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Abstract

The measurement of the distance between diffusion tensors is the foundation on which any
subsequent analysis or processing of these quantities, such as registration, regularization,
interpolation, or statistical inference is based. In recent years a family of Riemannian tensor metrics
based on geometric considerations has been introduced for this purpose. In this work we examine
the properties one would use to select metrics for diffusion tensors, diffusion coefficients, and
diffusion weighted MR image data. We show that empirical evidence supports the use of a Euclidean
metric for diffusion tensors, based upon Monte Carlo simulations. Our findings suggest that affine-
invariance is not a desirable property for a diffusion tensor metric because it leads to substantial
biases in tensor data. Rather, the relationship between distribution and distance is suggested as a
novel criterion for metric selection.
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1. Introduction

The unique microstructural geometric information provided by Diffusion Tensor MRI (DTI)
(Basser et al., 1994) has made it a widely used research and clinical tool (Basser and Jones,
2002; Assaf and Pasternak, 2008). At this point in the development of DT a statistical
framework is needed to characterize tensor variability, permitting group comparisons and
statistical inferences based on the entire tensor. Such a tensor-variate statistical framework
would subsume univariate statistical distributions for scalar (tensor-derived) quantities, such
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as the fractional anisotropy (FA), Trace, or the apparent diffusion coefficient (ADC), which
can only account for a portion of the variability. In addition, tensor processing tools are
constantly being developed for tasks such as artifact correction, noise removal, segmentation,
and image transformations (Lenglet et al., 2009). The literature of recent years reflects these
developments, supplying numerous options for tensor manipulations and analysis (e.g.
Weickert and Hagen, 2006, and references therein).

A prerequisite for most, if not all, tensor analysis methods is the ability to compare tensors
and, hence, to define the distance between them. The general notion of distance involves a
connected Riemannian manifold (Eisenhart, 1940). The manifold includes the set of all points
in the space and a metric, G(x) = {gj j(x)}, defines the infinitesimal distance: ds? = dxT G(x)
dx, where x is the coordinate of a point on the manifold for a chosen coordinate system. Any
positive-definite and symmetric metric is admissible. The distance function is defined as the
geodesic, i.e., the shortest path on the manifold.

To define the geometric distance between tensors, a metric and a local coordinate system for
tensor representation are chosen. Therefore, if more than one metric is admissible, selecting
among them and determining which coordinate-metric combination would best characterize
the distance between tensors, are challenging issues. For these tasks, we need additional
information and constraints, derived by empirical observation or physical considerations
relating to the system under study.

A tensor-variate statistical framework for diffusion tensors was proposed in Basser and Pajevic
(2003), placing diffusion tensors on a Euclidean manifold, with a constant metric, G(x) = I,
resulting in ds? = tr((dD)" dD), where D is the tensor coordinates in the canonical tensor
coordinate system, and tr denotes the matrix Trace. The geodesic between any two tensors,
D, and D, with this metric, is simply a straight line, or the Euclidean distance

DistEm_(Dth):”Dl _D2||’ W

where ||-|| denotes the Frobenius norm. The Euclidean metric is defined over the entire space
of symmetric matrices and is rotation invariant, which makes it invariant for the selection of
orthogonal coordinates, but not for the selection of non orthogonal tensor coordinate systems.

In another framework the distance function is restricted to affine-invariance (which includes
rotation, scale, shear, and inversion invariance), and operates only on tensors belonging to the
space of positive definite symmetric matrices, S* (Batchelor et al., 2005; Pennec, 2006a;
Moakher, 2006; Lenglet et al., 2006; Fletcher and Joshi, 2007; Gur et al., 2009). The Affine-
invariant metric (Pennec, 2006a), a Reimannian metric that satisfies these requirements, has
an infinitesimal distance ds? = tr((D~1dD)2) (Maap, 1971). This distance is affine-invariant
and therefore does not depend on the choice of tensor coordinate system (see Appendix A).
The corresponding geodesic is found by integration (Maap, 1971):

Dist, (D1, D)= \1r (log* (D' Dy)). ®

The matrix logarithm, log(D), is defined in Appendix B. The Affine-invariant metric has led
to the development of a family of Reimannian metrics (Pennec, 2006b) and to the development
of Reimannian statistical frameworks for tensors (Pennec, 2006a; Lenglet et al., 2006).
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The Affine-invariant metric was proposed as the natural metric for diffusion tensors, since, in
theory, diffusion tensors are positive semi-definite and should reside on a symmetric space
(Terras, 1988). The Euclidean metric was deemed not appropriate for diffusion tensors,
specifically since it admits non positive tensors and exhibits the “swelling effect,” where
interpolating two tensors yields a tensor with a determinant larger than either of the original
tensors (Batchelor et al., 2005; Arsigny et al., 2006). It was shown that the Affine-invariant
metric coincides with the Fisher information metric (Lenglet et al., 2006), and with the
Kullback-Leibler divergence (Wang and Vemuri, 2005; Lenglet et al., 2006). In addition, the
Log-Euclidean metric with its corresponding geodesic (Arsigny et al., 2006),

Dist,,,.=||log(Dy) - log(Dy)||. @

was proposed as an efficient approximation for the computationally demanding Affine-
invariant metric. Some scientists have since begun adopting the use of the new family of metrics
for tensor processing applications (Weldeselassie and Hamarneh, 2007; Malcolm et al., 2007;
Commowick et al., 2008).

In this paper we identify the Affine-invariant metric as the appropriate metric for positive
physical quantities that are log-normally distributed, and the Euclidean metric appropriate for
quantities that are normally distributed. We then examine whether diffusion MRI quantities
can be classified as normally or log-normally distributed quantities. In order to investigate the
physical meaning and consequences of using the affine-invariance constraint we consider the
simpler case of isotropic diffusion, which has many of the same properties and features of the
6D diffusion tensor space. We provide a statistical analysis that estimates the distribution of
Monte-Carlo simulated ADCs, and compare the results of applying the Euclidean and Affine-
invariant metrics. A similar simulation framework is used to examine diffusion tensors utilizing
variability maps obtained for the Log-Euclidean and the Euclidean metrics. The results are
then validated using diffusion MRI acquisitions.

In order to select a metric for diffusion quantities we classify their asymptotic distribution by
analyzing the properties of the quantity. We then test if the asymptotic distribution is in-line
with distributions generated by specific sources of variability in the acquisition of diffusion
MRI.

2.1. Reduction to a One-Dimensional Problem

The DTI framework is especially important when dealing with an anisotropic medium, when
different ADCs are measured along different orientations (Basser et al., 1994). The diffusion
equation dictates that (for a Gaussian displacement distribution) the orientational variability
of the ADC be fully described by the diffusion tensor (Crank, 1975). Given that a distance
function for diffusion tensors must account for this orientational variability and be applicable
for all diffusion tensors, we find it useful to first consider a metric for isotropic tensors. An
isotropic tensor describes the case where the diffusivity in all directions is equal. In this case
the tensor has three equal eigenvalues:

D°=21. (4)

The eigenvalue 1 describes the entire 3D diffusion process and equals the ADC, d (Basser and
Jones, 2002). Equation (4) reduces the parametrization of a diffusion tensor to a scalar, thus
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the metric required for the special case of isotropic tensors is a metric for scalars. Using
equations (2) and (4), the Affine-invariant geodesic for isotropic tensors becomes:

Dist, (D}, D5°)= \/ tr(log> (M 1) D))=
=V3llog(d>/dy)| = V3|log(da) — log(dy), (5)

where dq and d, are the ADCs for the isotropic tensors, D"f" and D?", respectively. This geodesic
can also be derived from the metric G(d) = 3/d2. We note that for isotropic tensors, the Affine-
invariant metric is identical to the Log-Euclidean metric. Similarly, the Euclidean distance
between isotropic tensors is simply

Dist,, (D}, Dy*)=V3|dy = dy], ©

which means that the metric, G(d) = 3, is constant.

2.2. The Effect of Distribution on Metric Selection

In order to choose between the metrics we match their properties with properties of the
measured diffusion quantities. This procedure is common practice in statistical analysis, where,
for example, when attempting to estimate a true value of a measured parameter, one has to
account for the expected sources of variability (such as noise or sample heterogeneity) that
may cause a distribution in the measurements; if the distance function is appropriate for the
distribution then the true value is better estimated (Jeffreys, 1939). When a certain distribution
is complicated or unknown, a common practice is to approximate it with a simpler distribution.
The normal distribution is the favorite candidate since the central limit theorem (CLT) states
that the asymptotic distribution of a variable that is the sum of independent factors (each with
its own mean and variance) is normal (Mood et al., 1974). Indeed, many measurable quantities
are found to be normally distributed. Another popular approximation assumes that the
quantities are log-normally distributed, which unlike the normal distribution, is defined only
for positive numbers. The approximation is again backed by the CLT that dictates a log-normal
distribution for a variable that is the product of independent factors (Benjamin and Cornell,
1970). Accordingly, many measurable quantities are defined as positive, and the log-normal
distribution approximates them well (e.g., Koch, 1966).

Selecting to approximate a distribution with a log-normal or a normal distribution determines
which distance function and analysis method better suit the quantity. Let x be a normally
distributed random variable, then an appropriate distance between x; and X,, two realizations
of X, is the Euclidean distance,

Dist,, (x1, x2)=k|x2 — x|, @)

Due to the relative simplicity and ubiquitousness of the normal distribution many analytical
and statistical tools have been designed for this distribution. For example, the maximum
likelihood estimator (MLE) of the expected value, E[x], is the arithmetic mean,
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n

— 1
Marithmetic= ; Z Xn-
i=1 ®)

The log-normal distribution has a convenient property that by taking a log transform it becomes
a normal distribution: Let y be a log-normal distributed random variable, then

x=log(y/yo), )

where yjq is any fixed value of y, is a normally distributed random variable. This relationship
provides a mechanism for adopting all normal distribution related tools to the log-normal
distribution. Specifically, the appropriate distance is the Logarithmic distance,

Dist,, (y1, y2)=kllog(y2/y1)=kllog(y2) — log(y1)|, (10)

and the MLE for E[y] is the geometric mean,

n

1/n n
— 1
,Ugeometricz( l—[.\'i] =exp [;Zlog\’i] .
i=1

i=1

(11)

An important property of the logarithmic distance function (Eg. 10) is that for any o € ®,,
Disty og (Y1, Y2) = Dist og(ay1, ay?), i.e., itis scale invariant.

In this paper we use the term “Jeffreys”, coined by Albert Tarantola in honor of Sir Harold
Jeffreys (Tarantola, 2006, 2005), for physical measurable quantities that are more likely to be
log-normally distributed, and the term “Cartesian” for quantities that are more likely to be
normally distributed. The two quantities are related by the log-transformation in Eq. (9). A
comparison of Eq. (10) with Eq. (5), and Eq. (7) with Eq. (6) clearly shows that the difference
between the distance functions stems from how the ADC quantity is classified: for a Jeffreys
quantity, the Affine-invariant metric is appropriate; for a Cartesian quantity, a Euclidean
metric is appropriate. There are two criteria that can help identify a potential Jeffreys quantity:
the quantity must be arbitrarily scaled, in which case the scale invariant metric accounts for its
physical quality, and the quantity must be positive (Tarantola, 2006, 2005).

2.3. Metric Selection for Diffusion Quantities

Studying the properties of the diffusion weighted (DW) signal helps us determine whether the
ADC is a Jeffreys or a Cartesian quantity. The DW signal is obtained by a pulsed-field gradient
(PFG) MR experiment that makes the MR signal sensitive to the displacement of water
molecules along a certain orientation (Stejskal, 1965). The DW signal is the magnitude of a
complex quantity so it is always positive, limited by the highest integer value allowed. We
expect the signal to carry information regarding diffusion, but the intensity of the signal is
known to be proportional to the quantity of molecules (Carr and Purcell, 1954). The exact ratio
is determined by various machine and MR-dependent parameters (Hahn, 1950). For instance,
a completely homogenous object scanned with a range of voxel sizes, on different MRI
scanners (with different static magnetic fields and gradient strengths) and different pulse
timings will yield a variety of signal intensities that clearly does not imply any physical
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qualities of the object itself, and its diffusion properties, which remain the same. The DW signal
is therefore positive and scale sensitive, which makes it a Jeffreys quantity.

As a Jeffreys quantity, the DW signal has a related Cartesian quantity, which we can find using
Eq. (9): we set the non-DW signal, Sy, as the origin, and compare any other signals obtained,
S;, by taking their logarithms:

x=10g(Si/So). (12)

Interestingly Eq. (12) is known to be proportional to the ADC (up to the scale factor b) (Stejskal,
1965):

d=-b"l1og(S;/S0). (13)

This means that d, the ADC, is the Cartesian quantity associated with measured DW signals.

The diffusion tensor is a generalization of the ADC to a higher dimensional space (Torrey,
1956): its eigenvalues are the ADCs along the principal axis (Basser et al., 1994). Since the
eigenvalues of the diffusion tensor are Cartesian quantities, a scale invariant metric is not
appropriatel as shown above in the case of isotropic tensors. Hence, affine invariance, which
encompasses scale invariance, is not a desirable property either. An appropriate metric for
diffusion tensors is the one in Eq. (1), associated with a Euclidean metric.

2.4. The Relationship between MR Variability Sources and Distance

The result above suggests that given the type of measurement, the accumulative effect of
sources of variability on the DWIs is expected to be log-normally distributed, while the
accumulative effect of the sources of variability of the ADCs is expected to be normally
distributed. Therefore, the Euclidean metric is appropriate for ADC and diffusion tensor
distance functions. In practice the distribution of the diffusion quantities estimates is affected
by a number of variability sources, each with its own statistical distribution. In the next section
we cover known sources of variability in diffusion measurements and check whether they are
in line with the theoretic prediction of an asymptotic distribution.

2.4.1. Stochastic variability—Self-diffusion is a stochastic process, where molecules are
free to move in any direction. While predicting the motion of a single molecule is not possible,
statistics can help us predict the motion of an ensemble of molecules that all have the same
intrinsic diffusion coefficient. The Einstein equation for free diffusion caused by Brownian
motion establishes the fundamental defining relationship between the diffusion coefficient and
the mean-squared displacement along an axis (Einstein, 1926)

o*()=E[ (x; - x0)*1=2d. (14)

The position along the axis at time t is x;; Xg is the position at the origin. This relationship
defines the diffusion coefficient, d, as proportional to the variance of particle displacements,
o2(t), at time t, and arises from the normal distribution of particles expected for Brownian
motion, x; ~ N(Xo, o(t)). The stochastic process dictates the distribution of the estimated
diffusion coefficient

IThis is in line with the definition of a “Cartesian tensor,” a tensor whose eigenvalues are Cartesian quantities (Tarantola, 2006).
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y o) , 2dt , d ,
@ tn KT 20T (15)

and its variance

~

Vur(zT)z E,
n

where x? is the chi-square distribution with k degrees of freedom. The derivation of Eq. (15)
isgivenin Appendix C. The distribution in Eq. (15) suggests that variability in the measurement
of diffusion coefficients originates from the stochastic nature of the experiment itself, even
when other sources of variability such as measurement errors and artifacts are neglected. The
same argument holds for diffusion tensors. In that case the displacement x — Xg is a vector in
®.3, and the y-squared distribution is generalized by the Wishart distribution (Jian et al.,
2007).

In the MR diffusion experiment a typical voxel contains a very large number of molecules on
the order of n = 10172, Each molecule follows an identical normal probability distribution, and
the displacement of one molecule is assumed independent of the other. This means that for all
practical considerations we can assume n — oo. According to the central limit theorem, the chi-

square distribution asymptotically becomes a normal distribution, i.e., y2 — N(n,2n) and
therefore, the distribution of the estimated ADC, given in Eq. (15), can be approximated as

~ d 24>
d - (n,2n)=N(d, . ) (16)

As a result, the estimate of the diffusion coefficient from a large number of displacement
measurements is normally distributed around the real diffusion coefficient, d, with a variance
that is inversely proportionally to n. This distribution exists even in a completely noise-free
environment. However the large n in realistic MR experiments dictates that this source of
variability vanishes.

2.4.2. Variability caused by Johnson noise—In addition to the stochastic nature of the
ADC, its estimation from diffusion NMR is affected by noise and other artifacts. Even
assuming a static magnetic field, a static measured object, and no hardware or sequence
artifacts, the complex RF measurement contains Johnson noise. This noise is realized as a
Rician distribution in the magnitude images (Henkelman, 1985), and the effects on DW signals
can be modeled using a Monte Carlo simulation (Pierpaoli and Basser, 1996). It is a common
practice in MRI to increase the accuracy of the estimation by performing repetitive
measurements, under the assumption of a constant true diffusion coefficient over time. As
shown in the previous paragraph, this assumption is reasonable given the large number of
molecules in each voxel. As a result, a number of realizations of ADCs are obtained that are
expected to differ from each other by the acquisition noise (Pajevic and Basser, 2003).
Estimation is usually performed by averaging: if the ADCs are Jeffreys quantities, their proper

2|f there are 1023 molecules in a mole or liter of water, then there are 1023-6 = 1017 water molecules in a cubic mm, which is about the
size of a voxel. The voxel may contain other material besides water, thus reducing the quantity of water molecules.
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mean is the geometric mean in Eq. (11) and if the ADCs are Cartesian quantities, their proper
mean is the arithmetic mean in Eq. (8). Determining whether the normal or log-normal
distributions better approximates the ADC distribution will determine which metric is
preferable.

2.4.3. Additional sources of variability—Johnson noise can be easily generated and its
effects on MRI measurements have been widely investigated (Henkelman, 1985; Jones and
Basser, 2004; Koay and Basser, 2006; Andersson, 2008). But in reality, Johnson noise is just
a single component among many other types of noise and artifacts, most of which have not
been modeled using a parametric distribution. To name a few, there are eddy currents, which
depend on the gradient magnitude and direction and specific acquisition sequence used (Rohde
et al., 2004); reconstruction artifacts originating from the use of multiple surface coils (Koay
and Basser, 2006); and motion artifacts, due to rigid head motion or non-linear cardiac pulsation
effects (Skare and Anderson, 2001; Pierpaoli et al., 2003). These sources of variability affect
the accuracy of intra-voxel estimations. When estimating cross-voxel (or inter-voxel)
quantities for example, in region of interest (ROI) analysis or for spatial manipulations,
biological heterogeneity is also a confound. And when comparing cross-subject quantities, a
population variability factor is encountered. Differences in hardware, sequences, and even
clinical protocols contribute another source of variability. Since the parameterization of all of
these sources is extremely hard, and since so many different and independent sources are
involved, it is reasonable to approximate the distribution by either the normal or log-normal
distributions.

Although it is hard to parameterize, we can still quantify the total effect of noise as the
variability which is found within a population that is supposed to be homogeneous. This can
be done using designated statistical frameworks (Basser and Pajevic, 2003; Lenglet et al.,
2006; Commowick et al., 2008).

3. Methods

A Monte Carlo simulation of Johnson noise is used to create a distribution of noisy DWI, ADC,
and diffusion tensors. For the DWIs and ADCs, the distributions are statistically tested for
normality and for log-normality, and the bias in the estimation of the sample mean is calculated
for the arithmetic mean and geometric mean. For the diffusion tensor distribution a variance
map is produced for a dataset that is influenced by generated Johnson noise alone, and for an
acquired MRI dataset, which is subject to additional types of acquisition noise and artifacts.
The variability maps for the Euclidean and the Log-Euclidean metrics are then compared.

3.1. Monte Carlo DWI and ADC Simulations

The Monte-Carlo experiment simulates a repeated MRI acquisition affected solely by Johnson
noise. The experimental design follows one found in Pajevic and Basser (2003): an initial ADC,
d, b-value (we use b = 1000 s/mm?), and non diffusion-weighted baseline image, S, are
selected. The noise free DWI, S, is calculated as S= Syexp(—bd). Noise is simulated as a random
variable drawn from a normal distribution with zero mean and variance, o2, and is aded to
both real and imaginary channels of the DWIs. The magnitude of both channels is a Rician
distributed random variable S ~ Rice(ongise, S). Similarly Sg ~ Rice(ongise, So) is the noisy
baseline DWI. A set of n noisy S and Sy couples is generated for a range of baseline values and
noise variances. The ADC distribution is generated by calculating d = —log(S/Sp)/b for each
S and Sy couple. The log-normal distribution does not allow non-positive values and therefore
a positive ADC, d. = exp(L), is estimated by minimizing |S/Sy — exp(—bexp(L))|. This
minimization is the scalar form of the 3D positive definite tensor estimation proposed in Fillard
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et al. (2007). The solution for this minimization is d, = d if d > 0 and d,. = ¢ otherwise, where
¢ is a small positive value.

3.1.1. Hypothesis tests—As demonstrated above, the Euclidean metric is associated with
a normal distribution and the arithmetic mean and the Affine-invariant metric family is
associated with a log-normal distribution and the geometric mean. In order to assign an
adequate metric we test for normality and for log-normality of the DWI and ADC distributions,
using the Anderson-Darling (AD) hypothesis test (Anderson and Darling, 1952). The AD test
calculates a statistic which is a distance measure between the sorted samples and acommutative
distribution function (CDF) of a chosen distribution. In order to calculate the CDF, the AD test
estimates the sample mean and sample variance. The test provides a significance level for
rejecting a null hypothesis of the type, “The samples were drawn from the distribution X.” This
is done by comparing the statistic against critical values that depend on the selected distribution
and the sample size. Critical values for the AD test are available for several distributions,
including the normal and log-normal distributions (D’ Agostino and Stephens, 1986). We chose
to use the AD test since it estimates the sample mean and variance, unlike other tests, such as
the KolmogorovSmirnov test, that require a prior knowledge of the mean and variance of the
underlying distribution (D’ Agostino and Stephens, 1986). A procedure for calculating the AD
statistic is given in Appendix D.

In order to check whether a distribution is normally distributed, we apply the AD test with the
null hypothesis, Hg, that the distribution is normal. In order to check whether a distribution is
log-normally distributed we apply the AD test with the null hypothesis, Hp, that the distribution
of the log transformed data is normal. This is equivalent to checking whether the initial data
is log-normally distributed. In order to check whether ADC are log-normally distributed we
apply the log transform on the d distribution. Like any other statistical tests, the AD test results
in a decision to reject or not to reject the null hypothesis for a given significance level, a (here
o.=0.05). Each hypothesis test was applied on 100 independent Monte-Carlo generated sample
sets. The False Discovery Rate (FDR) method is then applied in order to account for the multiple
hypothesis test comparisons (Benjamini and Hochberg, 1995). The FDR method modifies the
p-value for the given a and dictates how many of the 100 independent hypothesis tests should
be rejected.

The results are visualized as surfaces that represent the hypotheses rejection rate at various
noise levels and baseline levels, and each surface is calculated for a different sample size (we
used 32, 252, 502 and 1002 samples), indicating the simulated repetitions. A high rejection rate
indicates that there is enough evidence to reject the null hypothesis (i.e., it was rejected in many
independent tests).

3.1.2. Bias estimation—For each distribution d and S; are estimated either as the arithmetic
mean (using equation 8) or as the geometric mean (using equation 11). The deviation of an
estimated parameter, X, from its original value, X; is obtained from the estimated normalized
bias, calculated as bias = (E[X] — x)/x (Pajevic and Basser, 2003).

3.2. Repeated MRI Acquistion

In the MRI experiment a DTI acquisition of a healthy volunteer was repeated 20 times. A 3T
MRI scanner (GE-Signa) with 16 channel phased array head coils was used (image
reconstruction using GE’s ASSET technology). The images were acquired using a PGSE-EPI
sequence with the following parameters: T R/T E of 12000/86.1ms, matrix size of 128X128,
Field of view (FOV) of 20cm and slice thickness of 2.5mm. The images were acquired for 6
non-collinear gradient orientations with b-value of 1000 s/mm2, and a single non-diffusion-
weighted image (b = 0). All 140 DWIs were corrected for head motion using rigid body
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transformations (SPM2, UCL) relative to the first DWI volume acquired, and the gradient
orientations were compensated for the rotation component of the transformation. A
segmentation mask was applied on the aligned images to exclude background noise. In
addition, voxels where any of the DWIs provided zero signal (due to digitation artifacts) were
excluded to prevent artificial bias in the tensor estimation. Diffusion tensors were estimated
using a linear fit (Basser and Pierpaoli, 1998) and where negative tensors were found, the Log-
Euclidean non-linear tensor fit (Fillard et al., 2007) that assures positive-definite tensors was
applied. This tensor fitting procedure is used in order to allow the use of the Log-Euclidean
metric which requires positive definite tensors. As a result 20 tensor maps, one for each
repetition, were obtained. The tensors were represented using the canonical tensor
representation.

A second dataset, acquired on the same scanner with a second volunteer, included 8 repetitions
of a DTI sequence with the following parameters: T R/T E of 8500/80.9ms, matrix size of
128X128 and 1.4mm? voxels. The images were acquired for 15 non-collinear gradient
orientations with a b-value of 1000 s/mm2, and a single non-diffusion-weighted image (b = 0).
The smaller voxel size and shorter TR, compared with the first dataset, yielded noisier images.
The analysis of the data was identical to that of the first dataset, resulting in 8 tensor maps, one
for each repetition.

3.2.1. Monte-Carlo DTI simulations—A single repetition of the above-mentioned first
MRI acquisition was used in order to simulate the effect of Johnson noise on different types
of diffusion tensors that appear in brain imaging. Monte-Carlo simulation was again used. Here
the positive definite tensors that were estimated for the MRI acquisition were used as the initial
tensors. The appropriate noise-free DWIs for the 6 gradient orientations were then calculated

as §;=S gexp(~bg! Dg;), where gj is the it applied gradient orientation. Noisy replicates for all
images were then synthesized, and each noisy realization was fit with a tensor by the Log-
Euclidean tensor fit. This procedure resulted in a distribution of tensors for each voxel that
simulates acquisition repetition where only Johnson noise affects the variability. We used 20
simulated repetitions to match the MRI acquisition.

3.2.2. Variability maps—Variability was estimated using the 4th-order tensor estimation as
proposed in Basser and Pajevic (2003). We use the 6X6 representation, M, of the 4th-order
covariance tensor and tr(M) as a measure of the total diffusion tensor variability. In order to
obtain Mg, each diffusion tensor, D, was vectorized to a 6 element vector,

[ D]=(Dxx, Dyy, D, V2D,,, V2D, V2D,.) (Koay, 2009). The matrix M was then defined as:

.~ Zi (D~ (DI - (D)’
Eue ™ n-1 ' (17)

The mean tensor, D, was replaced by the original tensor in the Monte-Carlo simulation
experiment, and was estimated as the arithmetic mean for the MRI experiment. In a similar
manner, the Log-Euclidean 6X6 representation of the 4th-order tensor can be calculated
(Commowick et al., 2008):

— — T
~, (Llog(Di)] - [log(D)]) ([log(Di)] - [log(D)])
n-—1 (18)

Log
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In the MRI experiment, D was estimated as the geometric mean (Fillard et al., 2007). The
sample size, n, is n = 100 for the Monte-Carlo experiment, and n = 8 for the MRI experiment.
Finally the quantity that summarizes the variability is tr(M), which is calculated for each voxel.

4. Results

4.1. DWI Monte-Carlo Simulations

Figure (1) presents the results of the AD tests for normal distribution (top row) and log-normal
distribution (bottom row) of the Monte Carlo simulated DWI sample sets. While the DWIs are
Rician distributed, the AD test results suggest that their distribution can be safely approximated
by both normal and log-normal distributions: for a low number of repetitions there is not enough
evidence to reject either the normal or the log-normal distribution hypothesis; as the number
of repetitions increases, there is enough evidence to reject both the normal and log-normal
hypotheses only for low SNR levels. It seems that the baseline level of Sy does not affect the
tests and that the normal distribution assumption is rejected for a lower number of repetitions
than for the log-normal distribution.

Figure (2) shows the bias of the arithmetic (right) and geometric (left) mean DWI estimation.
The two cases show a similar dependence on SNR and baseline value, yet log-normal
distribution consistently better approximates the true distribution, yielding slightly less bias in
the estimation of the geometric mean relative to the arithmetic mean. This result supports the
theoretic finding that the scale invariant metric is more appropriate for DWiIs.

4.2. ADC Monte-Carlo Simulations

Figure (3) presents the results of the AD tests for normal (top row) and log-normal (bottom
row) distributions applied to the ADC sample sets. The results in this figure are in line with
the expectation that the ADC will be normally distributed, due to its log relation with the log-
normal distributed DWIs: the normal distribution hypothesis cannot be rejected for a small
number of repetitions. As the number of repetitions increases, the hypothesis is rejected for
increasing ADC values and decreasing SNR. Yet even for a large number of repetitions the
normal distribution hypothesis cannot be rejected for a wide range of ADC and SNR values.
The log-normal distribution hypothesis is rejected for small values of ADC or for low SNR
values, even for a small number of repetitions. Similar to the normal distribution, as the number
of repetitions increases, the hypothesis is rejected both for increasing ADC and decreasing
SNR, but unlike the normal distribution, the hypothesis is rejected for low ADCs as well. As
a result the log-normal distribution is admissible only in a small region around ADC =1 -
10-3mm?/sec and high SNR. In general the rejection rate as a function of the repetition number
rises much faster than that of the normal distribution test.

Figure (4) shows the bias of the estimated arithmetic (right) and geometric (left) mean ADC.
While the biased behavior seems similar for increasing ADC values, the geometric mean is
consistently more biased than the arithmetic mean. In addition the geometric mean is extremely
biased for low ADC values, while being very small for the arithmetic mean. This found bias
predicts that the most effect of metric selection is in the range of low ADC values.

4.3. DTl Monte Carlo Variability Simulations

Figures (5A-B) show the ADC and FA maps of a single repetition of the MRI experiment. The
tensors are all positive, hence FA is never larger than 1. This set of tensors was used to generate
datasets of 20 noisy replicates using the DTI Monte-Carlo simulation described above. There
were 5 different datasets, with increasingly higher noise standard deviation (S NR =50, 20, 15,
7 and 3.5) and Figure (5) presents the Euclidean and Log-Eculidean variability maps for the
datasets with S NR = 3.5 and S NR = 50. The variability maps are shown with a logarithmic
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gray scale value, and each pair of images has the same dynamic range (adapted to minimal and
maximal values in the images). The mean intensity and correlation coeffcient with the FA and
ADC maps for all of the datasets are given in Table 1.

As expected, both the Euclidean (Figures 5C,F) and Log-Euclidean variability maps (Figures
5D,G) show over all higher variability as the noise increases (see Table 1 for the mean intensity
values of all datasets). The Euclidean variability map is similar to the ADC map for all
repetitions (correlation coefficients can be found in Table 1): the highest variability is observed
in the CSF; in brain tissue voxels, the variability is relatively lower and indifferent to tissue
type. The level of similarity remains the same through the different noise levels. The
dependency of the variability map on ADC values is expected since, although the noise absolute
level is homogenous, the baseline signal of a DWI depends on the ADC (lower signal in higher
ADC voxels such as CSF voxels). As a result higher ADC voxels are expected to have lower
SNR and higher variability. Although the noise added dictates dependency on ADC, the Log-
Euclidean variability map is inversely proportional to an ADC map, with decreasing similarity
as noise increases (see Table 1 for correlation coefficients). In contrast, the Log-Euclidean
maps show higher variability in white matter voxels compared with the Euclidean map and
resemble an FA map.

Figures 5(E,H) show the number of negative tensors that were found in the linear tensor fit.
Negative tensors appear even for high SNR, and their number increases considerably as SNR
decreases. Most of the negative tensors are found in white matter structures or next to the skull.

4.4. Repeated MRI measurements

Figure (6A) shows the variability map for the 20 DTI acquisition repetitions that were
calculated using the Euclidean metric, and Figure (6B) shows the Log-Euclidean variability
map for the same repeated tensor experiment. Overall, the maps are similar to the synthetic
maps, suggesting that there were no significant artifacts in this experiment. A small additional
high valued variability score can be found, especially around the center of the image. These
could be due to pulsation or image reconstruction artifacts. Figures (6D,E) show the variability
maps constructed for the same datasets without correcting for motion. Hence, an additional
motion related variability is expected to be encountered. Indeed, the maps show increased
variability due to motion induced partial volume artifacts. Interestingly, the effect on the
Euclidean map is mostly around CSF boundaries, while the effect on the Log-Euclidean map
is all around the image, mostly in white matter boundries. There was not a significant change
in the number of negative tensors before and after motion correction Figures (6C,F).

This result presents the utility of the variability maps to explore the effect of various analysis
methods or noise sources. Here, comparing the figures before and after motion correction
demonstrates that the Log-Euclidean metric is more sensitive than the Euclidean metric to
partial volume effects in white matter voxels. An additional comparison is given in Figure (7),
which shows the Eulidean and Log-Euclidean maps calculated for a higher resolution, noisier,
8 repetition data. Due to the increased resolution, we expect additional noise components (such
as pulsation artifacts) to introduce additional variability. This is indeed the case in the Euclidean
map (Figure 7A), where, in addition to the baseline SNR, we can now see increased variability
in a space-dependent pattern. The additional noise is mainly in the center of the image, and the
image is less similar to the ADC image (Figure 7C). This could be the effect of pulsation,
motion, or multiple channel reconstruction, which are all space dependent. The additional noise
component is less visible in the Log-Euclidean variability map (Figure 7B), which still
resembles an FA map (Figure 7D) suggesting that the overestimation of variability in
anisotropic tensors is much bigger than the sources of real variability in the MRI experiment.
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5. Discussion

Both the theoretic analysis and the experimental results support the claim that a Euclidean
metric is more appropriate than an affine-invariant metric for the analysis of diffusion
coefficients and tensors.

5.1. The Relationship between Distribution and a Metric

ADCs are found to be Cartesian quantities, which means that they are expected to have a normal
distribution that coincides with the Euclidean metric. This expectance is verified by the Monte-
Carlo simulations (Figure 3,4) that show ADCs better approximated by normal distribution.
In contrast, the log-normal distribution that coincides with a scale invariant metric was found
an inappropriate approximation for a wide range of ADCs, and especially for lower values,
yielding extreme bias in analysis such as average estimation. Finally, the variability maps that
were generated with a Euclidean metric correspond to the type of noise expected, both in the
synthetic (Figure 5C,F) and real DTI experiments (Figure 6A, 7A). This is while the Log-
Euclidean metric provided variability maps correlated with the tensors shape (ratio between
eigenvalues), reflecting the noise properties less.

Finding ADCs to be better approximated by a normal distribution reasserts the empirical
findings in Pajevic and Basser (2003) where it was found that the diffusion tensor elements
are normally distributed for the SNR range > 2. Given the predicted relationship between the
log-normal distributed DWIs and the normal distributed ADCs we can review the connection
between the signal and the Trace of the diffusion tensor in Basser and Jones (2002), where it
was proved that

n 1/n
({15 =i

(19)

for a scaler . This equation is not restricted to isotropic tensors, and the signal intensities can
be obtained using a “balanced” High Angular Resolution Diffusion Imaging (HARDI)
acquisition. Taking the logarithm of both sides of Eq. (19) it is clear that the arithmetic average
of the log of the DW signals is proportional to tr(D), which is a linear combination of elements
of the diffusion tensor (Basser and Pierpaoli, 1998). Based on our findings we can also review
Eg. (13), which is by far the most common way diffusion is related to DWIs, and deduce that
this is an optimized fitting procedure for DWIs when the distribution of noise is not known.
This relationship was originally derived in Stejskal (1965) by fitting a slope acquired in
multiple experimental results, without estimating noise distributions. We can also conclude
that if the distribution is known, there should be other fitting procedures that account for the
exact distribution. We note however, that the Rician distribution may be a good approximation
for the distribution only when Johnson noise is the main noise component. Our results (Figures
6D and 7A) suggest that this may not always be the case, especially for in-vivo imaging.

The statistical approach and distribution investigations in the context of metric selection are
introduced here as a novel comparison tool. Previous papers (e.g., Arsigny et al., 2006; Fillard
et al., 2007) compared the metrics indirectly through the results obtained by a chosen analysis
method (e.g., segmentation, interpolation, regularization). An indirect quantitative comparison
of the metrics is questionable due to two factors: 1) Usually in tissue samples, there is no ground
truth, making the quantification of goodness-of-fit hard. 2) Processing methods usually include
inherent factors, which are calibrated for given types of data; metric selection affects the
calibration of such factors, and thus, even if synthetic ground truth is available, applying
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identical frameworks is useless, since each framework may have different inherent factors that
optimize its performances. The distribution investigation and variability estimations that we
presented here try to circumvent the comparison by applications such as regularization or
segmentation. We expect that the tools we introduced here may also be used to investigate the
effect of other analysis choices, such as fitting procedures, image correction schemes, and
tensor coordinate system selections.

5.2. The Relevancy of an Affine Invariant Metric

The ADC distribution around values of 1 - 10~3mm?/sec, which is found to be close to both
normal and log-normal distributions (Figure 3), suggests that for many brain tissues, the
selection of a metric will have a small effect on any analysis. Indeed, close observation of
previous papers that present Affine-invariant or Log-Euclidean approaches versus Euclidean
approaches (Arsigny et al., 2006;Fillard et al., 2007) show that most differences are found
either in CSF (high ADC) or in very anisotropic white matter (low ADC perpendicular to the
fiber).

The simulations predict that using the different metrics mainly affects the analysis of extreme
(either low or high) ADC values (Figure 3). The greatest effect of the Affine-invariant metric
is predicted near small ADC values. The bias in low ADC values (Figure 4) manifests again
in the high FA tensor case, where one of the orientations has a low ADC value. Indeed the
Log-Euclidean variability maps consistently estimate extreme variability values in white
matter voxels. The overestimation is the consequence of the two constraints imposed by affine-
invariant metrics: positiveness and scale invariance, and poses an obstacle in the utility of these
metrics to the analysis of brains.

5.2.1. The positiveness constraint—Positiveness is imposed by the Affine-invariant
metric. Indeed, the ADC as a physical quantity is non-negative. However, noise, systematic
artifacts, or even insufficient experimental designs can result in ADC measurements with
negative values, i.e., Sj > So. Moreover, the value of a zero ADC, while hard to achieve
physically, is still admissible. It means that on average, a particle does not move from its
original position during any finite diffusion time. However, an ADC < 0 causes the distance
(5) to be undefined and an ADC of zero causes it to diverge. In our experiments here negative
eigenvalues appear in all noise levels, their number increases as noise increases, and they appear
to be concentrated on specific locations. Within the brain higher FA voxels (white matter) show
more tendency to fit negative tensors.

In a single measurement, correcting a negative diffusivity with a small positive value (as
recommended by the Log-Euclidean fit) will yield an ADC closer to the real, assumed positive,
value. However, when performing repeated measurements or applying a statistical framework
we expect that the noise component, which may cause negative values in a single experiment,
will cancel out in the averaging. This is indeed the case when the noise is Rician and the
Euclidean related arithmetic mean is used. But, using the geometric mean introduces bias
(Figure 4), and the ADC as well as the eigenvalues of the diffusion tensor end up being
overestimated. A better estimation for diffusion coefficients and tensors may be obtained by
incorporating neighborhood information or by outlier analysis that eliminates the measurement
that cause negative values (Chang et al., 2005). Such analysis is less affected by metric selection
and is beyond the scope of this paper.

The need to correct negative eigenvalues is more a practical need than a mathematical
requirement, arising when, for instance, negative eigenvalues cause FA values to be greater
than 1 on FA maps. The correction is also useful for tractography methods, which dictate the
orientation and size of each step as a function of positive eigenvalues. Positivity may then be
considered as a practical requirement and several approaches have been suggested to enforce
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it (Koay et al., 2006). Positivity may very well be a desired property for ADCs or diffusion
tensors, yet, probably not at the cost of assuming affine invariance. The Affine-invariant metric
family is the only one that maintains affine invariance, but those are not the only metrics that
preserves positiveness. Itis interesting to note in this context that due to the maximum principle,
the Euclidean metric (a.k.a. Frobenius norm), applied on positive-definite tensors, will remain
in the positive-definite domain (Welk et al., 2007) and has been found useful for many tensor
processing techniques, including regularization (Weickert and Hagen, 2006).

5.2.2. Affine invariance—Comparing the variability maps with the negative tensors maps
(Figures 5, 6) shows that negative tensors increase the variability in Log-Euclidean maps, yet
overestimation is also found in voxels where negative tensors were not encountered. The
overestimation is the result of the Affine-invariant metric property that maps small ADCs or
high FA tensors to infinity, thus artifactually increasing their distance from other tensors. It is
interesting to review the way an Affine-invariant metric was derived by Maap (Maap, 1971).
In his study of rotation tensors, Maa came up with the metric in Eq. (2) since he wanted the
operator for those tensors to be affine-invariant. In order to calculate geodesics with this metric
asecond assumption of positive definiteness was introduced. This requirement was appropriate
since proper rotation tensors are positive. In the application of the Affine-invariant metric to
diffusion tensors the motivation was to preserve the positiveness of these tensors and once the
metric was chosen, affine-invariance resulted as a consequence. Based on our findings, it is
our claim that affine-invariance is not a desirable property for diffusion tensor analysis. Affine-
invariance would be desired for a quantity that has an arbitrary scale (such as DWIs), yet ADCs
have a physical scale related through the Einstein equation in Eq. (14) to the physical
displacement molecules traverse during the experiment (Stejskal, 1965), so preserving their
scale is important in a distance measure.

Following the observation that DWIs are better approximated by the log-normal distribution,
and since all MRI images have a similar noise model, we predict that affine-invariant (or scale-
invariant for the scalar case) metrics will be useful for other MR contrasts analysis, and more
so for low SNR modalities (such as fMRI). However, we note that in the noise levels and
number of repetitions expected in a realistic DWI experiment, the Monte-Carlo simulation
predicts that the normal distribution will be a good approximation as well. A better candidate
for a scale invariant metric is the variability measure we proposed here, T race(M), where M
is a fourth-order tensor. The variability measure can not be estimated to be negative, and the
more informative logarithmic scale dynamic range used here suggests that it is likely to be log-
normal distributed. We speculate that a similar statistical analysis to the one performed here
could also assert that a proper metric for the forth-order tensor M is indeed affine-invariant.
This will put in perspective analysis tools that use Affine-invariant metrics on this kind of
tensors (e.g., Ghosh et al., 2008; Barmpoutis et al., 2009).

5.2.3. The effect on statistical inferences—Although statistical frameworks for tensor
analysis exist, it is not yet a common practice to use them for statistical inferences in DTI.
Whitcher et al. (2007) investigated generalization of scalar statistical tests to tensor statistical
tests, and reported on the effect of Euclidean and Log-Euclidean metrics on the statistical tests.
The results were consistently in favor of the Euclidean metric, which led the authors to conclude
that there is no reason to prefer the Log-Euclidean metric for hypothesis tests. Another
application for tensor statistics was suggested by Commowick et al. (2008), where a t-test for
tensors was applied. Following the results we show here, we can better understand the
consequences of using the Log-Euclidean metric. Most parametric methods are based on the
estimation of a variability measure. Here we predict that when using the Log-Euclidean metric
the variability will be biased for high FA tensors, i.e., for white matter. As a result, a group
which may be initially considered homogeneous (e.g., healthy controls) will show high
variability and, as a result, the power and significance of any parametric test will decrease
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dramatically. Observing the results reported in Commowick et al. (2008), we note that most
of the significant results reported are in non-white matter structures, suggesting that the results
are partial; considerably more white matter voxels may actually be affected.

To illustrate the effect of the scale invariance constraint on statistical inference we provide the
following simple example. Suppose a control experiment where in two given voxels the ADC
values obtained were 3 - 10~3mm?/sec and 0.2 - 10~3mm?/sec. Now suppose that the patient
undergoes a treatment followed by a second scan where the same voxels now yield values of
1.5 - 1073mm?/sec and 0.1 - 10~3mm?/sec. The first voxel shows a transition from an ADC
typical for free water to an ADC typical of white matter, which is most likely to be attributed
to the treatment and unlikely to be attributed to Johnson noise. The second voxel originally
showed low values, typical of diffusion perpendicular to fibers, and the value was slightly
lower following the treatment, a change which could be attributed to noise. We would expect
a test to reflect the large change in the first voxel relative to the small change in the second.
However, results from tests using a scale-invariant metric would suggest that the same effect
caused the changes in both voxels (since the distances are equal).

5.2.4. Swelling effect—Previous studies pointed out that the main effect of selecting the
Affine-invariant metric rather than the Euclidean metric is encountered when interpolating or
averaging between two anisotropic tensors (Batchelor et al., 2005). The Euclidean metric does
not preserve the determinant (which is proportional to the volume of the diffusion ellipsoid
described by the tensor) and, as a result, the interpolated tensor may have a determinant larger
than the initial tensors, i.e., it may be “swollen.” With the introduction of the Affine-invariant
and Log-Euclidean metrics it was shown that the swelling effect is reduced (Arsigny et al.,
2006). In practice, the swelling effect is usually obviated by applying piece-wise smoothed
operators, or pre-segmentation, that will avoid interpolating initially distant tensors. In theory,
it is still interesting to understand why the swelling effect occurs.

The determinant of a tensor represents the volume of an ellipsoid and reflects the shape of the
ellipsoid. Elongated ellipsoids have lower determinants than rounded ellipsoids that share the
same Trace. We claim that with the absence of prior geometric information (such as the
expected anisotropy or orientation), the swelling effect is predicted by the MR measurement,
and there is no physical reason to preserve the determinant. Assume two anisotropic tensors,
with equal eigenvalues, and orientations that are perpendicular to one another. If we assume
that those two tensors were taken in the same experiment (i.e., the same reference frame), then
the combined effect of both yields an isotropic displacement profile. Only if we assume that
the tensors describe separate experiments and that the variability between the experiments
caused the reference frame to rotate, should the interpolation preserve the anisotropy, and hence
the determinant of the tensors. This could be the case where we assume that the tensors are
taken along the same fiber or across subjects on the same fiber. This additional information is
not appropriate for the general case, where we can not assume that the source of variability
affects the orientation of the frame of reference, or that the tensors are on the same geometrical
structure. In any case, preserving the Trace is desired, since the Trace may be regarded as
proportional to the bulk, orientationally-averaged diffusivity. Indeed the Trace is preserved by
the Euclidean metric.

5.3. Coordinate Systems for Diffusion Tensors

Once a Euclidean metric is selected, defining the distance function still requires a selection of
tensor coordinate system. The Euclidean metric is rotationally invariant, which means that
orthogonal basis (such as rotated reference frames) yields the same distance. In our simulations
we used the canonical tensor representation, which has a physical significance since it provides
estimations of the variance and co-variance of molecule displacement along the image main
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axis. Other tensor coordinate systems have been proposed for analysis; these include eigen-
components (Tschumperlé and Deriche, 2002), rotation angles (Andersson, 2008), Cholesky
decomposition (Koay et al., 2006), and lwasawa decomposition (Gur et al., 2009; Barmpoultis
et al., 2009). Some of these choices have clear physical meaning as well. A coordinate system
based on DTI measures such as FA and ADC was suggested in Kindlmann et al. (2007). The
different coordinate systems are not orthogonal with respect to each other, which means that
they yield different distances if using the Euclidean metric. The question of the effect of
coordinate system selection on the analysis of diffusion tensor MRI data is reserved for future
research.

Common to all metric selections in the Riemannian framework is that they are global, which
means that the distance between tensors D1 and D, does not depend on their location in the
image or on their association with a certain tissue type or image segment. Our analysis predicts
that tissue specific distance functions, where different metrics would apply to different
segments, should be useful for DTI analysis because each segment may have its own
distribution properties and sources of variation. Analysis methods similar to Isomaps (Verma
et al., 2007) may be useful for this cause.

6. Summary

The selection of a distance function is the first step in the analysis of any data, but the selection
of a metric cannot be driven by mathematical considerations alone. Practical and physical
considerations must be used. In this paper we reexamine the connection between distribution
and distance in order to investigate the relevance of the Euclidean and the Affine-invariant
metrics for analyzing diffusion MR measurements. Our findings suggest that the Euclidean
metric is consistent with the expected statistical properties of tensor distributions and the
Affine-invariant metric is not. We show that in most cases the effect of metric selection may
be minor, but in certain cases the bias that is introduced by the affine-invariance restriction
causes large deviations from the expected values. We therefore do not recommend the use of
the Affine-invariant metric or its related metrics for the analysis of diffusion tensors. We predict
that the mathematical framework that underpins the use of the Affine-invariant metric should
be applied to other types of quantities which are directly related to a measured physical quantity,
such as raw MR signal, or for special cases of diffusion measurement, where the sources of
variability dictate a log-normal distribution.
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A. Affine Invariance

The tangent space at every point on the manifold of symmetric positive definite 3 x 3 matrices,
Y € P3, may be identified with the vector space of 3 x 3 symmetric matrices, SYMs. Thus, the
Riemannian metric at the point Y is defined in terms of the scalar product on SYM3 as Lang
(1999)

ds2=tr(Y"'dY)}), (20)

This metric is by definition positive-definite (see Lang (1999); Terras (1988)). Define the action
of g € GL(3) (any 3 x 3 invertible matrix) on Y € P, as Y[g] = g' Yg. The metric is invariant
under the action of GL(3): Let W = Y[g] where the differential is given by dW = dY[g]. Then,
upon plugging everything in ds? it follows that

ds*=tr(Y-LdY))=tr((gW ' gT g TdWg 1))
=tr(W1dW)"). (21)

Being GL(3) invariant, the metric does not depend on the selection of coordinate system. This
is since translation between local coordinate systems is linear. Similarly the metric is invariant
with respect to the inversion map Y +— Y=, which makes it affine-invariant.

B. The Matrix Logarithm

The matrix logarithm operator, log(D), for a symmetric 3 x 3 matrix, D, is defined as:

log(ay)
log(D)=R log(ax) RT.
log(az) (22)

The entries a; compose a diagonal matrix, A, that together with a rotation matrix, R, forms the
eigen-decomposition, D = RART.

C. The Distribution of Stochastic Estimated ADC

We assume normal distribution of particle displacements, x; ~ N(Xo, o(t)). The probability of

measuring a certain displacement R = (x; — Xg)? is then distributed as R ~ az(r),yf where Xi is
the chi-square distribution with k degrees of freedom. In the case of self diffusion of water
molecules, the displacement of all molecules is mutually independent and therefore for n
independent experiments we get
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n
D Ri~ (s
i=1 (23)

The distribution in (23) means that even with a constant and known diffusion coefficient the

bulk diffusion measured on different occasions will have a certain variability. However, usually
in a diffusion experiment the aim is to estimate an unknown diffusion coefficient. According
to Eq. (14), the estimated diffusion coefficient, d, is proportional to the estimated variance,

a2(b):

— 021
=T

2t (24)

The variance can be estimated with the maximum likelihood estimator (MLE) as

52(1)=(Zi:1Rz‘)/n. From Eq. (23) we get the distribution of the estimated variance to be

— U'Z(T) )
“(t) ~ —x;.
o) n (25)

We can then substitute d from Eq. (24) into Eq. (25) to get the distribution of the estimated
diffusion coefficient:

~ OXf) 5 2dt 5 d ,
d~ = s

2m T 2T N (26)

D. The Anderson-Darling Test

For the normal distribution, the test statistic, A2 is

A2= (140234 235)

n

n .
X (—" - X %L llog(wi)+log(1 - “’n—i+1)]) ,
i=1 (27)

where n is the sample size, and w is the standard normal CDF, with mean and standard deviation
that are estimated from the sample. The value of AZ is then compared with 0.752 which is the
critical values for the normal distribution and o = 0.05 (D’ Agostino and Stephens, 1986).
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Figure 1.

Monte Carlo simulation of noisy DW signal resulting in a distribution of DWI values. The
surfaces represent the result of the Anderson-Darling (AD) hypothesis tests for normal (top
row) and log-normal (bottom row) distributions, for various numbers of repetitions. As the
height of the plane increases, there is more confidence in the rejection of the hypothesis. Both
the normal and log-normal distribution hypotheses can only be rejected for a large number of
repetitions and low SNR.

Neuroimage. Author manuscript; available in PMC 2011 February 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Pasternak et al. Page 23

DWI - Geometric mean bias DWI - Arithmetic mean bias
0.034 0.034
0.0254 i3 A
. 0.024 /
é 0.0154 é T
0.014 0.014
0.005 - 0.005+ ’
e —————— N [ —
10 SDWI 040 30 stao 10 0 10 SDW| 04 30 sufzo 10 o

Figure 2.

Bias estimation. The surfaces represent the bias in the estimation of the arithmetic (right) and
geometric (left) mean DWI, compared with the initial noise-free DWI value. The shape of both
surfaces is similar, yet the bias of the geometric mean is consistently lower.
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Figure 3.

Monte Carlo simulation of noisy ADCs. The top row presents the results of the AD test for
normal distribution. The bottom row shows the results for testing log-normal distribution. The
ADC distribution is consistently better approximated by the normal distribution. Distribution
around small ADC values are rejected for being log-normal even for a low number of
repetitions.
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Figure 4.

The bias estimations for the arithmetic mean (right) and geometric mean (left) of the ADC
distributions, compared to the initial noise free ADC value. The geometric mean has an extreme
bias for low ADC values. Otherwise, the shapes are similar. The plots for both geometric and
arithmetic means for a representative SNR level (SNR=30) (bottom) show that the geometric
mean is consistently less biased than the arithmetic mean. The inset shows a rescaled portion
of the higher ADC part of the graph.
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Figure 5.

Variability maps for Monte Carlo simulation. The ADC and FA maps compared to the
Euclidean metric (C,F) and Log-Euclidean metric (D,G) variability maps for two levels of
SNR. The variability maps are rendered with a logarithmic dynamic range; the colorbar
represents the exponents. The simulation yielded a map similar to the ADC for the Euclidean
metric and similar to the FA for the Log-Euclidean metric. Maps of negative tensors (E,H) that
were encountered in the linear fit show a drastic increase with noise, yet the overestimation of
the Log-Euclidean metric in white matter voxels appears even when a small number of negative
tensors is encountered.
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Figure 6.

Variability maps for repeated acquisition. The Euclidean metric (A) and Log-Euclidean metric
(B) still resemble an ADC and an FA map accordingly. A small additional noise element can
be observed. When canceling motion correction the variability increases yet the Euclidean
variability (D) is increased mainly around CSF areas, and the Log-Euclidean variability (E) is
increased in white matter voxels. The number of negative tensors remains similar (C,F).
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Figure 7.

Variability maps for noisier data. The Euclidean metric (A) and Log-Euclidean metric (B)
variability maps of a noisy 8 repetition experiment are compared with an ADC (C) and FA (D)
maps. The additional noise components are visible in the Euclidean map, but are less visible
in the Log-Euclidean map. This suggests that the overestimation of variability in anisotropic
tensors is much bigger than the sources of real variability in the MRI experiment.
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Correlation coefficient values for the Euclidean and Log-Euclidean synthetic data variability maps with the ADC
and the FA maps for various SNR levels. The correlation is calculated against the log-intensity of the variability
maps. The mean log-intensity over the entire image is given as well. As SNR decreases the mean log-intensity
for both maps, the correlation of the Euclidean map with ADC, and the correlation of the Log-Euclidean map

with FA increase.

SNR

Euclidean map 50
20
15

35
Log Euclidean map 50
20
15

3.5

Correlation - ADC  Correlation - FA  Mean log-intensity

0.4879
0.5053
0.5146
0.5297
0.5745
—0.2839
—0.3233
—0.3466
—0.4126
—0.4854

0.3515
0.3503
0.3473
0.3269
0.2723
0.7736
0.7986
0.808
0.812
0.7653

—5.3346
—3.6856
—-3.0129
-1.7651
—0.7016
—5.2012
—3.5278
—2.8174
-1.4076
0.0369
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