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Abstract
We dissociated the contributions to learning of four corticostriatal “loops” (interacting striatal and
cortical regions): motor (putamen and motor cortex), visual (posterior caudate and visual cortex),
executive (anterior caudate and prefrontal cortex), and motivational (ventral striatum and
ventromedial frontal cortex). Subjects learned to categorize individual repeated images into one of
two arbitrary categories via trial and error. We identified (1) Regions sensitive to correct
categorization, categorization learning, and feedback valence (2) Regions sensitive to prediction error
(violation of feedback expectancy) and reward prediction (expected feedback associated with
category response), using reinforcement learning modeling and (3) Directed influences between
regions using Granger causality modeling. Each loop showed a unique pattern of sensitivity to each
of these factors. Both the motor and visual loops were involved in acquisition of categorization
ability: activity during correct categorization increased across learning, and was sensitive to reward
prediction. However, the posterior caudate received directed influence from visual cortex, whereas
the putamen exerted directed influence on motor cortex. The motivational and executive loops were
involved in feedback processing: both regions were sensitive to feedback valence, which interacted
with learning across scans. However, the motivational loop activity reflected prediction error,
whereas executive loop activity reflected reward prediction, consistent with the executive loop role
in integrating reward and action. Granger causality modeling found directed influences between
striatal and cortical regions within each loop. Across loops, the motor loop exerted directed influence
on the executive loop which is consistent with the role of the executive loop in integrating feedback
with stimulus-response history.

Visual categorization is known to recruit the striatum and interacting cortical regions. However,
it is still unclear which striatal regions are associated with specific aspects of categorization
tasks, or how cortex and striatum interact during categorization. Visual categorization tasks
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typically involve trial and error learning in which subjects view a stimulus, perform a motor
response indicating the category membership of the stimulus, then receive feedback indicating
whether the response was correct or not. This basic design of stimulus - response - feedback
is common to a wide variety of tasks from the human and animal learning literatures; in addition
to categorization, human tasks that follow this design include reward learning, rule learning,
and decision making tasks. Nonhuman primate tasks include arbitrary visuomotor learning and
conditional discrimination learning, and rodent tasks include instrumental conditioning and
habit learning (see Seger (2009) for a review). Across all these tasks and species, the basal
ganglia and their interacting cortical regions have been shown to be active during learning and
necessary for learning to take place.

Our hypotheses about how cortex and striatum subserve categorization are based on the known
anatomy of corticostriatal systems. Different regions of cortex project to different regions of
the basal ganglia, and from there to the thalamus and back to cortex, forming independent
corticostriatal loops. Following, we differentiate between four loops, which we refer to as the
visual, motor, executive, and motivational loops. Information processing takes place both
within particular corticostriatal loops, and by interactions between loops1. A primary function
of the basal ganglia within corticostriatal loops is to balance inhibition and excitation of cortical
representations in order to select the most appropriate one. The type of representations that the
striatum acts upon depends on the region of cortex; for example, motor cortex typically
represents movements, whereas lateral frontal cortex may represent cognitive processes or
strategies. The selection role of the basal ganglia in motor and frontal cortex is consistent with
the motor initiation deficits and cognitive set-shifting deficits, respectively, seen in basal
ganglia disorders such as Parkinson's disease and Huntington's disease.

The visual loop connects visual cortex with the posterior caudate, particularly the body and
tail regions. Large regions of inferior temporal and middle temporal cortex project to the
posterior caudate These cortical regions are part of the ventral “what” system, and underlie
visual object identification and integration of visual information with other sensory modalities
and semantic representations. The posterior caudate is active during visual categorization in
humans. Studies in nonhuman animals also find that the posterior caudate is important for
learning in similar tasks. We hypothesize that in categorization the visual loop assists in
selection of appropriate visual representations via recurrent connections to visual cortex, and
in selection of responses via feed forward connections to the motor corticostriatal loop

The motor loop consists of the putamen and interacting regions of the primary motor cortex,
primary somatosensory cortex, and premotor and supplementary motor cortex. Within the
motor loop there is a gradient such that more anterior cortical regions (e.g., pre-SMA) project
to the more anterior regions of the putamen, whereas more posterior cortical regions (e.g.,
primary motor cortex) project to more posterior regions of putamen. The motor loop is often
active during visual categorization. We hypothesize that its role is in selecting appropriate
category-related motor responses (e.g., the button press indicating category A).

The executive loop connects the anterior dorsal striatum, in particular the head of the caudate,
with dorsal and lateral portions of the prefrontal cortex. This region is commonly activated
during fMRI studies of visual categorization that use a block design. Activity during
categorization learning in the head of the caudate is affected by the presence of feedback, and
by feedback valence, typically resulting in greater activity for positive than negative feedback.

1Interactions between loops occur through several anatomical routes. Most notably, projections from striatum to basal ganglia output
nuclei can “split”, so that return projections from the thalamus extend both to the originating cortical region and to additional cortical
regions. In addition, DA projections to and from the VTA and SNc form an “ascending spiral” that allows striatal regions to affect regions
that are relatively more lateral and superior.
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We hypothesize that the executive loop is important for selection of learning strategies and
switching between strategies on the basis of feedback.

The motivational loop connects ventral striatum (consisting of the nucleus accumbens and
ventral regions of the caudate and putamen) with ventromedial frontal cortex, hippocampus,
and amygdala. Fewer studies have investigated the role played by ventral striatum in
categorization, but previous studies that do report activity in this area have linked it to feedback
or error processing, or to categorization uncertainty. Although both the executive (head of the
caudate) and motivational (ventral striatum) loops are sensitive to feedback, they differ in that
the ventral striatum is sensitive to unexpected reward regardless of whether it has anything to
do with the organism's behavior, whereas the head of the caudate is sensitive to feedback only
when it comes in response to an action the subject performed. Furthermore, the ventral striatum
is associated with sensitivity to feedback regardless of whether the subject learns, but dorsal
striatal activity is specific to learners.

In light of the hypothesized role of the visual loop in visual category selection we predicted
that the posterior caudate would (1) be active during correctly categorized trials and increase
in activity across the time course of learning in the general linear model analyses (2) be
associated with reward prediction rather than prediction error in the reinforcement learning
analyses, and (3) that Granger causality modeling would find directed influence from visual
cortex to the posterior caudate. We hypothesized that the motor loop subserves selection of the
motor response indicating category membership and accordingly predicted that the putamen
would (1) be active during correctly categorized trials and would increase in activity across
trials as subjects learned about appropriate responses (2) be associated with reward prediction
rather than prediction error, and (3) exert directed influence onto motor cortical regions
consistent with its role in motor selection. Note that our predictions for the visual and motor
loops are similar for the general linear model and reinforcement learning analyses, but differ
for the Granger causality modeling analysis.

We hypothesized that the executive loop and motivational loops would both contribute to
feedback processing during categorization, but that the executive loop would additionally
integrate feedback with learning. Our predictions for the current study were that the striatal
regions in both loops would be sensitive to feedback valence in the general linear model
analysis, as was found in our previous research (Seger and Cincotta, 2005). However, we
predicted that the reinforcement learning analysis would dissociate these two loops: the ventral
striatum reflects reward prediction regardless of the subjects behavior, and therefore should be
related to prediction error. The head of the caudate is concerned with the integration of reward
expectancy and action, and should be related to reward prediction. Finally we predict the
executive loop, due to its role in integrating feedback with the stimulus and response made on
the trial, should receive directed influence from the motor and visual corticostriatal loops.

Materials and Methods
Subjects

Eleven healthy adult members (6 male, 5 female) of the Stanford community participated as
paid subjects. All subjects were right handed and spoke fluent English. One subject's Scan 3
behavioral data was lost, so behavioral and functional analyses of this scan include only 10
subjects.
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Tasks and Procedure
Categorization task

During the categorization task subjects were presented with individual images of faces or
houses. They were instructed to learn which arbitrary category, which were given the labels 1
or 2, each image belonged to via trial and error. Category membership was not a function of
whether the image was a face or a house.

Sixteen visual images were used as stimuli, eight of faces and eight of houses. House pictures
were selected from Northern Colorado region real estate websites; they included houses of
various colors, stories, and architectural styles. Face pictures were obtained from the Face
Database available through the Productive Aging Laboratory website
(agingmind.cns.uiuc.edu/facedb/). The faces were chosen from the collection of images of male
Caucasians between the ages of 18 and 29 with neutral facial expressions. For the houses and
faces separately, the 8 stimuli were assigned to categories as follows. Six had a deterministic
relationship with category: 3 were arbitrarily assigned to Category 1 and 3 to Category 2. Care
was taken to ensure that stimuli within an category did not share any unintended similarities
(e.g., we did not assign brick houses to one category, and wood frame houses to the other
category). Four stimuli (two faces and two houses) were randomly assigned to category, such
that each was in Category 1 on half of the trials and Category 2 on half of the trials.

Each categorization trial consisted of the following sequence of events. A stimulus (face or
house) was displayed first (1700 ms) followed by a blank screen (100 ms) and the feedback
screen (500 ms). Between trials subjects viewed a blank screen that was presented for a
minimum of 200 ms, plus a variable “jittered” amount of time of 0 ms (half the trials), 1500
ms (one quarter of trials), or 3500 ms (one quarter of trials). Each block of 8 trials included 4
trials with 0 ms jitter, 2 trials with 1500 ms jitter, and 2 trials with 3000 ms jitter. The order of
jitter in each block was randomized. Participants were to make a response during the stimulus
display by pressing one of two stimulus buttons with the index or middle finger of the right
hand. The feedback consisted of the words “Right!!!” in blue, “Wrong” in red, or “No response
made” in red.

There were a total of 720 trials: 480 categorization trials (240 houses and 240 faces) and 240
baseline trials. A mixed block-event related design was utilized. Face and House stimuli were
separated on a blockwise basis. Each block consisted of 8 categorization trials (faces or houses)
and 4 baseline trials. Each categorization block was 30 seconds in length and each baseline
block was 10 seconds in length. Baseline trials consisted of a plus sign for 2000 ms and a blank
screen for 500 ms. Blocks of faces alternated with blocks of houses with baseline blocks in
between each categorization block. There were 120 blocks total; 60 categorization and 60
baseline. The 120 blocks were broken down into 4 scans of 30 blocks each. Note that even
though subjects completed 4 scans, the results from only the first 3 scans are presented here
due to loss of data from the 4th scan from several subjects.

Localizer task
During the localizer task subjects viewed images of faces, houses, animals, and tools. There
were a total of 152 stimuli presented in the localizer task, 38 each of faces, houses, animals,
and tools. House and face pictures were taken from the same websites as in the Categorization
task. For the localizer task, faces images were selected on the basis of being young adults
(between the ages of 18 and 29) with neutral expressions; however, for the localizer task we
included equal numbers of male and female faces, and included all the ethnicities represented
in the face database (which has separate collections of images of Caucasians, African-
Americans, Asian-Americans, and Latinos). Tool pictures were of both hand and power tools.
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Animal pictures were of various animals including reptiles, birds, and mammals. Most animal
pictures were profiles, with no pictures emphasizing animal faces.

In order to ensure attention to the images, subjects performed a one-back task: on each trial
they had to decide whether the current stimulus matched or did not match the immediately
preceding stimulus. Of the 200 trials, 48 were matches, 12 for each of the stimulus types. Each
trial consisted of a stimulus display for 1500 ms and a blank screen for 500 ms. Participants
were to make a response during the stimulus display. There was no feedback given. There were
20 blocks consisting of 10 trials per block. Each block was 20 s. There were five blocks of
each stimulus type, presented in the following repeating order: Faces, Houses, Animals, Tools.

MRI image acquisition
Imaging was performed with a custom-built whole head coil in a 3.0 Tesla MRI Signa LX
Horizon Echospeed (General Electric Medical Systems, Milwaukee, WI). Head movement was
minimized for participants using a “bite-bar” formed with the participant's dental impression.
In addition to the functional scans, three anatomical scans were performed: a coronal T1-
weighted localizer scan, a three-dimensional high-resolution T1-weighted spoiled gradient
echo scan with 124 contiguous 1.5 mm slices [minimum full echo time (TE), 30 degrees flip
angle, 24 cm field of view, 256 × 256 acquisition matrix], and a inplane anatomical T1-
weighted spin-echo scan with 22 contiguous 5 mm axial slices [minimum full TE; 500 ms TR,
24 cm field of view, 256 × 256 acquisition matrix]. Functional scanning was performed using
a T2* sensitive gradient echo spiral in-out pulse sequence (Glover & Law 2001; Preston et al.,
2004) [30 ms TE; 1500 ms TR; 65 degree flip angle; 24 cm field of view; 64 × 64 acquisition
matrix] of the same 22 contiguous 5 mm axial slices as the inplane images.

Stimuli were presented using a magnet-compatible projector (Resonance Technology, Inc.,
Van Nuys, CA) that back-projects visual images onto a screen mounted above the participant's
head. E-prime software (Psychology Software Tools, Pittsburgh, PA) running on a personal
computer was used to generate visual stimuli and control experimental parameters. Responses
were obtained using a magnet-compatible response system.

Data analyses
Image preprocessing

Image analysis was performed using Brain Voyager QX 1.1.9 (Brain Innovation, Maastricht,
The Netherlands). The functional data were first subjected to preprocessing, consisting of three
dimensional motion correction, slice scan time correction, and temporal data smoothing with
a high pass filter of 3 cycles in the time course and linear trend removal. Each participant's
high resolution anatomical image was normalized to Tailarach space (Tailarach & Tournoux,
1988). The normalization process in Brain Voyager consists of two steps, an initial rigid body
translation into the AC-PC plane, followed by an elastic deformation into the standard space
performed on 12 individual subvolumes. The resulting transformations were applied to the
participant's functional image volumes to form volume time course representations to be used
in subsequent statistical analyses. Finally, the volume time course representations were
spatially smoothed with a Gaussian kernel, full width at half maximum of 8.0 mm.

General Linear Model analyses
Brain Voyager was used to analyze contrasts between conditions, using the general linear
model with separate subject predictors and random effects analysis. Only contrasts with
potential theoretical interest were analyzed. The False Discovery Rate method with a threshold
of q < .05 was used to control for proportion of false positives; q < .05 results in no more than
5% of the voxels being significantly active by chance. Our examination of correct
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categorization compared activity during correctly categorized deterministic trials with an
implicit baseline consisting in effect of all other time points, not just those occurring during
the baseline blocks. In order to perform analyses of changes in activity in response to feedback
valence across scans, we performed an exploratory interaction analyses; due to limitations in
the Brain Voyager software package, this required treating both subject and scan as fixed
effects. We used the false discovery rate with a threshold of q < .01 to control for the proportion
of false positives, and examined only striatal regions for which we had a preexisting hypothesis
that activity would be affected by feedback valence. The analyses examined 2 × 2 interactions
with scan (scan 1 vs. scan 3) as one factor and feedback valence (random trials receiving
positive feedback vs. random trials receiving negative feedback) as the other factor.

Reinforcement learning modeling analyses
The reward prediction error (δ; equation 1) and reward prediction (Q; equation 2), were
calculated using SARSA (State-Action-Reward-State-Action) reinforcement learning
modeling technique, with no discount factors or eligibility trace.

For modeling purposes, each trial was considered to contain two time points (t, t+1), with the
first encompassing stimulus onset and category response, and the second reward delivery.
Reward, represented as rt, was `1' for positive feedback, `0' for negative. There were thus a
total of 64 possible Q values that we calculated for each trial, corresponding to the 16 possible
visual stimuli (that defined the state, s), the two categories (synonymous with action, a) and
the two time points within a trial. Q was initially set to 0 and was updated on a trial by trial
basis depending on the stimuli presented and the category the subject selected (equation 2).
The optimal learning rate (α) was determined on a subject-by-subject basis. Each trial's Q value,
for a given α (range: 0.01–1, increments of 0.01), was transformed to an action selection
probability via the softmax distribution (a standard method in Reinforcement Learning;. The
optimal values of α and β (temperature, which controls the probability bias of softmax; range:
0.01–5, increments of 0.01) maximized the negative log-likelihood (L; L = −1*sum(ln(P(Q,t))).
Trials in which the subject made no response were excluded from the model. For regression
analysis Q and δ, from time t, were combined by stimulus type (face or house) and condition
(deterministic or random), convolved with the conical HRF and converted to Brain Voyager
compatible text files using a set of in-house perl scripts (version 5.8.8; www.perl.org).
Modeling and HRF convolution was done using the R programming language (version 2.7.2;
www.R-project.org). The Q and δ regressors were decorrelated using the orthvec() routine in
the BVQX tools MATLAB toolbox (version 0.8a;
http://wiki.brainvoyager.com/BVQXtools). Note that for prediction error ( δ ) analyses we used
predictors from both deterministic and random stimuli but report only results from Scan 1 and
for House stimuli; deterministic learning was quite rapid, resulting in prediction error values
of (near) zero for later scans for house stimuli (see Figure 4) and for all three scans for face
stimuli. For reward prediction (Q) we also limited our analysis to Scan 1 but include both House
and Face stimuli.

Granger Causality Modeling analyses
Granger causality modeling analyses were performed using the Granger Causality Mapping
plug-in within Brain Voyager. The algorithms implemented in this program are described in
more detail by Goebel, Roebroeck, and colleagues. Briefly, Granger causality modeling is used
to examine directed influences between brain regions. A small reference region, referred to as
a seed region, is defined as a set of voxels. The average time course of activation across these
voxels is compared to the time course of activation in all other voxels in the brain via a vector
autoregressive algorithm. This allows for the identification and mapping of two kinds of
directed effect: regions that are influenced by the reference region (that is, regions in which
later activation can be predicted by earlier activation in the reference region, abbreviated as
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Ref2Vox), and regions that influence the reference region (that is, regions in which earlier
activation can predict later activation in the reference region, abbreviated as Vox2Ref). Granger
causality modeling does not require any assumptions about the underlying anatomical or
functional connectivity between regions. argue that the most unbiased measure of directed
influence is achieved by taking the difference between the two measures of directed influence,
Ref2Vox-Vox2Ref, in which a positive difference is interpreted as directed influence onto the
seed region, and a negative difference as directed influence from the seed region. The Ref2Vox-
Vox2Ref measurement is calculated separately at each voxel outside of the reference region,
and the voxelwise measures are used to form maps that are overlaid on the anatomical images.
Maps were defined on an individual subject basis, then combined across subjects via a
voxelwise t-test identifying voxels in which activity was significantly different from zero. The
analyses were performed using preprocessed data, which included spatial smoothing.

Two sets of Granger causality modeling analyses were performed. The first set examined
directed influence from visual cortical regions. Face and house category specific regions in the
inferior temporal cortex were identified individually for each subject using the localizer scan.
The fusiform face area (FFA) was identified with a contrast comparing faces with houses and
tools; animals were excluded because some of the images had faces visible. The
parahippocampal place area (PPA) was identified with a contrast comparing houses with the
other three categories (faces, animals, and tools). Across subjects the average Tailarach
coordinates for the center voxel of the FFA were x = 41.6 (range: 38–46), y = −40.6 (range:
−33 to −53), z = −18.5 (range: −8 to −23). Overall, this is a good match with previous studies
reporting a location of the FFA (Gobbini & Haxby 2006), although in some subjects the
identified region was somewhat more anterior than is typical. However, recent research has
found in humans that face selective patches often extend anterior to the FFA. For the PPA the
average was x = 28 (range: 25 – 36), y = −38 (range: −31 to −47) and z = −7 (range 2 to −14).
This location is consistent with previous studies of the PPA. The FFA and PPA regions of
interest were defined using region growing algorithms implemented in Brain Voyager. The
size of each ROI was constrained to be between 100 and 200 voxels.

The second set of GCM analyses examined directed influence onto or from striatal regions.
Striatal ROIs were identified on a cross-subject basis, based on the analysis comparing
deterministic correct trials with baseline (see Table 1 for coordinates). We examined regions
of the right and left putamen and right and left anterior caudate. The size of each ROI was
constrained to be between 100 and 200 voxels. With both the localizer based reference regions
(FFA and PPA) and striatal reference regions we calculated positive and negative influence
during baseline blocks, face categorization blocks, house categorization blocks, and both house
and face blocks combined.

Results
Behavioral results

As shown in Figure 1, across scans subjects learned to categorize the deterministic face and
house stimuli, whereas performance on the random stimuli remained at chance levels as would
be expected. This pattern was confirmed using a 3 × 3 within subjects ANOVA with factors
of stimulus type (Faces, Houses, Random) and Scan (1–3), which found an interaction between
scan and stimulus type, F(4, 36) = 6.7, p < .005, a main effect of stimulus type, F(2, 18) = 43.8,
p < .001, and a main effect of scan, F(2, 18) = 8.9, p < .005.

Focusing on the deterministic stimuli, it appears that subjects were faster initially at learning
the face stimuli, but were ultimately able to learn both stimulus types. This observation is
confirmed by paired t-tests, which found that in scan 1, subjects were more accurate
categorizing Faces (M =77.3) than Houses (M= 64.9), t(10) = 2.9, p < .05, but by scan 3
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performance was equivalent on both stimulus types, t(9) < 1.0 (Faces: M = 84.6; Houses: M =
84.1).

Categorization related activation
Categorization across scans—The primary contrast for examining correct categorization
is activity during deterministic correct trials in comparison with baseline. This contrast revealed
a wide network of activity in cortical and striatal regions, as shown in Table 1. Within the
striatum, activity extended throughout the caudate nucleus, including the head, body, and tail
regions, and to a region of the anterior putamen. Within the frontal cortex there were regions
of activation in bilateral inferior frontal gyri that extended to the anterior insula; activity in this
region has been associated with a wide variety of visual categorization tasks in fMRI studies,
and is particularly associated with early stages of learning, and for novel in comparison with
familiar associations (Boettiger and D'Esposito, 2005). Lesions to the homologous area in
monkeys eliminates the ability to learn new abstract rules. There was also activation in right
premotor cortex; previous fMRI and monkey research has linked this region to both acquisition
and performance of learned associations. Broadly, this region has been associated with
cognitive aspects of response selection: it is generally more active for response selection than
for simple response execution, and overlaps with regions containing “mirror
neurons” (Chouinard & Paus 2006). Electrophysiological studies of monkeys have found that
individual lateral premotor neurons are tuned to perceptual decision, action, and monitoring
outcomes.

In addition to frontal regions, there was widespread activity within extrastriate visual areas,
the thalamus, the midbrain, and the cerebellum. A region of medial prefrontal cortex exhibited
reduced activation during correctly categorized deterministic trials. This region is commonly
activated during “rest” or simple baseline tasks and has been associated with internally focused
attention and attention to ones mental states.

An additional contrast compared activation between correctly and incorrectly categorized
deterministic trials. This contrast revealed two regions of activation in the striatum: one in the
right body of the caudate at x = 19 y = 3, z = 22, which overlapped with a region of activation
in the deterministic correct vs. baseline contrast, and one in the left lateral putamen, at x = −28
y = 3, z = 2, which was a novel region of activity not present in the deterministic correct vs.
baseline contrast at the statistical threshold.

Changes in striatum across the time course of categorization learning—We
examined how activity changed across the time course of learning within striatal regions of
interest (ROIs). We created ROIs for each of the regions within the striatum that were active
in the deterministic correct vs. baseline comparison (left head of the caudate, bilateral body of
the caudate, and bilateral tail of the caudate; see Table 1 for center coordinates of these ROIs),
plus the putamen region active in the deterministic correct vs. incorrect contrast described
above. We then calculated beta values for the deterministic correct predictor within each ROI
separately for each scan. As shown in Figure 2, the activity in the anterior caudate (head and
body ROIs) was stable across scans. In contrast, activity within the posterior caudate (tail ROIs)
and putamen increased across scans. Examination of activity in scans 1 through 3 separately
confirmed this pattern of results: the tail of the caudate and putamen regions were significantly
activated in scans 2 and 3 but not scan 1, whereas the head and body regions of the caudate
were significantly activated in all three scans.

Feedback related activity
We examined the effects of feedback through a contrast comparing random trials on which
positive feedback was received with random trials on which negative feedback was received.
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Previous research in our lab using similar tasks found greater activity in the head of the caudate
for positive than negative feedback (Seger and Cincotta, 2005). However, for this study we
found no feedback valence differences when all three scans were included in the analysis. We
considered the possibility that an interaction between learning and feedback processing might
preclude finding a main effect of feedback valence across scans; in our earlier study the
differences between positive and negative feedback decreased substantially as learning
progressed and were not present in the final block. Therefore, we examined the interaction
between feedback valence and scan, as described in Methods, above, and identified four regions
of the striatum affected by the interaction: the right and left ventral striatum, the right head of
the caudate and the right tail of the caudate. As shown in Figure 3, in the ventral striatum there
was significantly more activity for positive than negative feedback in scan 1, which was
followed by a much smaller activation difference in scans 2 and 3. In the head and tail of the
caudate nucleus, a cross over interaction was found: in scan 1, there was more activity in
response to positive feedback than negative, but by scan 3 there was more activity in response
to negative feedback than positive.

Previous research has found a general tendency for greater activity to positive than negative
feedback during early learning or in randomly structured “gambling” tasks. However, some
studies have found equivalent activity, or even greater activity for negative feedback than
positive feedback. The effect of feedback valence may depend on factors such as the degree
of learning and the utility of the feedback, with positive feedback being more useful early in
learning, and negative feedback more useful as learning progresses and errors are rarer.

Reinforcement Learning model based analyses
The prediction error (δ) and reward prediction (Q) functions across scans for a typical subject
are shown in Figure 4. Within the striatum, prediction error predicted activity in the ventral
striatum bilaterally, as shown in Figure 5. Within cortical regions, prediction error predicted
activity most notably in several prefrontal cortical regions, and in the fusiform and
parahippocampal gyri (see Table 2). These latter locations are consistent with regions involved
in processing the visual stimuli.

Reward prediction (Q) predicted activity in the putamen and anterior caudate nucleus. These
regions are clearly dorsal to the regions of ventral striatum predicted by the error function, as
shown in Figure 5. Within cortex, reward prediction predicted activity in three notable groups
of cortical regions (see Table 3): high level visual cortical regions of the fusiform and inferior
temporal gyri, the bilateral supramarginal gyrus, and right premotor cortex.

Granger Causality Modeling
Directed influence from fusiform face area and parahippocampal place area—
For this analysis, we examined positive directed influence from the reference regions to other
brain regions. As described in Methods, the fusiform face area (FFA) and parahippocampal
place area (PPA) were defined on an individual subject level based on activity during the
independent locator scan. Activity in the FFA during face categorization predicted activity in
the posterior caudate, as shown in Figure 6. The pattern using the PPA as the reference region
was similar: activity in the PPA predicted activity in the posterior caudate nucleus. However,
the directed influences between FFA and caudate, and PPA and caudate were not specific to
face and house categorization blocks, respectively: activity was similar across both types
categorization blocks, and t-tests comparing face and house blocks found no significant
differences across subjects. Face and house blocks were combined for follow-up analyses. Both
the PPA and FFA reference regions also had directed influence on other visual regions during
categorization. In addition, the PPA but not the FFA showed directed influence to bilateral
inferior frontal cortex / anterior insula and to the cerebellum.
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In addition to examining directed influence during the categorization blocks, we also examined
influences during the baseline blocks. There were no directed influences between FFA or PPA
and other regions during the baseline blocks. This implies that the directed influences identified
during categorization blocks are not due solely to intrinsic connectivity independent of
cognitive task.

Directed influences to and from striatal regions—We also examined directed
influence with striatal regions (anterior caudate and putamen) as reference regions. As with
the PPA and FFA, no differences were found between house and face categorization blocks,
so we collapsed across stimulus type for these analyses. These patterns of directed influence
were specific to categorization blocks and did not occur during baseline blocks.

One salient pattern, illustrated in Figure 7 and with coordinates given in Table 4, was that
striatal regions exerted directed influence on other regions of the striatum. Both right and left
putamen showed positive directed influence on other regions of the putamen bilaterally and
on all regions of the caudate nucleus. Both left and right anterior caudate nucleus received
directed influence from the putamen, and exerted directed influence on other regions of the
caudate bilaterally.

The putamen and anterior caudate had differing patterns of directed influence with cortical
regions. The putamen showed positive directed influence onto medial parietal and medial
frontal (anterior cingulate and SMA), and motor regions in the left precentral gyrus. The
directed influence to the SMA is consistent with who found that coherence between putamen
and supplementary motor area increased as subjects learned to perform different responses in
different cued contexts. The putamen did not receive directed influence from any cortical
regions. The anterior caudate received directed influence from many of the same regions that
the putamen showed directed influence to, including right premotor, medial prefrontal regions,
and right parietal cortex; these are illustrated in Figure 8. Anterior caudate exerted directed
influence on primary visual cortex and the cerebellum.

These analyses show an overall pattern of directed influence across time in which the putamen
influences motor and executive cortical regions, which in turn influence the anterior caudate.
This pattern is consistent with the hypothesis that the putamen is involved in earlier
categorization response selection and execution, whereas the anterior the caudate is involved
in later feedback related functions.

Discussion
The results support our hypotheses about the roles played in visual categorization by each
corticostriatal loop. Consistent with our hypothesis that the visual loop plays a role in visual
stimulus processing necessary for categorization, we found (a) posterior caudate (bilateral tail
of the caudate) recruitment during correct categorization that increased across scans as subjects
learned, (b) directed influence from visual cortical regions onto the posterior caudate during
categorization, and (c) visual cortex activity during correct categorization that was also
predicted by both prediction error and reward prediction. The motor loop was hypothesized to
contribute to learning to select appropriate motor responses to indicate category membership;
consistent with this hypothesis, (a) the putamen was more active during correct categorization
trials than incorrect trials, with this activity increasing across scans as learning progressed, (b)
activity in the putamen was predicted by reward prediction, and (c) the putamen exerted a
directed influence on ventral lateral premotor cortex and the supplementary motor area.

We predicted that both the motivational loop and executive loop would be involved in feedback
processing, but would differ in what aspects of feedback they are sensitive to. Both ventral
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striatum (motivational loop) and the head of the caudate (executive loop) showed an interaction
between positive and negative valence across scans, but the shape of the interaction differed
in the two regions; in the head of the caudate there was a cross-over interaction such that by
the third scan activity was higher for negative feedback than positive. The ventral striatum and
head of the caudate also differed in sensitivity to learning parameters from the reinforcement
learning analysis. The ventral striatum was sensitive to prediction error, whereas the head of
the caudate was sensitive to reward prediction. This pattern is consistent with previous research
finding that ventral striatum is sensitive to reward in a classical conditioning task, whereas the
dorsal striatum is important for integrating reward with behavioral choice.

Granger Causality Modeling
Granger Causality modeling proved useful in elucidating which neural regions are interacting
with each other, and the directionality of these influences in time. We were able to confirm
several important directed influences that were predicted by our theory. First, within the visual
loop we have evidence that visual cortex exerts directed influence on the posterior caudate
nucleus. Within the motor loop, we have evidence that the putamen interacts with ventrolateral
premotor and supplementary motor cortices, exerting directed influence on each of them.
Within the executive loop we found that the anterior caudate exerts directed influence on other
regions of the caudate, and received directed influence from the putamen and frontal lobe
regions. Thus, the executive loop can be seen as bridging between the motivational loop (ventral
striatum) and the visual and motor loops (posterior caudate / putamen) through its integration
of feedback processing with action plan updating.

Across loops, we found a pattern in which the putamen exerts directed influence on the caudate,
which is consistent with the gradient of interactions within the striatum that progress from
ventral-anterior-medial to dorsal-posterior-lateral regions (Haber, 2003). This pattern of
directed influences also fits our predictions for how regions would interact across the time
course of categorization. The typical sequence in a categorization task trial is first to view the
stimulus and decide on the category, then select and execute a response, and finally, receive
feedback and use it to updating the category representation. These three phases of a
categorization trial map to the directed influences we found from visual cortex to posterior
caudate (stimulus categorization), putamen to premotor cortex and SMA (response selection),
and the SMA and premotor to caudate (feedback processing).

Functional MRI is limited in its temporal resolution, but electrophysiological studies have been
used to examine the behavior of individual neurons in corticostriatal regions, and to associated
their activity with stimulus, response, and feedback phases of a learning trial. Studies overall
typically find more activity for putamen neurons around the time of the response, and caudate
neurons at the time of reward receipt (Lau and Glimcher, 2007; Williams and Eskandar,
2006). However, neuron types are typically mixed within any particular region. For example,
Lau and Glimcher (2008) found separate populations of cells in the body of the caudate tuned
for action values (active before a response was made), and tuned for choice value (active after
movement execution). Even among cells active after a movement was executed, some coded
for the reward value of the movement, and some for specific features (e.g. direction) of the
movement. Individual neurons also differ in terms of their changes across the time course of
learning, with some cells increasing in firing rate, and others in the same region decreasing in
firing rate.

Granger causality modeling does have some limitations that should be kept in mind. First,
directed influence is a measure of whether previous time course values in one region can predict
values in another region. This leaves open the possibility that some directed influences are not
straight from the seed region to the target region, but instead pass through intermediate regions.
Since Granger causality modeling is typically performed over blocks of many seconds
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containing several complete acquisitions of brain slices, it is possible for events at the very
beginning of the block to significantly affect events seconds later at the end of the block.
Second, Granger causality modeling does not incorporate a model of the hemodynamic
response function, and as a result it is possible for interregional variation in hemodynamic
properties to result in misleading temporal precedence information.

One puzzling result from the Granger causality modeling analysis is that the directed influence
from putative face and house selective regions (FFA and PPA) did not differ between face
blocks, in which all the stimuli were faces, and house blocks, in which all the stimuli were
houses. One possibility is that visual cortex projects to the posterior caudate in a widespread
manner, and that all visual cortical activity will affect striatal activity. This would imply that
the striatum does not have a separate representation of the same visual object classes that are
found in the inferior temporal cortex. Alternatively, visual object class information may be
kept separate in the striatum, but the relatively coarse spatial resolution of fMRI precludes us
from detecting this pattern. Anatomically, the projections of cortex to striatum are relatively
diffuse (each projection neuron from cortex makes few synapses onto a few striatal modules
organized longitudinally down the caudate or putamen) and projections from individual cortical
columns often project to common striatal units. This pattern of projections implies that visual
cortical information is kept separate at least at the level of individual striatal spiny cells. Future
progress on this question will require improving the resolution of the fMRI scanning, using
alternative techniques for identifying distributed voxels that participate in a representation
(such as multi voxel pattern analysis techniques), and convergent research from single unit
recording in nonhuman animals.

Reinforcement Learning Modeling
We used reinforcement learning methods to identify regions that were sensitive to prediction
error and reward prediction. There are many different ways of calculating prediction error; the
most popular are temporal difference and Rescorla-Wagner rules. In the present study we
examined signed prediction error and found that this predicted activity in the ventral striatum,
consistent with previous studies.

In addition to prediction error, reinforcement learning modeling approaches include methods
for estimating how prediction error is integrated with action selection. We used SARSA to
estimate reward prediction, the total predicted reward associated with choosing the categorical
response for the stimulus. We found that reward prediction predicted activity across the dorsal
striatum, including the anterior caudate and putamen. Previous fMRI research has not used
SARSA, or applied reinforcement learning to categorization learning tasks, but similar methods
such as actor-critic and Q-learning (Haruno and Kawato, 2006) have been used in the context
of studies of instrumental learning2. Our results are in accord with those of O'Doherty et al.
(2004), who found that the actor function was associated with activity in the head of the caudate
and putamen. Haruno and Kawato (2006) found that the putamen was most strongly predicted
by reward prediction, as in our study, but they found that activity in the head of the caudate
was more strongly predicted by prediction error than reward prediction. As we argued above,
the anterior caudate can be seen as a transitional region between the ventral striatum and the
other regions of the dorsal striatum: functionally, it integrates feedback with category and
action selection, and anatomically it receives an intermediate level of dopaminergic innervation
(Haber, 2003).

2SARSA and Q learning differ only in the prediction error term. In Q learning, the prediction error requires the maximum Q value for
next state, maximized over all actions. SARSA simply uses the Q value for the next state and actual next action taken. In Q learning and
SARSA, the reward prediction function is used to determine the best action by selecting the action that results in the highest predicted
Q value. Actor-critic differs from both SARSA and Q learning in that it required the addition of another function to predict the best action
for each state, rather than basing the choice on the value of Q.
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Reinforcement learning models proved to be a useful addition to the standard fMRI analysis
approach of examining contrasts between conditions using the general linear model. Activity
patterns identified in the contrast comparing deterministic correct trials versus baseline can be
compared with activity patterns identified by the reward prediction regressor. Both measures
should to some degree reflect successful categorization; however, the former measure weights
all correct trials equally, including those on in which a subject may have only a slight bias
towards the correct category, or even is guessing. In contrast, reward prediction weights trials
more highly the stronger the knowledge is about the expected reward linked to the action to
be performed. Thus, reward prediction may more precisely isolate neural activity associated
with learning strength. In addition, deterministic correct trials may reflect all phases of learning
(early to late), whereas reward prediction will emphasize late learning. In our study, we found
that the deterministic correct trials were associated with activity across the striatum broadly,
whereas reward prediction was associated with more restricted regions of activity in the head
of the caudate and anterior putamen.

Prediction error provides an alternative to examining feedback valence. Feedback valence
compares all trial on which subjects were told they were wrong with all trials in which they
were told they were right; this contrast may reflect a multiplicity of factors, including
knowledge of the correct answer, expectations about feedback, and emotional connotations of
positive and negative feedback. In contrast, the prediction error measure specifically reflects
the degree to which the feedback was expected or unexpected. Prediction error also allows us
to link activity to the body of research that has shown that prediction error provides a good
account for the activity of midbrain dopamine neurons that provide a major input to the basal
ganglia (Schultz and Dickinson, 2000), particularly the ventral striatum. In our study, feedback
valence led to similar patterns of activity in both dorsal (anterior caudate) and ventral striatum,
but prediction error accounted for activity only in the ventral striatum, indicating that prediction
error may be a more precise measure of feedback sensitivity.

In conclusion, we successfully dissociated the contributions to visual categorization made by
individual corticostriatal loops. We found patterns of activity in the visual loop consistent with
playing a role in learning related visual processing, patterns of activity in the motor loop
consistent with playing role in category related response learning, and patterns in the
motivational loop and executive loops consistent with both playing a role in feedback
processing, with the executive loop integrating feedback and category related learning.
Additionally, we found interaction between the loops, with strong involvement of visual loop
early in learning associated with visual processing, involvement of motor loop in response
selection, and finally an influence of both loops on the executive loop as it integrates behavior
and feedback.
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1.
Learning across scans by stimulus type: Faces (deterministic), Houses (deterministic) and
Random (Faces and Houses combined). Error bars indicate standard error.
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2.
Striatal regions across scans: motor and visual loop regions putamen and tail caudate
(increases) and executive loop regions -- head and body caudate (stays about the same). All
ROIs are from the contrast comparing activation on correctly categorized deterministic trials
with the implicit baseline (see Table 1 for Tailarach coordinates), except the putamen ROI
which is from the contrast comparing correctly and incorrectly categorized deterministic
stimuli (see text; center at x = −28, y = 3, z = 2)
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3.
Interaction of negative and positive feedback across scans in ventral and dorsal striatal regions.
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4.
Behavioral trial by trial accuracy and estimates of prediction error (dotted green line) and
reward prediction (solid blue line) for a representative subject. Accuracy on each trial is
indicated by the position of the black open square; the value is set to 1.0 if the categorization
was correct, and to 0 if incorrect. For random trials, performance was considered correct if it
received positive feedback. The top graph is for all deterministic house trials, and the bottom
for random house trials; deterministic and random were plotted separately to better illustrate
the convergence of the measures associated with learning of deterministic stimuli. Note that
reward prediction varies between 0 and 1 across trials regardless of trial type, whereas
prediction error for deterministic trials varies between 0 and 1 and on random trials varies
between −1 and 1. Negative values can be thought of as unexpectedly getting positive feedback
when negative feedback is expected; on deterministic trials this state is not possible. Also note
that as the subject reaches a high level of proficiency on the deterministic trials reward
prediction converges on the maximum value of 1, whereas prediction error is near zero except
immediately after an error. On the random trials, net learning is not possible and both reward
prediction and prediction error vary in response to the most recent trials.
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5.
Striatal regions in which activity was significantly predicted by prediction error (yellow), or
by reward prediction (blue). Note that prediction error accounts for activity in the ventral
striatum, and reward prediction accounts for activity in dorsal striatal regions, including the
putamen and head of the caudate.
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6.
Directed influence from the fusiform face area (left) and parahippocampal place area (right)
on the caudate nucleus in the right (top) and left (bottom) hemispheres.
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7.
Directed influence of ROIs in the left and right putamen and caudate nucleus on other regions
of the striatum and thalamus. Magenta: seed region. Orange-yellow spectrum: Directed
influence from the seed region. Blue-green spectrum: directed influence onto the seed region.
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8.
Directed influence to and from cortical regions from the left and right putamen and caudate
nucleus. Top: Medial saggital sections showing directed influence of the putamen on medial
cortical regions and directed influence to the caudate. In addition, note the directed influence
from the caudate onto the fusiform gyrus. Bottom: Lateral saggital sections showing directed
influence on the precentral gyrus from the putamen, and from the precentral gyrus to the
caudate. Orange-yellow spectrum: Directed influed from the seed region. Blue-green spectrum:
directed influence onto the seed region. Note that the seed regions are the same as in Figure 7;
they are not shown here because they do not fall within the selected slices.
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Table 1

Regions of Activation: Correctly Categorized Deterministic Trials, All Scans

L/R/B Region Gyrus/subregion Center Voxel (x y z)

Frontal Cortex:

R Ventral Lateral Premotor Precentral Sulcus 39 0 31

R Dorsolateral PFC Middle Frontal 39 23 22

L Posterior Ventrolateral PFC Inferior Frontal / Insula −28 24 4

R Posterior Ventrolateral PFC Inferior Frontal / Insula 27 22 4

Other Cortex:

R Medial Parietal Posterior Cingulate 11 −29 33

L Occipital Lingual −11 −91 −4

R Occipital Cuneus 22 −90 −3

R Inferior Temporal Fusiform 34 −42 −17

L Inferior Temporal Fusiform −29 −52 −17

Striatum:

L Caudate Head −11 2 18

L Caudate Body −10 −12 22

L Caudate Tail −21 −23 2

R Caudate Tail 22 −23 4

R Putamen Anterior putamen 17 0 16

Other Subcortical:

L Thalamus −9 −11 20

R Thalamus 6 −7 8

B Midbrain Ventral Tegmental Area −1 −15 −7

B Cerebellum Anterior lobe 6 −60 −26

Regions more active in baseline than deterministic correct trials:

B Medial Frontal Medial frontal 1 57 9

Note: Regions of the lateral prefrontal lobes are identified in line with the distinctions laid out in (Badre and Wagner, 2007; Curtis and D'Esposito,
2003). Premotor regions are identified in line with the guidelines set out in. L: left hemisphere. R: Right hemisphere. B: bilateral. PFC: Prefrontal
Cortex. The coordinates of the central voxel are given in Talairach space.
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Table 2

Regions of Activation Predicted by Prediction Error (Scan 1, House stimuli).

L/R Region Gyrus/subregion BA Center Voxel (x y z)

Frontal:

L Posterior Ventrolateral PFC Inferior Frontal / Insula −24 22 1

R Dorsolateral PFC Middle Frontal 40 28 15

L Dorsolateral PFC Middle Frontal −40 26 17

R Premotor Precentral gyrus 34 3 34

L Anterior Prefrontal Middle frontal gyrus −36 51 −2

Other Cortex:

R Parietal Inferior parietal lobule 33 43 43

B Medial parietal Posterior Cingulate 2 −25 36

R Occipital Middle occipital 30 −82 12

L Occipital Cuneus −28 −82 22

R Medial temporal Parahippocampal 24 −33 −11

L Medial temporal Parahippocampal −24 −30 −12

R Medial temporal Fusiform 24 −62 −16

L Medial temporal Fusiform −26 −47 −12

L Medial temporal Fusiform −22 −65 −11

Striatum:

R Putamen Ventral putamen 17 8 −1

L Putamen Ventral putamen −17 6 0

Note: Regions of the lateral prefrontal lobes are identified in line with the distinctions laid out in (Badre and Wagner, 2007; Curtis and D'Esposito,
2003). The coordinates of the central voxel are given in Talairach space. L: left hemisphere. R: Right hemisphere. B: bilateral. PFC: Prefrontal Cortex.
SMA: Supplementary motor area.
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Table 3

Regions of Activation Predicted by Reward Prediction (Scan 1)

L/R Region Gyrus/subregion Center Voxel (x y z)

Frontal

R Premotor Inferior frontal/Precentral sulcus 42 4 29

Other Cortex:

L Inferior Temporal Fusiform −42 −44 −18

R Inferior Temporal Fusiform 31 −60 −14

R Inferior Temporal Fusiform 30 −52 −22

R Occipital Middle occipital 34 −87 −13

L Occipital Middle occipital −29 −79 −7

R Parietal Supramarginal 33 −54 33

L Parietal Supramarginal −25 −57 39

Striatum:

R Putamen/ Globus Pallidus Anterior putamen 16 3 4

R Caudate, Putamen Head 16 14 19

L Caudate Head −16 9 17

Note: L: left hemisphere. R: Right hemisphere. B: bilateral. The coordinates of the central voxel are given in Talairach space.
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Table 4

Directed Influences Measured via Granger Causality Modeling

Head of the caudate seed regions Left seed (−15 9 17) Right (7 11 12)

Directed influences to caudate:

From Subcortical Regions: center voxel

L Putamen −18 4 11 * *

R Putamen 12 4 8 * *

L Thalamus −16 -19 3 * *

R Thalamus 5 −14 −1 - *

From Cortical Regions:

Anterior Cingulate 6 23 32 * *

Anterior Cingulate −12 18 35 * *

Medial Frontal / SMA −15 −10 58 - *

Right Premotor 41 −2 31 * *

R Precuneus 17 −69 32 * *

Directed influence from caudate to other regions:

To Subcortical Regions: center voxel

R Caudate, body 13 −6 24 * *

L Caudate, body −15 −12 22 - *

R Caudate, head 12 18 15 * *

L Caudate, head −15 18 14 - *

To Cortical Regions:

R Fusiform Gyrus 38 −68 −18 * *

L Fusiform Gyrus −36 −71 −18 * *

Putamen seed regions Left (−27 4 4) Right (20 6 11)

Directed influences from putamen to:

To Subcortical Regions: center voxel

R Caudate, body 15 −6 20 * *

L Caudate, body −17 −6 20 * *

R Posterior putamen 28 −14 −3 * *

L Posterior putamen 24 −18 0 * *

R Putamen / head caudate 21 9 17 * *

L Putamen / head caudate −21 12 14 * *

To Cortical Regions:

Anterior cingulate 6 0 38 * *

Medial Frontal / SMA 1 −10 64 * *

R Premotor 54 −1 14 * -

R Premotor 37 −13 41 * *

L Premotor −52 1 10 * -

L Inferior Parietal −48 −30 23 * -

L Medial Parietal −12 −32 53 * *

Directed influences to putamen from other regions:

Neuroimage. Author manuscript; available in PMC 2011 April 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Seger et al. Page 30

Note:

L: left hemisphere. R: Right hemisphere. SMA: Supplementary Motor Area.

*
directed influence was present to/from this region to the seed region.

-
no directed influence was detected that met the statistical threshold.
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