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Abstract
We develop new statistical methods for estimating functional connectivity between components of
a multivariate time series and for testing differences in functional connectivity across experimental
conditions. Here, we characterize functional connectivity by partial coherence, which identifies the
frequency band (or bands) that drives the direct linear association between any pair of components
of a multivariate time series after removing the linear effects of the other components. Partial
coherence can be efficiently estimated using the inverse of the spectral density matrix. However,
when the number of components is large and the components of the multivariate time series are
highly correlated, the spectral density matrix estimate may be numerically unstable and
consequently gives partial coherence estimates that are highly variable. To address the problem of
numerical instability, we propose a shrinkage-based estimator which is a weighted average of a
smoothed periodogram estimator and a scaled identity matrix with frequency-specific weight
computed objectively so that the resulting shrinkage estimator minimizes the mean-squared error
criterion. Compared to typical smoothing-based estimators, the shrinkage estimator is more
computationally stable and gives a lower mean squared error. In addition, we develop a
randomization method for testing differences in functional connectivity networks between
experimental conditions. Finally, we report results from numerical experiments and analyze an
EEG data set recorded during a visually-guided hand movement task.
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Introduction
Functional connectivity is defined in Friston et al. (1993) as the “temporal correlation of
spatially remote neurophysiogical events.” Neurophysiological signals simultaneously
obtained from different regions of the brain give rise to data in the form of a multivariate
time series. Here, we characterize functional connectivity via partial coherence between
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each pair of signals in a multivariate time series and develop a novel method for modeling
and estimating the cross-dependence structure.

Frequency domain metrics have been used successfully for investigating the dependency
structure of multivariate neurophysiological signals (Timmer et al., 2000; Mirski et al.,
2003; Sun et al., 2004; Salvador et al., 2005). The most common frequency domain cross-
dependency metric is coherence, which is a time-invariant metric of pair-wise linear
association. Coherence is the frequency domain analog of cross-correlation (Brillinger,
2001) and is derived from the spectral density matrix. In a P-channel multivariate time
series, the spectral density matrix is a P ×P semipositive Hermitian matrix which is
approximately equal to the covariance matrix of the P-dimensional vector of Fourier
coefficients computed for each frequency. However, in multivariate time series, simply
using cross-correlation or coherence between the components can lead to misleading
conclusions on the cross-dependence structure of the signals (Kus et al., 2004). Neither can
distinguish between a pair of components that are directly linked versus a pair that is
indirectly linked through a third component. Thus, to have a better understanding on how
two components directly interact with each other, it is necessary to remove the effects of the
other components.

In the time domain, a metric for direct linear association is partial cross-correlation. In fMRI
studies, partial cross-correlation has been used for removing the temporal effects of
experimental designs (McIntosh et al., 1994) and for removing the effects of other brain
signals of interest (Marrelec et al., 2006). The frequency domain analog of partial cross-
correlation is partial coherence. It has been successfully implemented in analyzing scalp
EEG (Timmer et al., 2000), intracortical EEG (Mirski et al., 2003), and fMRI (Sun et al.,
2004, Zhou et al, 2009). As we will describe in further detail, an efficient approach to
estimating partial coherence involves inversion of the spectral density matrix. This approach
requires estimates of the spectral density matrix to be numerically stable because otherwise,
even small perturbations in the estimates of the spectral density matrix will result in large
changes in the entries of its inverse, consequently giving highly variable partial coherence
estimates.

We develop a novel shrinkage estimation method for estimating functional interconnectivity
across brain sites. The shrinkage estimator is a weighted average of a mildly-smoothed
periodogram matrix and the scaled identity matrix. The resulting shrinkage estimates have
lower condition numbers than the classical smoothed periodogram and hence are more
numerically stable. Böhm (2008) developed shrinkage estimation for the spectral density
matrix of multivariate time series in a single-trial setting. We extend the shrinkage estimator
to handle multiple-trial multivariate time series and, via numerical experiments, demonstrate
that it does well in estimating both the spectral density matrix and partial coherence. We
also develop a randomization procedure for testing for differences in functional connectivity
between experimental conditions. We apply these new methods to an electroencephalogram
(EEG) data set acquired from an experiment to study the brain network that mediates
voluntary movement.

Methods
Participants and brain recordings

The EEG data reported upon in this paper were selected from a group of 11 healthy, young
adults (20-35 yr, mean 25 yr), from whom we recorded potentials from the scalp using a 64-
channel EEG system (EMS, Biomed, Korneuburg, Germany). The electrodes were applied
to the scalp using conventional methods arrayed in the standard International 10-20 system,
two of which served as a ground and a reference, leaving 62 active EEG leads. We recorded
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the EEG at 512 Hz using a high-pass lter of 0.02 Hz and a low-pass lter of 100 Hz.
Participants performed a visually-guided hand movement task. In this task, the comfortably
seated volunteers viewed a video monitor, placed about one meter away, and they responded
to targets that jumped to the left or right from a central position. A target jump, occurring
every 1.5-5 seconds, instructed the participant to displace the lever of a hand-held joystick
(Mag Design and Engineering, Sunnyvale, CA) from a central upright position to realign the
visual representation of the joystick orientation with the displaced target, either to the right
or left of center. Participants received instructions to start and to move quickly and
accurately, and to return the joystick to the center position only when the target jumped back
to the center of the video monitor. We analyzed EEG signals for 118 leftward and 138
rightward movements from the center position, performed randomly. Figure 1 illustrates
time-amplitude plots of the 12 EEG signals obtained from a representative participant during
leftward (Figure 1, left) and rightward (Figure 1, right) joystick movements.

From the montage of 64 scalp electrodes, we selected a sub-set of 12 surface leads from five
representative participants from which we assessed coherence among the EEG recordings.
The electrode sites overlay regions presumed, a priori, to have involvement in neural
processes engaged in visual-motor actions (e.g., Marconi et al., 2001; Bédard and Sanes,
2009). Subsequent studies will include assessment of EEG record from all sensors and also
entail source analysis. The current work was designed to explore the validity of the partial
coherence method as a tool to reveal connectivity across brain sites, particularly those
expected to have involvement in the visual-motor task used for this work. Thus, we assessed
partial coherence from EEG recorded between the following sensors: FC3, FC5, C3, P3, and
O1 over the left hemisphere; FC4, FC6, C4, P4 and O2 over the right hemisphere; and Cz
and Oz over the mid-line. The frontal (FC) leads were presumably placed over the prefrontal
cortex, regions previously shown to have involvement in premotor processing. The central
(C) leads were placed over structures involved in motor performance, while the parietal (P)
and occipital (O) leads were placed over structures involved in visual sensation and visual-
motor transformations (Marconi et al., 2001).

Partial coherence as a metric for functional connectivity
Partial coherence is a useful metric of dependency because it is highly specific in the sense
that it identifies the frequency bands that drive the direct linear association between EEG
signals. Using partial coherence does not require one to impose a rigid parametric structure
on the hypothesized network and hence is robust to model misspecification. In addition,
partial coherence has an appealing interpretation. Ombao and Van Bellegem (2008) showed
that coherence and partial coherence are equivalent to the cross-correlation and partial cross-
correlation, respectively, between filtered signals. Consider, for instance, a trivariate time
series X(t) = [U(t), V (t), Z(t)]’. First, apply a bandpass filter to each component to obtain
Xω(t) = [Uω(t), Vω(t), Zω(t)]’. Then the coherence between U(t) and V (t) at frequency ω is
equivalent to the cross-correlation between the filtered time series Uω(t) and Vω(t).
However, the linear association at frequency ω between U(t) and V (t) may be confounded
by the third component Z(t). So to obtain a measure of direct association between U(t) and V
(t), we must remove the effect Z(t). This motivates the use of partial coherence.

In the following discussion, we present two general strategies for estimating partial
coherence. We demonstrate that when the number of components is large, a one-step
procedure that uses the inverse of the spectral matrix is more mathematically elegant and
efficient than the recursive procedure.

A recursive procedure for estimating partial coherence—The following is one
approach to estimate partial coherence as described by Brillinger (2001) and further
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discussed by Medkour et al. (2009). Let fUV (ω) be the cross-spectra between U(t) and V (t),
and similarly define fUZ(ω) and fZV (ω). Let fZZ(ω) be the spectral density for Z(t). Then the
partial coherence between U(t) and V (t) is given by

(1)

where

(2)

Equation (2) can be interpreted as the autospectra or cross-spectra after removing the linear
effects of Z(t), e.g., gUU∣Z(ω) is the autospectra of U(t) after the linear effects of Z(t) have
been removed. Note how Equation (1) is analogous to the definition of the squared partial
cross-correlation.

Now suppose that we have a 4-variate time series [U(t), V (t), Z1(t),Z2(t)]’, and that we wish
to obtain the partial coherence between U(t) and V (t) after removing the linear effects of
Z1(t) and Z2(t). The procedure for computing partial coherence becomes recursive. First, let

(3)

and define

(4)

Then the partial coherence between U(t) and V (t) is given by

(5)

Equation (3) removes the linear effect of Z1(t) and can be computed using the appropriate
entries from the spectral density matrix. The resulting values can then be used in Equation
(4), which removes the linear effect of Z2(t). Finally, the partial coherence between U(t) and
V (t) can be calculated using Equation (5). This recursive procedure is repeated again to

obtain the partial coherence between all pairs of signals: , , ,

, and .

We can see that as the number of components in our signals increase, we must proceed
through many more layers of this recursive procedure, where at each step we remove the
linear effects of one of the components. Moreover, with this procedure, the estimated entries
of the spectral density matrix are simply plugged into the inital step [e.g., for each of
fUU∣Z1(ω), fV V∣Z1 (ω), and fUV ∣Z1 (ω) in Equation (3)] before nally obtaining an estimate of
the partial coherence for each pair of components. As a result, the variability in the
estimation of the entries of the spectral density matrix will propagate and accumulate and
will certainly affect the estimate of the partial coherence. Thus, this procedure is not
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computationally nor statistically efficient for obtaining all pair-wise partial coherence values
for all frequencies.

A one-step procedure for estimating partial coherence—An equivalent and
substantially more efficient way of obtaining all pairwise partial coherence for all
frequencies is via the inverse of the spectral density matrix. This approach is described by
Dahlhaus (2000) and has been used by Eichler et al. (2003) for neural spike trains, Medkour
et al. (2009) for EEG, and Salvador et al. (2005) for fMRI. We outline a systematic
approach given by Dahlhaus (2000).

Let X(t) = [X1(t), …, XP (t)]’ be a stationary P-channel multivariate time series with mean
 and spectral density matrix f(ω). The diagonal elements of f(ω), denoted fpp(ω), p

= 1, …, P, are the auto-spectra of the P channels and the off-diagonal elements, denoted
fpq(ω), are the cross-spectra between channels Xp(t) and Xq(t). Define the matrix g(ω) =
f−1(ω) and denote the diagonal elements as gpp(ω). Let h(ω) be a diagonal matrix whose

elements are . Define the matrix Γ(ω) to be

(6)

Then, the partial coherence between the p and q-th channels is the modulus squared of the
(p, q)-th element of Γ(ω), i.e.,

(7)

Thus, all pairwise partial coherence estimates can be computed simultaneously using the
inverse of the spectral density matrix.

Numerical instability of the estimated spectral density matrix—To use the above
estimate of partial coherence, we first need to estimate the spectral density matrix. Define
d(ω) to be the P-dimensional vector of Fourier coefficients of each component where the p-

th component is dp(ω) = ∑t Xp(t) exp(−iωt). Let  be the raw
periodogram matrix. The classical nonparametric estimator for spectral matrix is the
smoothed periodogram matrix f ̃(ω) = smoothλ in N(ω)I(λ) where N(ω) is a small
neighborhood (band) around ω. Under regularity conditions, the resulting estimator is
asymptotically mean squared consistent, but it can have a poor condition number (much
larger than 1) or even be non-invertible if the number of discrete frequencies in N(ω) is not
larger than the dimension P. The condition number of the estimated spectral matrix is the
ratio of the largest eigenvalue to the smallest eigenvalue. It quantifies the effect of a small
perturbation in the data on the inverse of the spectral density matrix, so that well-
conditioned spectral density matrices have condition numbers that are close to 1. It is
possible that the entries in the inverse of this matrix, as needed for partial coherence
estimation, are numerically unstable.

To obtain numerically stable estimates, it is necessary for the estimate of the spectral density
matrix to be well-conditioned. However, estimators based on the smoothed periodogram
have maximum eigenvalue that tend to overestimate the true maximum eigenvalue and
minimum eigenvalues that tend to underestimate the true minimum eigenvalue. Thus, the
condition number of the estimators is biased upwards, i.e., is relatively more ill-conditioned
(Böhm and von Sachs, 2009). One approach to getting well-conditioned estimates of the
spectral density matrix is by shrinkage towards a scaled identity matrix.
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Other estimators of the spectral density matrix include the Welch periodogram estimator, as
utilized by Sun et al. (2004) for fMRI analysis, and the multitaper, as described in Thomson
(1982) and Walden (2000) and used by Medkour et al. (2009) for EEG analysis. The Welch
periodogram estimator yields an estimator with low variance but can have poor frequency
resolution because it computes periodograms from smaller time blocks (thus with fewer
observations per time block). The multitaper procedure, on the other hand, can yield both
low bias and variance by picking the proper number of tapers. However, neither the Welch
nor multitaper methods guarantee that the resulting estimates are simultaneously well-
conditioned and localized in frequency. The shrinkage estimator is obtained as the
minimizer of the total mean squared error criterion (sum of the variance and the square of
the bias over all entries of the spectral density matrix). The shrinkage estimator does not
split the time series into smaller time blocks so it has better frequency resolution than the
Welch periodogram and, as we will later describe, the shrinkage weight for the shrinkage
estimator is constructed so that the total mean squared error is minimized. Thus, its
performance is comparable to the multitaper. A desirable property of the shrinkage estimator
is that it has a condition number that has been shrunk closer to 1 and hence, it is relatively
more well-conditioned than either the Welch or multitaper estimators.

Two potential problems that affect the stability of the spectral density matrix are high-
degrees of multicollinearity in the data and side-lobe leakage (Medkour et al., 2009). The
latter problem can be addressed by passing the multivariate time series through a linear lter.
Böhm (2008) showed results of a simulation in which the estimation of the spectral density
matrix via shrinkage improves further if the data are passed through a linear lter. The
shrinkage estimator we propose will address the former problem.

Theoretical motivation for the shrinkage estimator—Shrinkage estimators in
general are known to have desirable properties. First, shrinkage estimators have lower mean
squared error than the classical smoothed periodogram matrix. We refer the reader to Böhm
(2008) and Böhm and von Sachs (2009) for technical details. Moreover, shrinkage
estimators are easy to implement and give results that are numerically stable. The shrinkage
estimator is guaranteed to have a lower condition number than the smoothed periodogram.
Thus, the estimate of the inverse of the spectral density matrix and, consequently, the
estimates of partial coherence are expected to be more numerically stable.

Medkour et al. (2009) describes a similar idea for regularizing the spectral density matrix for
EEG signals estimated via the multitaper procedure. Their approach is to upweight the
diagonal elements of the estimated spectral density to increase the minimum eigenvalue, and
hence, improve the condition number. The philosophy behind their approach is to upweight
the diagonal elements enough to dampen the effects of side-lobe leakage on the estimation
of the spectral density matrix. In contrast, the shrinkage approach we will describe is a
weighted average of an initial estimator f ̃(ω) and an energy-preserving estimator μ(ω)1. This
is similar to downweighting the initial estimator – in particular, its diagonal elements – and
then adding positive scalars to the diagonal elements of the downweighted initial estimator.
While both approaches respond to the need for having well-conditioned estimates, our
proposed shrinkage procedure data-adaptively selects the weights that gives the estimator
having the smallest mean-squared error.

Estimating and testing for differences in functional connectivity
First, we propose the shrinkage estimator that yields a relatively more numerically stable
estimate of partial coherence. Second, to test for differences in functional connectivity, we
describe a simple randomization procedure. Our estimation and testing methods both
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consider the problem of numerical instability throughout the statistical analysis of functional
connectivity.

Shrinkage estimation for partial coherence—To obtain a stable estimate of partial
coherence, we first need to provide a numerically stable estimate of the spectral density
matrix f(ω). The shrinkage estimator, denoted f ̂(ω), is a weighted average of the mildly-
smoothed periodogram f ̃(ω) and the scaled identity matrix μ(ω)1:

(8)

where W(ω) is the shrinkage weight. The scale μ(ω) is the mean power in the multivariate
time series so that the shrinkage estimator will preserve the energy in the sample. The
shrinkage weight W(ω) is constructed so that the mean squared error is minimized. The
formula for the weight W(ω) is reported in the Appendix.

Böhm (2008) derived the analytical form of the shrinkage weight and showed that it is
proportional to the total mean squared error of the smoothed periodogram. If the smoothed
periodogram has small error, then most of the weight will be shifted toward f ̃(ω). Böhm
(2008) also gives a procedure for estimating the weight, and shows that the resulting
shrinkage estimator is mean squared consistent. However, the method in Böhm is based on
only having a single multivariate time series. We adapt the procedure given by Böhm (2008)
to our situation where we have several multivariate time series recordings (e.g.,
multichannel EEGs from several trials).

We now describe how to construct the shrinkage estimator. First define the n-th trial
multivariate time series to be Xn(t) = [Xn1(t), …, XnP (t)]’, where n = 1, …, N and t = 1, …,
T. For each trial Xn(t), we can obtain a trial-specific estimator fn(ω) for the spectral density
matrix by smoothing the raw periodogram matrix for that particular trial. If we assume that
the underlying process is stationary, then a reasonable estimator for the spectral density
matrix is the average of these trial-specific estimators, i.e.,

(9)

We compute the mean power

(10)

where f̃jj(ω) denotes the (j, j)-th element of f ̃(ω). What remains is to provide an optimal
estimate for the shrinkage weight. We motivate and describe the procedure for estimating
the weight in the Appendix.

Using the shrinkage estimate f ̂(ω) of the spectral density matrix f(ω), we can proceed with
estimating partial coherence. Following Equation (6), we obtain an estimator for Γ(ω) as
follows. First, we get ĝ(ω) = f ̂−1(ω) via (8) and define ĥ(ω) to be a diagonal matrix whose

elements are . The estimator for the matrix Γ(ω) is
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(11)

and so the estimated partial coherence between channels p and q is the modulus squared of
the (p, q)-th element of ,

(12)

Algorithm for constructing the shrinkage estimator for the spectral density
matrix—The following is a step-by-step procedure for constructing the shrinkage estimator.

Step 1. For each trial, transform the multivariate time series to the frequency domain to
obtain the raw periodogram matrix. Average the raw periodogram matrices over the
trials.

Step 2. Smooth each trial-specific periodogram matrix and use Equation (9) to obtain f ̃
(ω).

Step 3. Use Equation (10) to estimate the mean power.

Step 4. Use Equation (17) to estimate the shrinkage weight W(ω). The procedure is
given in the Appendix.

Step 5. Finally, use Equation (8) to construct the shrinkage estimator f ̂(ω).

Randomization test for comparing functional connectivity—Once we have used
the shrinkage estimator to estimate functional connectivity for each experimental condition,
we would like to look for differences in functional connectivity across experimental
conditions. Our approach to accomplish this goal is to use a randomization test. The
randomization test does not rely on strong assumptions about the data, making it more
robust relative to parametric procedures for hypothesis tests, and has been successfully
implemented in the analysis of brain signals (e.g., Nichols and Holmes, 2001; Raz et al.,
2003).

The randomization procedure proceeds as follows. Under the null hypothesis that functional
connectivity does not vary across conditions, we can change condition labels because the
condition should not matter as far as functional connectivity is concerned. We create an
empirical distribution of differences in connectivity under the null hypothesis of no
difference by resampling and then relabeling the data under the assumptions that the signals
are stationary and that the multivariate time series from the trials in the experiment are
independent.

Let Ln(t) = [Ln1(t), …, LnP (t)]’ and Rm(t) = [Rm1(t), …, RmP (t)]’, n = 1, …, N and m = 1,
… M denote the observations from n-th and m-th trial from experiment conditions
“leftward” and “rightward” movements, respectively. The algorithm of the randomization
procedure is as follows:

Step 1. Draw  and , n = 1, …, N and m = 1, …, M, each with replacement
from the pooled data set {L1(t), …, LN(t), R1(t), …, RM(t)}. Call this the b-th pseudo-
data set.
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Step 2. Use Equation (12) to estimate the partial coherences  for 

and  for . Compute .

Step 3. Repeat Step 1 and Step 2 B times to construct an empirical distribution for the
differences.

Step 4. Using the observed data, compute . Reject
the null hypothesis of no difference between conditions in connectivity between the p-th
and q-th channels if Δpq(ω) is in the upper or lower tails of the empirical distribution.

Results
Numerical experiment

Using synthetic data, we compared the performance of the shrinkage estimator against the
standard approaches, namely, the smoothed periodogram as given in Equation (9) and the
multitaper with 15 orthogonal tapers. For the smoothed periodogram, we smoothed around a
neighborhood of M = 21 discrete frequencies. For the multitaper estimate, we used the
multitaper to estimate the spectral density matrix for each trial, and then took the average of
these estimates across all trials. We then compared the total mean squared error of the
methods.

In our numerical experiment, one synthetic dataset consisted of N = 100 trials, with each
trial with P = 15 channel multivariate time series with T = 256 time points. The time series
data were generated from a 15-dimensional second-order vector autoregressive process: X(t)
= φ1X(t − 1) + φ2X(t − 2) + ∈(t). The noise ∈(t) was drawn from a 15-dimensional
Gaussian distribution with covariance matrix the identity matrix. The coefficient matrices φ1
and φ2 were

where

and

We generated 1500 synthetic data sets. For each data set, we estimated the spectral density
matrix and the matrix of partial coherence values ρ2(ω). For each frequency and for each
data set, we evaluated the total squared error over all of the entries of the spectral density
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matrix. We then averaged the total squared error across the data sets to obtain an estimate of
the mean squared error. This allowed us to evaluate efficacy of each estimator at each
frequency. To summarize the total mean squared error, we used the integrated mean squared
error (IMSE) which is the sum (across all frequencies) of the average squared error per
synthetic data. We also provided the integrated standard error of the MSE to demonstrate
that the shrinkage method gave less variable results.

From Figure 2, we see that the shrinkage estimator has smaller mean squared error than the
smoothed periodogram over all frequencies, just as we expected. The weight of the
shrinkage estimator was picked to minimize mean squared error, and this is illustrated in the
standard error of the IMSE in Table 1. Moreover, the standard error demonstrates that the
shrinkage method gave less variable results for both the entries of the spectral density matrix
and partial coherence. Though the shrinkage estimator is intended to be an estimator for the
spectral density matrix, we see large improvements over the smoothed periodogram for
estimating partial coherence. Moreover, we also see that the shrinkage estimator can be
competitive with the multitaper.

We have so far shown the performance of the shrinkage estimator with respect to mean-
squared error. Recall that the goal of the shrinkage estimator is to provide a numerically
stable estimate of the spectral density matrix. To illustrate that this is the case, we look at the
condition numbers of each of the competing estimators as shown in Figure 3. We note that,
as expected, the smoothed periodogram has condition numbers that are biased upwards over
all frequencies. The condition numbers for the multitaper are also biased upwards. The
shrinkage estimator does not yield unbiased estimates of the condition numbers. Rather, the
shrinkage estimator corrects for the upward bias of the smoothed periodogram by shrinking
the condition number down.

Analysis of the EEG Dataset
While the novel shrinkage method is applicable to general multivariate time series, here we
applied it to an EEG sensor dataset recorded during rapid, discrete hand movements
performed in response to visual cues (see Methods). To illustrate the new method, we
compared connectivity occurring during the leftward and rightward experimental conditions.

First, for each condition, and for each pair of channels p, q, we tested the null hypothesis of
zero partial coherence over a frequency band of interest. We used Equation (12) to estimate

 at each frequency, and then take the average over the frequencies in the frequency
band of interest to obtain an estimate of partial coherence at that particular frequency band.
To obtain a significance threshold for partial coherence, we followed the result given by
Eichler (2007). To conservatively control for multiple tests between all possible pairs of
regions and within a frequency band, we tested H0 at level α = 10−6.

Next, after having obtained the point estimates for partial coherence for each condition, we
tested the difference between the two conditions, i.e., we tested the hypothesis H0 : Δ(ω) = 0
versus H0 : Δ(ω) ≠ 0, where Δ(ω) is the difference across conditions in partial coherence at
a frequency band of interest. We tested H0 at level α = .05 using B = 5000 bootstrapped
samples. In this analysis, we assumed that the EEGs were uncorrelated across trials. We
believe that this assumption is reasonable given that there is approximately a 4 second time
period between the last observation of a trial and the rst observation of the next trial.
Moreover, we computed the cross-correlation values between trials (using the last few time
points of one trial and the first few of the next) and noted that the between-trial squared
correlation is on the lower quartile (lower tail) of the empirical distribution of the within-
trial squared correlation. This suggests that between-trial correlation should not make a very
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strong impact when performing inference on within-trial connectivity. We then considered
only the significant differences between regions p and q conditional on having rejected the
hypothesis H0 : ∣ρpq(ω)∣2 = 0 for at least one of the conditions. The results across
participants were varied but due to the small sample size it was not sensible to perform a
group-level analysis. We present results of the single-subject analyses for each of the ve
subjects. The connectivity maps and difference maps for each of the subjects are displayed
in Figures 4, 5, 6, 7, and 8.

We report the results of our analysis. For both the alpha and beta frequency bands and for
both the leftward and rightward experimental conditions, we observed significant
connectivity from the occipital (O) to the parietal (P) leads for most subjects. However,
there was no direct connectivity from the occipital to the central (C) nor the frontal (FC)
leads. In addition, there were significant connectivity between the parietal and central leads
but there was no direct connectivity between the parietal and the prefrontal leads, suggesting
an indirect connectivity between the parietal region (associated with visual-motor
transformations) and the prefrontal central region (associated with pre-motor processing)
through the central region (involved in motor performance). All subjects showed
connectivity between hemispheres through the mid-line leads (Oz and Cz). However, in the
beta band, some subjects also showed significant connectivity between hemispheres directly
via the frontal leads. The connectivity maps seem to confirm that the sub-selected electrodes
are indeed relevant and involved in the brain network for this visual-motor activity.
Comparing connectivity between the leftward and rightward conditions, there were signi
cant differences in the connectivity only between frontal and central leads and only at the
alpha band. There were no significant differences between connectivity at other pairs of
leads. Moreover, there were no differences in connectivity in the beta band. This suggests
that connectivity in the alpha band between the central and frontal leads might be a useful
feature for classifying EEG signals. However, its utility for predicting motor intent using
single-trial EEGs needs to be studied further.

Discussion
To overcome the potential problem of numerical instability when estimating partial
coherence for general stationary multivariate time series data, we proposed a shrinkage
method that uses the inverse of the spectral density matrix (as opposed to the recursive
procedure). Any estimate derived from the inverse of a spectral density estimate can be
potentially imprecise when the spectral estimate is obtained using non-regularized methods.
Medkour et al. (2009) also recognized this problem and proposed a regularization strategy.
The underlying principle behind their approach is similar to ours but their shrinkage
parameters are selected in an ad-hoc manner. Our proposed method, on the other hand, uses
an objective procedure so that the estimates of the shrinkage weights are minimizers of the
mean-squared error criterion. The shrinkage estimator of the spectral density matrix is
guaranteed to be more numerically stable than the existing methods based on smoothing.
Both theory and numerical studies demonstrate that shrinkage methods have lower mean-
squared error than classical smoothing-based procedures. To illustrate the method, we
applied it to an EEG data set recorded in visual-motor task to identify signi cant connectivity
between leads and to test for differences in connectivity between the leftward vs. rightward
experimental conditions.

Here, we focused on partial coherence as a measure of connectivity. Spectral measures of
connectivity are more specific than contemporaneous (zero-lag) cross-correlation or partial
cross-correlation because they can identify the frequency band (or bands) that drive any
linear association between a pair of time series. Coherence is a popular metric of choice for
connectivity, so we point out its similarity and difference with partial coherence. Both are
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equivalent if the linear association between two signals is not being driven by another signal.
In addition, both have the appealing interpretation of the cross-correlation or partial cross-
correlation between band-pass ltered signals (Ombao and Van Bellegem, 2008). However,
compared to coherence, partial coherence gives a more specific conclusion because, if
statistically significant, it implies that the linear association between the two signals are not
being driven by another signal included in the network of interest. However, we cautiously
note that there could still be a “lurking signal” not included in the network that is driving the
linear association. If partial coherence is not significant, the interpretation is more
conclusive: it implies that there is no direct linear association between the pair of signals and
that this conclusion will not change even if additional EEG channels are included in the
analysis.

Another approach to studying direct connectivity uses graphical models. Graphical models
provide a visual representation of the connectivity structure of the system and have already
been used for the analysis of functional connectivity (e.g., Salvador et al., 2005; Marrelec et
al., 2006; Medkour, et al., 2009). Graphical models have been well studied in multivariate
time series literature (e.g., Dahlhaus, 2000), and the developments in the theory and
applications of partial coherence for determining the connections between the components
of the multivariate time series have led to partial coherence being a well-accepted metric for
connectivity in the graphical sense between the components of the time series, or in this
framework, between different regions of the brain.

Appendix: Formulas for the shrinkage weights
The theoretical shrinkage weight is proportional to the mean squared error of the smoothed
periodogram matrix averaged over the trials. Here, we estimate the weight from the data as
follows. Let

(13)

recalling that 1 is the P × P identity matrix so that 1ij = 0 if i ≠ j and 1ij = 1 if i = j. The
proportionality constant is 1/δ(ω). Now to give an estimate of the total mean squared error
of the smoothed periodogram at frequency ω, which we denote as β(ω), we look at the local
variance, that is, we use the frequencies around ω to estimate the variance. Call I(ω) the
average over all of the trials of the raw periodograms. Then the local variance at frequency
ω for the (i, j)-th entry of the spectral density matrix can be estimated with

(14)

where M is the number of discrete frequencies in the neighborhood for smoothing. Then the
total mean squared error is to sum the above equation over all entries of the spectral density
matrix, that is,

(15)

To ensure that the weight is between 0 and 1, we set
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(16)

So then nally, the shrinkage weight is

(17)
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Figure 1.
Left: representative 12-channel EEG recorded from one trial for the left condition. Right:
representative 12-channel EEG recorded from one trial for the right condition.
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Figure 2.
Mean squared error estimated via Monte Carlo.

Fiecas et al. Page 16

Neuroimage. Author manuscript; available in PMC 2011 July 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Bias of each estimator estimated via Monte Carlo.
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Figure 4.
Connectivity map for Subject 1
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Figure 5.
Connectivity map for Subject 2
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Figure 6.
Connectivity map for Subject 3
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Figure 7.
Connectivity map for Subject 4
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Figure 8.
Connectivity map for Subject 5
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Table 1

Comparison of the three estimators. Reported values are the integrated empirical mean-squared error (IMSE)
averaged over 1500 synthetic data sets. Values in parenthesis are the standard deviation of the empirical
IMSE.

Estimator Spectral Density Matrix Partial Coherence

Smoothed Periodogram 2.1886 (0.2126) 19.856 ×10−4 (4.6415 ×10−4)

Shrinkage 1.0797 (0.0980) 1.6937 ×10−4 (0.5859 ×10−4)

Multitaper 1.5560 (0.1527) 9.3517 ×10−4 (2.3293 ×10−4)
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