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Abstract

Mapping cerebrovascular reactivity (CVR) to hypercapnia is important both clinically and

for improved understanding of the haemodynamic properties of the BOLD effect. In this

work BOLD/R2* CVR was investigated by using a device which provided small,

repeatable and stable steps in PETCO2, whilst maintaining a steady PETO2 level.

Significant CVR was observed in both grey and white matter at both 3 & 7T, whilst an

approximately linear relationship found between R2* CVR and field strength has

implications for BOLD models and calibration. Grey matter R2* CVR was 0.066±0.004

s-1 mmHg-1 at 3T and 0.141±0.008 s-1mmHg-1 at 7T. White matter R2* CVR was

0.021±0.003 s-1mmHg-1 at 3T and 0.040±0.007 s-1mmHg-1 at 7T.
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Introduction

The ability of the body to modulate cerebral blood flow (CBF) is important both

clinically and in understanding the haemodynamic response to neuronal activation. The

cerebral vasculature has considerable vascular constrictor and dilator reserves. CBF is

very sensitive to changes in arterial PCO2 (PaCO2), increasing 4-6% per 1 mmHg increase

in PaCO2 (Noth et al. 2006; Pollock et al. 2009). On the other hand previous studies

suggest mild hypercapnia does not significantly alter CMRO2 (Davis et al. 1998; Chen

and Pike 2009). Therefore in response to hypercapnia the concentration of

deoxyhemoglobin [dHb] in venous blood decreases dramatically causing a BOLD signal.

Cerebrovascular reactivity (CVR) as measured by BOLD MRI is defined as the change in

BOLD signal in response to a change in PaCO2 and provides a measure of the capacity of

vessels to react to a stimulus. This technique has been applied to map the regional

distribution of CVR in cerebrovascular disease such as stroke and carotid artery stenosis

and occlusion (van der Zande et al. 2005; Mandell et al. 2008). The BOLD CVR is also

of particular interest since it is used in calibrated BOLD: either the functional BOLD

response to a task is divided by the BOLD response to mild hypercapnia on a voxel-by-

voxel basis, or alternatively the functional BOLD response to a task is used to estimate

δCMRO2 based on the model of Davis et al.(Davis et al. 1998).

Many studies (Kastrup et al. 2001; Vesely et al. 2001; van der Zande et al. 2005;

Wise et al. 2007; Prisman et al. 2008) have measured BOLD CVR by inducing a step

change in PaCO2. Since direct measurement of PaCO2 is invasive, the exhaled ‘end-tidal’

PCO2 (PETCO2) of expired gases is sampled instead. Cohen (Cohen et al. 2004) used a

single step change in PETCO2 (5% CO2 for 3 minutes) and showed that BOLD CVR

increased with field strength (considering 1.5, 4 & 7T). Mandell (Mandell et al. 2008)

found a close correlation between BOLD and CBF changes in response to a single step
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change in PETCO2 of 10 mmHg PETCO2. Hoge (Hoge et al. 1999) (1.25, 2.5, 3.75 and 5%

CO2) and Stefanovic (Stefanovic et al. 2006) (5, 7.5 and 10% CO2) measured both CBF

and BOLD signal changes in response to multiple steps in PETCO2 to estimate CMRO2.

Posse (Posse et al. 2001) modulated PETCO2 from 20-70 mmHg, to probe T2* CVR over a

large range. With the exception of Hoge (Hoge et al. 1999), all the studies have used

large steps in PETCO2 (≥10mmHg), to provide good contrast-to-noise ratio (CNR) in the 

CVR measurement. However, such large steps prevent a thorough examination of the

relationship between CVR and PaCO2.

MR studies of CVR have variously studied changes in the BOLD signal or T2*.

However it is the change in R2* (determined by the change in blood volume and

oxygenation (Yablonskiy and Haacke 1994)) that is the primary haemodynamic response

to an increase in blood flow, rather than the BOLD effect, which also depends on the

baseline R2* and potentially blood inflow effects.

The aim of this study was to assess the dependence of R2* CVR on PaCO2 over the

normal physiological range and to investigate how the BOLD signal resulting from this

controlled challenge varies with field strength, between 3T and 7T. As field strength

increases, the intrinsic signal-to-noise-ratio (SNR) and the R2* and hence BOLD signal

increases and the contribution of blood to the total signal decreases (Yacoub et al. 2001;

van der Zwaag et al. 2009). Therefore a cross-field study of the effect of CVR on the

BOLD signal will provide some insight into the underlying mechanisms of the BOLD

effect. We used a RespirAct™ system (Thornhill Research Inc., Toronto, Canada) to

apply precise, small, well tolerated, iso-oxic step changes in PETCO2 in a pseudo random

order. The BOLD and PETCO2 data was analysed on a point by point basis to include data

generated during the PETCO2 transitions and thus sample a wider range of PETCO2 levels.
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Methods

Five healthy males with a mean age of 25 years (range 23-29 years) took part in

the study. Approval for the study was obtained from the University of Nottingham

Medical School Ethics Committee and all subjects gave written informed consent.

Control of end-tidal gas

A feed-forward, low gas flow system (RespirAct™, Thornhill Research Inc.,

Toronto, Canada) and a sequential gas delivery (SGD) breathing circuit (Figure 1)

(Banzett et al. 2000; Slessarev et al. 2007) were used to target PETCO2 and PETO2

independently (Slessarev et al. 2007). Source gases used by the system were O2, air, and

two gas blends of N2, CO2 and O2, so that all source gases were of safe O2 concentrations.

The Respiract™ follows the approach of Slessarev et al. (Slessarev et al. 2007) to

calculate the required flows of these source gases into the SGD breathing circuit to attain

the targeted PETCO2 and PETO2.

The system comprises of an inspiratory and exhaled gas reservoir. During gas

delivery, the subject was instructed to empty the inspiratory gas reservoir with every

breath. Additional inspired gas, if required, was then drawn from the exhaled gas

reservoir through a second valve that opens once the inspiratory reservoir is collapsed (as

previously exhaled gas has already equilibrated with the blood, breathing in this gas has

no effect on gas exchange). Gas exchange is therefore determined solely by inhaling the

gas supplied, independent of ventilation. The gas exchange for CO2 and O2 are controlled

independently using the same approach (Slessarev et al. 2007). An important aspect of

this system is that it reduces regional gas gradients in the lung, thus the PETCO2 provides

as good a measure of PaCO2 as direct arterial blood analysis (Ito et al. 2008).
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Protocol

The face mask of the breathing circuit was placed comfortably on the face of the

subject and skin tape (Tegaderm, 3M Health Care, St.Paul, MN) was used to assure an

air-tight seal to the face. The subject was then positioned in the magnet. The gas supply

and sample tubing were passed through a wave guide to the control room where they were

connected to the Respiract™. Prior to performing the CO2 challenge, subjects simply

breathed medical air through the system. Target end-tidal values were entered into the

Respiract™, which prospectively calculated the delivered gas concentrations to achieve

the targets based on estimated metabolic values. During the respiratory challenge,

subjects were visually cued to breathe at approximately 15 breaths/min (between 6 and 24

breaths/min, the actual breathing frequency does not affect the results (Ito et al. 2008))

and sufficiently deep to always empty the inspiratory gas reservoir. Prior to placing the

subject in the magnet, required metabolic values were estimated iteratively by targeting a

baseline (40 mmHg PETCO2, 100 mmHg PETO2) and refining the metabolic estimates so

that the baseline is achieved. The hypercapnic challenge consisted of an initial 3 minute of

baseline PETCO2 (40 mmHg) period followed by 2 minute period of a target PETCO2 level,

followed by 1 minute of baseline with this cycle repeated 5 times to include PETCO2

levels of 49, 43, 37, 40 or 46 mmHg, presented in the pseudo-randomised order. PETO2

was targeted at 100 mmHg throughout the sequence. Following the CO2 challenge,

PETCO2 was set to baseline for 1 min before returning to spontaneous ventilation on air.

Image Acquisition

MR scanning was performed on a Philips Achieva 3.0T system, with a whole body

volume transmit and 8-ch SENSE head receive coil, and a Philips Achieva 7.0T system,

with head volume transmit and 16-ch SENSE head receive coil. Axial images were
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acquired using a double-echo, single shot EPI sequence (SENSE factor = 2, TE = 16/81

ms with 30 ms readout per echo at 3T, TE = 20/57 ms with 37 ms readout per echo at 7T);

TE values were optimised for R2* measurement rather than BOLD contrast, 192x192 mm

FOV, 2x2x3 mm3 voxels with 9/10 slices (3T/7T), and no slice gap, in a TR of 1.5 s.

Figure 3 shows the typical slice coverage at both 7 and 3 T. For tissue segmentation

inversion-recovery (IR)-EPI images were acquired with the same geometry, with grey

matter (GM), white matter (WM) and CSF nulled (TI = 600/900/1900 ms at 3T and TI =

600/1100/2200 ms at 7T). For vein segmentation a high-resolution (0.8mm isotropic) T2*-

weighted fast field echo (FFE) FLASH (TR/TE = 50/20 ms, EPI factor = 3, BW = 167

Hz) image which minimizes geometric distortions was also acquired at 7T.

Data Processing

All data pre-processing was performed using FSL (FMRIB, Oxford, UK).

EPI data acquired during the hypercapnic challenge was motion corrected (separately at 3

& 7T) by realigning the shorter TE images to the first dynamic using MCFLIRT

(Jenkinson et al. 2002), then applying the registrations to both TE images. R2* was

calculated on a voxel-by-voxel basis from the difference in the log of the signal at each

echo time, divided by the difference in echo time. The IR-EPI images were then

segmented (BET and FAST, FSL) to generate a GM mask and GM, WM and CSF partial-

volume estimates. The WM mask only included voxels that were estimated to be at least

99% WM, to avoid significant partial-voluming from GM reactivity. It was not possible

to time lock the MR acquisition and PETCO2 time course, and so the breath-by-breath

PETCO2 trace was linearly interpolated to match the sampling frequency of the MR data,

and then manually shifted to temporally align the PETCO2 timecourse with the R2*

timecourse averaged over all GM voxels (estimated error is one interpolated time point).

This allowed the actual level of PETCO2 and R2* to be compared on a point-by-point basis
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across a range of PETCO2 levels (rather than simply comparing the signal change at

prescribed PETCO2 levels). Linear regressions were performed to calculate average GM

and WM R2* CVR to PETCO2, defining R2
* CVR as the absolute change in R2* (measured

by the gradient of the linear regression) for a 1 mmHg change in PETCO2. The fit

uncertainties were used to assess the error in R2* CVR.

The SNR in the R2* data was not adequate to allow R2* CVR maps to be

produced. Instead BOLD CVR maps were generated combining the double echo data; the

SNR in the BOLD data was increased by weighted summation of the EPI images acquired

at each echo time (Posse et al. 1999), with the weighting based on a T2* map calculated

from the average baseline signal at both echo times. This was done for each time point

and on a voxel-by-voxel basis and the resulting time course was then normalized to the

baseline and baseline corrected ((weighted sum signal/average baseline weighted sum

signal) – 1), where the baseline was defined as the 40 mmHg PETCO2 step. For each

voxel, the normalized, baseline corrected, summed BOLD signal was plotted against the

PETCO2 signal on a time point by time point basis, after temporal alignment. The gradient

of the linear fit to this plot was used to map BOLD CVR on a voxel-by-voxel basis. The

fit uncertainties were used to assess the errors in BOLD CVR.

In order to consider the R2* CVR of tissue alone, excluding large vessels, the

FLASH T2*-weighted image acquired at 7T was used to identify veins, since at 7T veins

have a shorter T2* and so lower signal intensity than the surrounding tissue. Initially

regions outside of the brain were removed from the images using the brain extraction tool

(BET) in FSL (Smith 2002). The image was then inverted, so that voxels dominated by

veins had a high intensity, a third-order polynomial filter was then applied to remove

large-scale inhomogeneities and nearest-neighbour smoothing performed. The smoothed

image was then subtracted from the unsmoothed image to locate voxels with a significant
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venous fraction. Intensity thresholding was performed to produce a binary mask of

voxels dominated by veins and cluster analysis performed to remove any isolated voxels.

The FLASH image was resized to 2x2x3 mm3 and co-registered to both the 7T and the 3T

EPI datasets and these transformations were then applied to the resized binary mask. This

mask was applied to the R2* time-series to remove these voxels before averaging, thus

allowing a comparison of GM and WM R2* CVR with and without the inclusion of large

vessels.

Results

Similar changes in PETCO2 level were achieved across all subjects. Figure 2

shows a representative subject. Across all subjects the step sizes were consistently a third

less than targeted. Despite this, clearly resolvable PETCO2 transitions were achieved (Fig.

2b) whose level was well maintained over the 2 minute period. The PETO2 levels reached

a steady state within the initial 3 minute baseline period (Fig. 2c) and then had a

maximum range of 5 mmHg (across all subjects and all PETCO2 challenges).

The R2* time-courses closely followed the PETCO2 time-course at both field

strengths (Fig. 2a). The BOLD CVR maps show good GM contrast at both field strengths

(Figure 3) and clear distinction between grey matter and white matter. Increased reactivity

is observed in the 7T compared to 3T CVR maps. Table 1 shows individual GM R2*

reactivities both including and excluding voxels dominated by veins. Figure 4(a,b) plots

the GM averaged R2* reactivity at 7 and 3T including data for each of the five subjects.

Average GM R2* reactivities agreed well between subjects (Figure 4). Including voxels

dominated by veins, GM R2* CVR was 2.0±0.4 times higher at 7T than at 3T (averaged

over all subjects): GM R2* CVR was 0.074±0.007 s-1mmHg-1 at 3T and 0.145±0.020 s-

1mmHg-1 at 7T. Excluding voxels dominated by veins GM R2* reactivity was 2.1±0.5

times higher at 7T than at 3T (averaged over all subjects): GM R2* CVR was 0.066±0.004
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s-1 mmHg-1 at 3T and 0.141±0.008 s-1mmHg-1 at 7T. There was a significant increase in

the GM R2* CVR 7T/3T ratio between the case when vessels were included and when

they were excluded (P =0.06, Wilcoxon paired). Contrast-to-noise ratio (CNR) was

calculated for GM R2* CVR as 0.88 mmHg-1 at 7T and 0.98 mmHg-1 at 3T. This was

calculated by dividing the GM R2* CVR by the variance (GM R2* standard deviation) of

the 40 mmHg PETCO2 step, averaged over all subjects.

The paradigm provided sufficient sensitivity to detect an average WM R2* CVR

(Table 2) of 0.021±0.003 s-1mmHg-1 at 3T and 0.040±0.007 s-1mmHg-1 at 7T with veins

removed. Figure 4(c,d) plots the WM averaged R2* reactivity at 7 and 3T for each of the

five subjects.

Discussion

This study has combined a versatile and accurate method for controlling and

measuring PETCO2 and PETO2 with a quantitative R2* measurement to provide a new time

point-by-time point approach to monitoring CVR using MRI. Small, readily tolerable

steps in PETCO2 over a naturally occurring range of PETCO2 (37 – 49 mmHg) were used.

The rapid sampling of the PETCO2 and MR data allowed point-by-point temporal analysis

which improved sensitivity in CVR, allowing measurement of GM reactivity and

detection of significant WM reactivity, at both 3 and 7T.

The technique to control blood gases used in this study allowed independent

control of PETCO2 and PETO2, to provide transitions to and between stable PETCO2 levels,

whilst maintaining PETO2 at a constant level (Slessarev et al. 2007). PETCO2 transitions

were achieved within one or two breaths. It is essential that a constant level of PETO2 is

maintained, as the BOLD signal is modulated by the O2 content (hyperoxia) of the blood

which could otherwise confound the relationship between CBF changes and BOLD signal

(Prisman et al. 2008). Increasing PaO2 above resting levels, in which arterial haemoglobin
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is near fully oxygenated, dissolves more O2 in blood plasma. This pool of O2 then spares

the O2 that would be extracted from oxygenated-haemoglobin, and thus reduces the

venous [dHb]. To date, few approaches that change PETCO2 to probe the relationship

between hypercapnia and BOLD signal have controlled PETO2. Simple breath holding,

which has the advantage of requiring no additional equipment (Kastrup et al. 2001;

Scouten and Schwarzbauer 2008), does not generate repeatable stimulus levels (due to

inter-subject and inter-session variability in resting metabolism) (Bulte et al. 2009), does

not allow lung gas to be monitored during the breath-hold (as no gas is exhaled), and

produces a coupled reduction in PaO2 (Sasse et al. 1996). Alternatively, PETCO2 is often

modulated by providing two different inspired gas mixtures, typically containing oxygen,

nitrogen and either 0% CO2 (baseline) or 5% CO2 (hypercapnic challenge) (Davis et al.

1998; Cohen et al. 2004; Wise et al. 2007). However the level of PETCO2 that is achieved

using such a method depends on the particular ventilatory response of the volunteer.

Since inhaling CO2 causes hyperventilation, PETO2 will rise even if the inspired PO2 is

constant. PETCO2 and PETO2 can be controlled independently by a method termed

dynamic end-tidal forcing (Wise et al. 2007). This method uses a computer controlled

feedback mechanism to correct the supplied gas concentrations based on breath-by-breath

sampling of PETCO2 and PETO2. However, feedback mechanisms are hampered by the

delay and dampening of the exhaled gas changes over the time they take to reach the gas

sensors, which have to be positioned far from the subject in high-field experiments. Thus

with dynamic end-tidal forcing, PETCO2 may not provide a good estimate of PaCO2 (St

Croix et al. 1995).

Previously, T2* (not R2*) CVR has been measured (Posse et al. 2001), with a non-

linear relationship observed over large (10 mmHg) PETCO2 steps. PETO2 was not

controlled and the high gas flow rates used to achieve high (70 mmHg) and low (20
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mmHg) PETCO2 target levels would have induced hyperventilation, leading to increased

PETO2 (not monitored), arterial oxygenation and a further increase in T2*, which may have

accounted for some of the non-linearity. However, a rough conversion of their results

from T2* to R2*(=1/T2*) shows an approximately linear relationship between R2* and

PETCO2 from 40-60 mmHg.

This study used high spatial resolution compared to previous CVR studies, which

will have reduced partial volume effects between GM and WM, and allowed us to exclude

venous vessels. In this study we found an increase in R2* CVR with field strength, which

is consistent with previous cross-field BOLD CVR studies (Cohen et al. 2004).

Removing voxels with large venous components reduced the R2* CVR at both field

strengths, consistent with the intravascular/perivascular signal dominating the BOLD

signal change. Furthermore this reduction in reactivity was larger at 3T than 7T. This is

expected since the R2* of blood is much greater at 7T, so the direct signal contribution

from blood is reduced.

The results also suggest that the power law relating the change in R2* to frequency

shift (due to change in relative intravascular susceptibility or field strength) is close to

linear (7/3=2.3) between 3 and 7 T, and by excluding voxels dominated by veins the

7T:3T R2* reactivity ratio was increased. Yablonskiy (Yablonskiy and Haacke 1994)

predicted a linear relationship for extravascular dephasing if vessels were assumed to be

randomly orientated. A linear relationship between R2* and frequency offset is expected

in the static dephasing regime, whereas supralinear relationships are associated with

intermediate and fast dephasing regimes. The effect of diffusion on transverse relaxation

around a vein will depend on vessel size and frequency offset due to the vein as well as

echo time. For the echo times used here, as the frequency offset increases, the vessel size

at which the static dephasing limit dominates decreases (Kennan et al. 1994). Monte Carlo
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simulations predict supralinear behaviour at 1.5T (Ogawa et al. 1993; Davis et al. 1998),

with 3T being the boundary between linear and supralinear behaviour (Boxerman et al.

1995). It should be noted that the BOLD calibration method (Davis et al. 1998) was first

developed at 1.5T and so the power law relationship proposed in that work between

intravascular oxygenation and R2* (1.5) may not be appropriate at higher fields. For WM

the power law does seem to be <1. WM has a different vascular structure with much

smaller blood volume than GM, and also restricted extravascular water diffusion (due to

myelination of the axons), and this might alter the relationship between intravascular

susceptibility, the microscopic field distribution in the tissue and the resulting R2*.

However this requires further investigation since WM reactivity data must be interpreted

with caution due to the reduced SNR of this data.

The relationship between R2* and PETCO2 depends on the relationship between

CBF and PETCO2, CBV and CBF (power law described by Grubb’s constant (Grubb et al.

1974)), CBF and venous blood oxygenation, and the resulting relationship between CBV

and venous blood oxygenation and R2*. As discussed above, Monte Carlo simulations

and the cross field data presented here and elsewhere (van der Zwaag et al. 2009), suggest

the relationship between venous blood oxygenation and R2* is linear at 3 and 7T.

Furthermore it has been shown (Reivich 1964) in anesthetised rhesus monkeys that the

relationship between PaCO2 and CBF is sigmoidal over the PaCO2 range of 5-418 mmHg,

centred on the natural resting value of PaCO2 of 40 mmHg, but that over the normal range

of PaCO2 values the relationship between PaCO2 and CBF is linear (in that study changes

in PaO2 were also found to have no effect on CBF). Therefore the simplest interpretation

of the linear relationship observed here would be that the relationship between CBF and

CBV is linear (ie Grubbs constant =1), although this assumes that the relationship

between CBF and oxygenation is approximately linear. However this argument is made



14

for a global challenge and may not be appropriate when considering the effects of local

challenges (e.g. response to neuronal activation) where the haemodynamic effects may be

somewhat different.

In this study, the gas sampling data could not be electronically time locked to the

scanner acquisition due to hardware limitations, and so the respiratory sequence was

manually synchronized with the imaging sequence (~ ± 1.5s). There was also a delay

between gas delivery and sampling of about 5 seconds caused by the transit time between

the mask and the gas sensors residing outside the 3mT magnetic field line. The data

signals therefore had to be aligned manually during processing, and so it was not possible

to estimate the delay between the PETCO2 change and associated CVR. This could

potentially add noise to the R2* CVR curves but this effect will not be significant since

the PETCO2 data were resampled from ~6s sampling interval to 1.5s sampling interval. It

is interesting to note that there was a close correlation between PETCO2 stimulus and the

associated BOLD response on both the up and down transitions, with no sign of a post

stimulus undershoot, suggesting that the post stimulus undershoot often observed in the

BOLD signal evoked by neuronal activation is not vascular in origin (Mandeville et al.

1999), although further experiments are required to confirm this conclusion.

The echo times used in this study were chosen to optimize the estimate of R2*,

although hardware limitations meant that the optimal (short) echo times required at 7T

could not be reached. Therefore although better contrast was achieved at 7T, similar

contrast-to-noise was observed at both field strengths in GM due to the non-optimal TE

and increased physiological noise at 7T, shown by increased R2* variance at 7T over 3T

(p<0.003). This agrees with the findings of Triantafyllou et al. (Triantafyllou et al. 2005).

Respiratory noise was particularly pronounced because of pacing of the respiratory cycle

and because the subjects increased their depth of breathing during the respiratory
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challenge. This can be seen in Figure 2a, where there is a ~6s oscillation throughout the

BOLD timecourses. Physiological noise correction methods, such as RETROICOR

(Glover et al. 2000) could be used in future work to reduce the respiratory noise, although

this would require an additional measurement of chest movement. However the

RETROICOR algorithm employs a high-pass filter for linear de-trending, which will also

remove some of the reactivity for the paradigm used here, especially as the stimulus is

time-locked to the respiratory cycle. An alternative to retrospective correction is to

actively perform dynamic shimming (van Gelderen et al. 2007) to correct for the gradient

changes through the respiratory cycle. A sinusoidal CO2 stimulus (Blockley et al. 2009)

might be less affected by respiratory noise if the stimulus frequency were made

significantly different from the respiratory noise frequency.

During a long fMRI experiment, variations in PaCO2 that are likely to occur as a

subject relaxes, will lead to a baseline drift in the BOLD signal. This study has shown

that R2* reactivity to PaCO2 is linear over the typical range of these changes, and so to the

first approximation (for a small change in R2*) the effect can be removed simply by linear

de-trending of the BOLD signal time course. However if the functional stimulus also

caused changes in PaCO2, through changes during the respiratory cycle (e.g. where the

stress of performing a task increases respiration), then the resulting BOLD signal change

would be on the same timescale as the functional BOLD response, producing a systematic

error in the fMRI response.

An alternative MR-based method for monitoring CVR with MRI could be to use

arterial spin labelling (ASL) to measure CBF. Mandell (Mandell et al. 2008) found a

close correlation between BOLD and ASL measurements of CVR. Although ASL based

methods are a more direct measurement of CVR, they have an intrinsically lower signal-

to-noise ratio and they generally provide a lower temporal resolution than BOLD.
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However combined measurements of CBF and R2* changes in response to CVR to

PETCO2 could provide useful information with which to test models of aspects of cerebral

haemodynamic changes in response to neuronal activation (Buxton et al. 1998; Blockley

et al. 2009).

Future work will use this paradigm in clinical studies of cerebrovascular disease

(van der Zande et al. 2005; Mandell et al. 2008) and will use the respiratory challenge to

investigate the steady state relationship between CBF, blood volume and blood

oxygenation.
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Tables

GM average including R2* reactivity (s
-1

mmHg
-1

)

venous voxels 7T 3T 7T/3T

Subject 1 -0.173±0.005 -0.067±0.004 2.6

Subject 2 -0.146±0.009 -0.086±0.005 1.7

Subject 3 -0.163±0.008 -0.072±0.004 2.3

Subject 4 -0.133±0.010 -0.075±0.002 1.8

Subject 5 -0.109±0.006 -0.073±0.005 1.5

Mean (across subjects)

± Standard deviation -0.145±0.025 -0.074±0.007 2.0±0.4

GM average with R2* reactivity (s
-1

mmHg
-1

)

venous voxels excluded 7T 3T 7T/3T

Subject 1 -0.168±0.005 -0.058±0.004 2.9

Subject 2 -0.134±0.009 -0.081±0.005 1.7

Subject 3 -0.163±0.008 -0.070±0.004 2.4

Subject 4 -0.128±0.009 -0.065±0.002 2.0

Subject 5 -0.109±0.006 -0.060±0.005 1.8

Mean (across subjects)

± Standard deviation -0.141±0.025 -0.066±0.009 2.1±0.5

Table 1: GM R2* reactivity for all subjects, calculated using a linear regression.
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WM average with R2* reactivity (s
-1

mmHg
-1

)

venous voxels excluded 7T 3T 7T/3T

Subject 1 -0.035±0.006 -0.001±0.002 *31.7

Subject 2 -0.031±0.011 -0.020±0.002 1.6

Subject 3 -0.061±0.009 -0.028±0.004 2.2

Subject 4 -0.050±0.005 -0.036±0.003 1.4

Subject 5 -0.022±0.004 -0.020±0.002 1.1

Mean (across subjects)

± Standard deviation -0.040±0.015 -0.021±0.013 *1.6±0.5

Table 2: WM R2* reactivity for all subjects, calculated using a linear regression.*The

7T/3T ratio for Subject 1 is treated as an outlier and has been ignored in the cross-subject

mean calculation.
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Figures

Figure 1: Sequential Gas Delivery (SGD) circuit, based on Slessarev (2007). Upon

inspiration, gas flows from the inspiratory gas reservoir to the mask. If the inspiratory gas

reservoir is collapsed, the valves switch so that gas from the exhaled gas reservoir flows

into the mask. Upon expiration, the valves prevent exhaled gas from entering the

inspiratory gas reservoir. The exhaled gas reservoir features two slits in the bottom

corners which act as vents.
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Figure 2: Corresponding time-courses for (a) GM average -R2* (veins excluded),

measured (b) PETCO2 and (c) PETO2. -R2* is plotted to show the tight linear correlation

between PETCO2 and -R2*. The dotted vertical line indicates the end of the initial baseline

period. The dashed trace shows targeted PETCO2 levels. (Subject #5 at 7T)
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Figure 3: Localiser showing typical slice coverage and corresponding CVR maps of

subject #5 at 7T and 3T. The scale ranges from 0 to 2.5%/mmHg signal change and the

middle 5 slices are shown.

Figure 4: GM averaged R2* reactivity at (a) 7T and (b) 3T and WM averaged R2*

reactivity at (c) 7T and (d) 3T for all subjects (veins excluded). Averaged R2* reactivity

is shown by the scatter plots and linear fits are shown as lines. Each subject is plotted in a

different colour.
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