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We thank the commentators (Friston, this issue; David, this issue)
for their thoughtful discussion and careful detailing of their arguments
and views on issues of connectivity analysis and causality. We limit
ourselves here to specific replies to comments and refer to other
contributions in this section for both further detail and overview.

On realistic biophysical observation models

“Only biophysical modelling, such as the one proposed in DCM or
other generative frameworks, that tries to correct for experi-
mental biases will ensure to stick to the core of biological
processes that are the true events of interest.” (David, this issue)

Generative frameworks with complex realistic accounts of how
measured signals are generated certainly hold promise for connec-
tivity models of neuroimaging data, as David argues above. However,
the parameters in a complex nonlinear model with hidden variables
cannot always be uniquely estimated from observed data, that is, the
model is not necessarily identifiable.

“Any hemodynamic model with sufficient degrees of freedom will
do; in the sense that the neuronal parameters are largely
unaffected by changing the form of the hemodynamic model.
[...] In brief, the only thing that matters is the generalized
convolution kernel of the optimized hemodynamic mapping, not
the form or parameterization of its underlying differential
equations.” (Friston, this issue)

This is an important point that touches on identifiability and an
accurate qualification for the use of realistic biophysical observation
models. Identifiability of a nonlinear model is dependent on i) the
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conditional dependencies between the parameters, i.e., the degree of
redundancy in the parameterization of the differential equations and
ii) the sensitivity of the model output to changes in the parameters,
which is itself a function of the complexity of the input, i.e., the
experimental design (Deneux and Faugeras, 2006). In this context, the
sufficient degrees of freedom in a hemodynamic model in order for
neuronal parameters to remain unaffected can also be interpreted as
the maximum identifiable complexity (and inevitably: veridicality) that
still allows the parameters of the model to be uniquely estimated in
practice. An important challenge lies in the usage of different imaging
modalities (possibly simultaneously) to increase the complexity and
realism of connectivity models that can be identified and compared
(Valdes-Sosa et al., 2009).

On model comparison and selection

“Conditional estimates of effective connectivity from a full graph
(network) are often very consistent with estimates based on sub-
graphs. This speaks to a common misconception about DCM; namely,
that one will get misleading answers if key regions are omitted. This
is not the case. Effective connectivity is the ‘effective’ influence one
region exerts over another and can be mediated polysynaptically
through other (omitted) regions.” (Friston, this issue)

Both here and in the discussion of realistic biophysical observation
models, the key seems to be to specify precisely ‘how wrong models
have to be, not to be useful.’ Rigorous investigations, perhaps using
simulations, of exactly how connectivity estimates behave when small
subgraphs of the generating system are used are currently lacking.
The inability of log-evidence based model comparison to perform
structural model selection (as opposed to dynamical model selection as
nicely separated by Friston), at least in fMRI, makes it hard to quantify
general statements that ‘sub-graphs are good enough.’
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“Proper model comparison (based on the evidence as opposed to
just the accuracy or fit) prevents over-fitting for free; because the
log-evidence includes a complexity term.” (Friston, this issue)

First, we need to reiterate that model comparison operates only to
select the ‘best’ model within the chosen model set, as discussed in
some detail in our contribution and both comments. Second, some
qualification is warranted on the degree to which over-fitting can be
prevented ‘for free. The choice for a different complexity penalty
(which can be a function of the number of parameters, their priors,
posteriors, and conditional dependencies) can lead to a different choice
of ‘best’ model. The way in which different approximations to the log
evidence (e.g., AIC, BIC, or free energy) express preference for one
model over another by balancing fit to the available data with a
complexity penalty is well discussed in the literature (see also
Daunizeau et al., this issue), but the inherent approximation to the
actual capacity to generalize is important to keep in mind. An
interesting recent idea in this regard is to assess the capacity of
connectivity models to predict the cognitive state or experimental
condition for unseen data (rather than predicting the data itself), based
on the network dynamics that distinguished those states in a training
dataset (Smith et al., submitted for publication). This instantiation of
‘training-set/test-set’ logic, which characterizes many pattern classifi-
cation approaches to fMRI data analysis, has the additional advantage
that it can also perform structural model selection for fMRI.

On dynamical signal models

“There is no necessary mapping between the parameters of a VAR
model (the autoregression coefficients ASR™") and the coupling
parameters (effective connectivity AER™") that mediate the
influence of one state over another. In other words, the effective
connectivity associated with the VAR coefficients does not
necessarily exist.” (Friston, this issue)

This conclusion should be qualified, particularly when effective
connectivity is defined saying that:

“Effective connectivity is the ‘effective’ influence one region exerts
over another and can be mediated polysynaptically through other
(omitted) regions.” (Friston, this issue)

First, it should be noted that the discussion here centers more
fundamentally on continuous vs. discrete signal models than on a
fundamental divide between DCM and VAR, unless one insists DCM to
be continuous-time and VAR models to be discrete-time (which need
not be the case: continuous LSM models are well studied). As Friston
nicely sets out, the relation between the system matrix A of a
continuous signal model and the system matrix A of the
corresponding model for discretely sampled data is given by the
matrix exponential:

2 At i
A = exp(AtA) = > A
i=o U

The power series expansion of the matrix exponential shows it to be a
weighted sum of successive powers A’ of the continuous time system
matrix. Thus, the discrete system matrix A will contain contributions
from direct (in A) and indirect (in i steps in A’) causal links between
the modeled areas. The contribution of the more indirect links is
progressively down-weighted with the number of causal steps from
one area to another and is smaller when the sampling interval At is
smaller. These qualifications make clear that multivariate (more than
bivariate) discrete signal models have some undesirable properties for
coarsely sampled signals (i.e., a large At with respect to the system
dynamics), such as fMRI data. Critically, entirely ruling out indirect
influences is not actually achieved merely by employing a multivar-
iate model. Furthermore, estimated connectivity (particularly the
relative contribution of indirect links) is dependent on the employed
sampling interval. However, the discrete system matrix still repre-
sents effective influences, possibly mediated through other regions,
which can be highly useful in investigations that draw careful
qualified conclusions.
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