerebellum; spmCB = superior posterior medial cerebellum; Tha = thalamus; TOF = temporal
occipital fusiform gyrus; TP = temporal pole; vIFo = ventral inferior frontal gyrus, pars
opercularis; vIFt = ventral inferior frontal gyrus, pars triangularis; vMC = ventral primary
motor cortex; vPMC = ventral premotor cortex; vSC = ventral somatosensory cortex. Sulci
abbreviations: aasf = anterior association ramus of the Sylvian fissure; ahsf = anterior
horizontal ramus of the Sylvian fissure; ccs = calcarine sulcus; cgs = cingulate sulcus; cis =
central insular sulcus; cs = central sulcus; cos = collateral sulcus; crs = circular sulcus; ftts =
first transverse temporal sulcus; hfcb = horizontal fissure of the cerebellum; hs = Heschl's

Golfinopoulos et al. Page 20

Neuroimage. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



sulcus; ifrs = inferior frontal sulcus; itps = itraparietal sulcus; its = inferior temporal sulcus;
locs = lateral occipital sulcus; ots = occipitotemporal sulcus; pasf = posterior ascending Sylvian
fissure; pfcb = primary fissure of the cerebellum; pis = primary intermediate sulcus; pocs =
postcentral sulcus; pos = parieto-occipital sulcus; prcs = precentral sulcus; sbps = subparietal
sulcus; sf = Sylvian fissure; sfrs = superior frontal sulcus; sts = superior temporal sulcus
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Figure 4.
Neuroanatomical mapping of the DIVA model. A. The location of DIVA model component
sites (red dots) are plotted on a schematic of the left hemisphere. Medial regions are shown on
the left, lateral regions on the right. B. A schematic of the right hemisphere lateral Rolandic
and inferior frontal region. The corresponding contralateral region in the left hemisphere is
outlined by the dashed box in A. The right hemisphere plot demonstrates the location of the
Feedback Control Map and the location of motor and somatosensory representations of the
articulators. Abbreviations: ΔAu = auditory error map; ΔS = somatosensory error map; Au =
auditory state map; CBMDCN = deep cerebellar nuclei; CBMLat = lateral cerebellum;
CBMMed = medial cerebellum; FB = feedback control map; IMCau = caudate initiation map;
IMSMA = supplementary motor area initiation map; IMTha = thalamus initiation map; IMPal, =
pallidum initiation map; IMPut = putamen initiation map; LarynxInt = intrinsic larynx;
LarynxExt = extrinsic larynx; M = articulator position map; Ṁ = articulator velocity map; Resp
= respiratory motor cells; S = somatosensory state map; SSM = speech sound map; TAu =
auditory target map; TS = somatosensory target map.
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Figure 5.
The difference between the normalized effects of the right and left hemispheres are shown for
four ROIs that were found to differ significantly in at least one contrast (no shift – baseline,
shift – baseline, shift – no shift). Positive difference values indicate a greater effect in the right
hemisphere. The p-value is provided in red for those tests that resulted in a significant laterality
effect. The laterality tests demonstrated left lateralized effects in the ventral frontal ROIs in
the no shift – baseline contrast; this lateralized effect shifted to the right hemisphere in the
shift – no shift contrast in ventral premotor cortex. Abbreviations: amCB = anterior medial
cerebellum; IFo = inferior frontal gyrus, pars opercularis; vPMC = ventral premotor cortex;
vMC = ventral motor cortex.
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Figure 6.
Schematic of the path diagram evaluated by structural equation modeling. Effective
connectivity within the network of regions shown was significantly modulated by the auditory
feedback perturbation. Path coefficients for all projections shown were significant in both
conditions except that from right vMC to right vPMC (no shift condition p = 0.07). Pair-wise
comparisons of path coefficients in the two conditions revealed significant interactions
(highlighted in bold) due to the shift in auditory feedback in the projections between left pSTg
to right pSTg, from left pSTg to right vPMC, and from right pSTg to right IFt. Abbreviations:
IFt = inferior frontal gyrus, pars triangularis; pSTg = posterior superior temporal gyrus; vMC
= ventral motor cortex; vPMC = ventral premotor cortex.
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Figure 7.
Schematic highlighting the right-lateralized Feedback Control Map and associated projections
(indicated in bold). Abbreviations: Hg = Heschl's gyrus; pIFg = posterior inferior frontal gyrus;
pSTg = posterior superior temporal gyrus; PT = planum temporale; slCB = superior lateral
cerebellum; smCB = superior medial cerebellum; VA = ventral anterior nucleus of the
thalamus; VL = ventral lateral nucleus of the thalamus; vMC = ventral motor cortex; vPMC =
ventral premotor cortex.
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Table 1

The locations of the DIVA neural network components in MNI space.

Model Components Hypothesized Neural Correlates

MNI Coordinates Select
Citations

Facilitating the
Mapping

Derivation

Left Hemisphere Right Hemisphere

(x, y, z) (x, y, z)

Speech Sound Map Left Posterior Inferior Frontal
Gyrus/Ventral Premotor Cortex (−56, 10, 2)

Mapping
hypothesized

based on
imaging studies
(e.g., Ghosh et

al., 2008;
Tourville et al.,
2008), apraxia

of speech
studies (e.g.,
Ballard et al.,

2000; McNeil et
al., 2007), and

research on
mirror neurons
(e.g., Rizzolatti

et al., 1996;
Buccino et al.,

2001).

Cerebellar Modules Superior Medial Cerebellum (−18, −59, −22) (16, −59, −23)

Mapping
hypothesized

based on ataxic
dysarthria

studies (e.g.,
Ackermann et
al., 1992) and
Ghosh et al.

(2008).

Superior Lateral Cerebellum (−36, −59, −27) (40, −60, −28)

Mapping
hypothesized

based on a meta-
analysis of

pseudoword
reading studies
(Indefrey and
Levelt, 2004)
and imaging
studies (e.g.,
Ghosh et al.,

2008; Tourville
et al., 2008).

Deep Cerebellar Nuclei (−10.3, −52.9, −28.5) (14.4, −52.9, −29.3)

Mapping
hypothesized to
relay cerebellar

output to the
cerebral cortex
during speech
production.

Auditory State Map Heschl's Gyrus (−37.4, −22.5, 11.8) (39.1, −20.9, 11.8) Mapping
hypothesized

based on
imaging studies
(Guenther et al.,
2004; Ghosh et
al., 2008) and
supported by

Rivier and
Clarke (1997)

and Morosan et
al. (2001).

Planum Temporale (−57.2, −18.4, 6.9) (59.6, −15.1, 6.9)
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Model Components Hypothesized Neural Correlates

MNI Coordinates Select
Citations

Facilitating the
Mapping

Derivation

Left Hemisphere Right Hemisphere

(x, y, z) (x, y, z)

Auditory Target/Error Maps Planum Temporale (−39.1, −33.2, 14.3) (44, −30.7, 15.1) Mapping
hypothesized

based on
Buchsbaum et
al. (2001) and
Hickok and

Poeppel (2004)
and supported
by Tourville et

al. (2008).

Posterior Superior Temporal
Gyrus (−64.6, −33.2, 13.5) (69.5, −30.7, 5.2)

Somatosensory State Map Ventral Somatosensory Cortex

Mapping
hypothesized

based on
imaging studies
(e.g., Ghosh et

al., 2008;
Tourville etal.,

2008).

Tongue 1 (−60.2, −2.8, 27) (62.9, −1.5, 28.9) Mapping
hypothesized

based on Boling
et al. (2002) and

supported by
somatosensory

evoked
potential study

of humans
(McCarthy et

al., 1993).

Tongue 2 (−60.2, −0.5, 23.3) (66.7, −1.9, 24.9)

Tongue 3 (−60.2, 0.6, 20.8) (64.2, 0.1, 21.7)

Upper Lip (−53.9, −7.7, 47.2) (59.6, −10.2, 40.6) Mapping
hypothesized

based on
McCarthy et al.

(1993).
Lower Lip (−56.4, −5.3, 42.1) (59.6, −6.9, 38.2)

Jaw (−59.6, −5.3, 33.4) (62.1, −1.5, 34)

Mapping
hypothesized

based on motor
jaw

representation.

Larynx (Intrinsic) (−53, −8, 42) (53, −14, 38) Mapping
hypothesized

based on motor
larynx

representation.
Larynx (Extrinsic) (−61.8, 1, 7.5) (65.4, 1.2, 12)

Palate (−58, −0.7, 14.3) (65.4, −0.4, 21.6)

Mapping
hypothesized

based on
McCarthy etal.

(1993).

Somatosensory Target/Error Maps Anterior Supramarginal Gyrus (−62.1, −28.4, 32.6) (66.1, −24.4, 35.2)

Mapping
hypothesized

based on Baciu
et al. (2000) and
Hashimoto and
Sakai (2003)
and supported

by
Golfinopoulos

et al. (in
preparation).

Feedback Control Map Ventral Premotor Cortex (60, 14, 34)
Mapping

hypothesized
based on
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Model Components Hypothesized Neural Correlates

MNI Coordinates Select
Citations

Facilitating the
Mapping

Derivation

Left Hemisphere Right Hemisphere

(x, y, z) (x, y, z)

Tourville et al.
(2008) and

Golfinopoulos
et al. (in

preparation)

Initiation Map Supplementary Motor Area (0, 0, 68) (2, 4, 62)

Mapping
hypothesized

based on
imaging studies
(e.g., Bohland
and Guenther,
2006; Ghosh et

al, 2008).

Caudate (−12, −2, 14) (14, −2, 14)
Mapping

hypothesized
based on Van
Buren (1963).

Putamen (−26, −2, 4) (30, −14, 4)

Mapping
hypothesized

based on
imaging studies
(e.g., Bohland
and Guenther,
2006; Ghosh et

al., 2008;
Tourville et al.,

2008).

Globus Pallidus (−24, −2, −4) (24, 2, −2)

Mapping
hypothesized

based on
imaging studies
(e.g., Bohland
and Guenther,
2006; Ghosh et

al., 2008;
Tourville et al.,

2008)

Thalamus (−10, −14, 8) (10, −14, 8)

Mapping
hypothesized

based on
electrical

stimulation
study Johnson
and Ojemann
(2000) and

imaging studies
(e.g., Bohland
and Guenther,
2006; Ghosh et

al., 2008;
Tourville et al.,

2008)

Articulator Position and Velocity
Maps Ventral Primary Motor Cortex

Mapping
hypothesized

based on
imaging studies
(e.g., Bohland
and Guenther,
2006; Ghosh et
al., 2008) and
meta-analysis
of pseudoword
reading studies
(Indefrey and
Levelt, 2004).
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Model Components Hypothesized Neural Correlates

MNI Coordinates Select
Citations

Facilitating the
Mapping

Derivation

Left Hemisphere Right Hemisphere

(x, y, z) (x, y, z)

Tongue 1 (−60.2, 2.1, 27.5) (62.9, 2.5, 28.9) Mapping
hypothesized

based on Motor
Tongue Area of

Fesl et al.
(2003).

Tongue 2 (−60.2, 3, 23.3) (66.7, 2.5, 24.9)

Tongue 3 (−60.2, 4.4, 19.4) (64.2, 3, 22)

Upper Lip (−53.9, −3.6, 47.2) (59.6, −7.2, 42.5) Mapping
hypothesized

based on
Penfield and

Roberts (1959)
and Lotze et al.
(2000a, 2000b).

Lower Lip (−56.4, 0.5, 42.3) (59.6, −3.6, 40.6)

Jaw (−59.6, −1.3, 33.2) (62.1, 3.9, 34)

Mapping
hypothesized

based on
Penfield and

Roberts (1959).

Larynx (Intrinsic) (−53, 0, 42) (53, 4, 42) Mapping
hypothesized

based on Brown
et al. (2008) and

supported by
Penfield

Rasmussen
(1950) and

Penfield and
Roberts (1959).

Larynx (Extrinsic) (−58.1, 6, 6.4) (65.4, 5.2, 10.4)

Respiration (−17.4, −26.9, 73.4) (23.8, −28.5, 70.1)

Mapping
hypothesized

based on Fink et
al. (1996) and
Olthoff et al.

(2009).
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Table 2

The equations of the DIVA neural network components.

Model Components Cell Equations Description of Variables

Speech Sound Map Pi(t) = {1 if the i th sound is produced or perceived
0 otherwise

Cells are hypothesized to
be active during speech
production, driving the
movement trajectories of
the articulators, and
during speech perception,
when auditory
expectations are tuned.

Articulator Velocity Map M
.

Feedforward (t) = P(t)zPM(t) − M (t)

ZPM(t) encodes the
feedforward motor
commands for the speech
sound currently being
produced. M(t) specifies
the current articulator
position. Ṁ Feedforward
encodes feedforward
articulator velocity
commands.

Auditory State Map Au(t) = fAcAu(Acoust(t − τAcAu))

Acoust(t) is the acoustic
signal resulting from the
current articulator
movement. τAcAu is the
delay associated with
transmitting the auditory
signal from the periphery
to the cerebral cortex.
fAcAu transforms the
acoustic signal into a
corresponding auditory
cortical map
representation, Au(t).

Auditory Target Map TAu(t) = P(t − τPAu)zPAu(t)

τPAu is the transmission
delay for the signals from
the Speech Sound Map to
the Auditory Target Map.
ZPAu(t) are synaptic
weights that encode the
auditory expectations,
TAu(t), for the current
sound being produced.

Auditory Error Map ΔAu(t) = Au(t) − TAu(t)
ΔAu(t) is the difference
between the actual
auditory responses and the
auditory expectations for
the current speech sound.

Somatosensory State Map S(t) = fArS(Artic(t − τArS))

Artic(t) is the state of the
articulators resulting from
the current articulator
movement. τArS is the
delay associated with
transmitting the
articulator state to the
cerebral cortex. fArS
transforms the
articulatory state into the
corresponding
somatosensory cortical
map representation, S(t).

Somatosensory Target Map Ts(t) = P(t − τPS)zPS (t)

τPS is the transmission
delay for the signals from
the Speech Sound Map to
the Somatosensory Target
Map. zPS(t) are the
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Model Components Cell Equations Description of Variables
synaptic weights that
encode the somatosensory
expectations, TS(t), for the
current sound being
produced.

Somatosensory Error Map ΔS(t) = S(t) − TS (t)

ΔS(t) is the difference
between the actual
somatosensory responses
and the somatosensory
expectations for the
current speech sound.

Feedback Control Map M
.

Feedback (t) = ΔAu(t − τAuM)zAuM + ΔS(t − τSM )zSM

ZAuM and ZSM are synaptic
weights that transform
directional sensory error
signals into corrective
motor velocities. τAuM and
τSM are cortico-cortical
transmission delays.
Ṁ Feedback encodes
articulator feedback
velocity commands.

Initiation Map Ii(t) = {1 if the i th sound is produced
0 otherwise

Commands from the
Articulator Velocity and
Position Maps are
released to the articulatory
synthesizer when the ith
cell in the Initiation Map,
Ii(t), is non-zero.

Articulator Position Map M(t) = M (0) + αff ∫0
tM

.
Feedforward (t)Ii(t)dt + αfb ∫0

tM
.

Feedback (t)Ii(t)dt

M(0) is the initial
configuration of the vocal
tract. α fb and α ff are
weights relating the
contributions of feedback
and feedforward control,
respectively.
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