1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duasnue Joyiny vd-HIN

s NIH Public Access
Y,

Author Manuscript

Published in final edited form as:
Neuroimage. 2010 November 15; 53(3): 1051-1063. doi:10.1016/j.neuroimage.2010.01.042.

Whole genome association study of brain-wide imaging
phenotypes for identifying quantitative trait loci in MCl and AD: A
study of the ADNI cohort

Li Shen®P.* sungeun Kim&P, Shannon L. Risacher®, Kwangsik Nno&€, Shanker
Swaminathan®9, John D. West?, Tatiana Foroudd, Nathan Pankratz9, Jason H. Moore®,
Chantel D. Sloan®, Matthew J. Huentelmanf, David W. Craigf, Bryan M. DeChairo9, Steven G.
Potkinh, Clifford R. Jack Jrl, Michael W. Weiner):K, Andrew J. Saykin®9:*, and the Alzheimer's
Disease Neuroimaging Initiativel

a Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University
School of Medicine, 950 West Walnut Street R2 E124, Indianapolis, IN 46202, USA

b Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 410
West 10th Street, Suite 5000, Indianapolis, IN 46202, USA

¢ Regenstrief Institute, 410 West 10th Street, Suite 2000, Indianapolis, IN 46202, USA

d Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West
Walnut Street, Indianapolis, IN 46202, USA

€ Computational Genetics Laboratory, Departments of Genetics and Community and Family
Medicine, Dartmouth Medical School, Lebanon, NH 03756, USA

f The Translational Genomics Research Institute, 445 N. Fifth St., Phoenix, AZ 85004, USA
9 Neuroscience, Molecular Medicine, Pfizer Global R&D, New London, CT 06320, USA

h Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA 92697,
USA

i Mayo Clinic, Rochester, MN 55905, USA

I Departments Radiology, Medicine and Psychiatry, UC San Francisco, San Francisco, CA 94143,
USA

k Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA

Abstract

A genome-wide, whole brain approach to investigate genetic effects on neuroimaging phenotypes
for identifying quantitative trait loci is described. The Alzheimer's Disease Neuroimaging Initiative
1.5 T MRI and genetic dataset was investigated using voxel-based morphometry (VBM) and
FreeSurfer parcellation followed by genome-wide association studies (GWAS). One hundred forty-
two measures of grey matter (GM) density, volume, and cortical thickness were extracted from
baseline scans. GWAS, using PLINK, were performed on each phenotype using quality-controlled
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genotype and scan data including 530,992 of 620,903 single nucleotide polymorphisms (SNPs) and
733 of 818 participants (175 AD, 354 amnestic mild cognitive impairment, MCI, and 204 healthy
controls, HC). Hierarchical clustering and heat maps were used to analyze the GWAS results and
associations are reported at two significance thresholds (p<10~7 and p<10~%). As expected, SNPs in
the APOE and TOMMA40 genes were confirmed as markers strongly associated with multiple brain
regions. Other top SNPs were proximal to the EPHA4, TP63 and NXPH1 genes. Detailed image
analyses of rs6463843 (flanking NXPH1) revealed reduced global and regional GM density across
diagnostic groups in TT relative to GG homozygotes. Interaction analysis indicated that AD patients
homozygous for the T allele showed differential vulnerability to right hippocampal GM density loss.
NXPH1 codes for a protein implicated in promotion of adhesion between dendrites and axons, a key
factor in synaptic integrity, the loss of which is a hallmark of AD. A genome-wide, whole brain
search strategy has the potential to reveal novel candidate genes and loci warranting further
investigation and replication.

Introduction

Recent advances in brain imaging and high throughput genotyping techniques enable new
approaches to study the influence of genetic variation on brain structure and function (Bearden
et al., 2007; Cannon et al., 2006; Glahn et al., 2007a; Meyer-Lindenberg and Weinberger,
2006; Potkin et al., 2009a). The NIH Alzheimer's Disease Neuroimaging Initiative (ADNI) is
anongoing 5-year public—private partnership to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), genetic factors such as single nucleotide
polymorphisms (SNPs), other biological markers, and clinical and neuropsychological
assessments can be combined to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer's disease (AD). Given the availability of genome-wide SNP data and
repeat structural and functional neuroimaging data as part of this initiative, ADNI provides a
suitable data set for a large scale imaging genetics study. Using the ADNI baseline MRI data
set, we present an imaging genetics framework that employs a whole genome and whole brain
strategy to systematically evaluate genetic effects on brain imaging phenotypes for discovery
of quantitative trait loci (QTLS).

Imaging genetics is an emergent transdisciplinary research field where the association between
genetic variation and imaging measures as quantitative traits (QTs) or continuous phenotypes
is evaluated. Imaging genetics studies have certain advantages over traditional case control
studies. QT association studies have been shown to have increased statistical power and thus
decreased sample size requirements (Potkin et al., 2009b). In addition, imaging phenotypes
may be closer to the underlying biological etiology of the disease making it easier to identify
underlying genes (e.g., Potkin et al., 2009a). Given these observations, the method proposed
in this paper focuses on identifying strong associations between regional imaging phenotypes
as QTs and SNP genotypes as QTLs and aims to provide guidance for refined statistical
modeling and follow-up studies of candidate genes or loci.

SNPs and other types of polymorphisms in single genes such as APOE have been related to
neuroimaging measures in both healthy controls and participants with brain disorders such as
MCI and AD (e.g., Lind et al., 2006; Wishart et al., 2006). However, the analytic tools that
relate a single gene to a few imaging measures are insufficient to provide insight into the
multiple mechanisms and imaging manifestations of these complex diseases. Genome-wide
association studies (GWAS) are increasingly performed (Balding, 2006; Hirschhorn and Daly,
2005; Purcell et al., 2007; Zondervan and Cardon, 2007), but effectively relating high
throughput SNP data to large scale image data remains a challenging task. As pointed out by
Glahn et al. (2007b), in imaging genetics, prior studies typically make significant reduction in
one or both data types in order to complete analyses. For example, whole brain studies usually
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focus on a small number of genetic variables (e.g., Ahmad et al., 2006; Brun et al., in press;
Filippinia etal., 2009; Nichols and Inkster, 2009; Pezawas et al., 2004; Shen etal., 2007), while
whole genome studies typically examine a limited number of imaging variables (e.g., Baranzini
etal., 2009; Potkin et al., 2009a; Seshadri et al., 2007). This restriction of target genotypes and/
or phenotypes greatly limits our capacity to identify important relationships.

To overcome this limitation, we present a whole genome and whole brain search strategy for
discovering imaging genetics associations to guide further detailed analyses. In addition, we
present the results from implementation of this technique, including the identification of new
genetic loci potentially involved in hippocampal and global brain atrophy associated with MCI
and AD. In the present study, a detailed set of regions of interest (ROIs) extracted using voxel-
based morphometry (VBM) and FreeSurfer automated parcellation defined 142 imaging
phenotypes from across the brain (Risacher et al., 2009). A separate GWAS analysis using
PLINK software (Purcell etal., 2007) was completed for each of these 142 imaging phenotypes.
Hierarchical clustering and heat maps (Eisen et al., 1998) were used to display and evaluate
the association patterns between top SNPs and top imaging phenotypes for multiple statistical
thresholds. Subsequent pattern analysis of these heat maps not only confirmed prior findings
(e.g., APOE and TOMM40 SNPs were among the top ranked list) but also revealed novel QTLs
which warranted further analyses. Two types of refined imaging genetics analysis were
performed for one of the top SNPs (NXPH1, rs6463843), including a VBM analysis assessing
global grey matter (GM) density and a regional analysis of target phenotypes. These focused
analyses resulted in interesting imaging genetics findings about the target SNP, including an
overall and regional decrease in GM density associated with TT genotype relative to the GG
genotype with an increased vulnerability to this effect in AD participants.

Materials and methods

Sample

Data used in the preparation of this article were obtained from the ADNI database
(http://www.loni.ucla.edu/ADNI). The following data from 818 ADNI participants were
downloaded from the ADNI database: all baseline 1.5 T MRI scans, the Illumina SNP
genotyping data, demographic information, APOE genotype, and baseline diagnosis
information. Two participants had genotypic data but no baseline MRI scans and were excluded
from all analyses.

The ADNI was launched in 2004 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public—private partnership. The Principle Investigator of this initiative is
Michael W. Weiner, M.D., VA Medical Center and University of California-San Francisco.
ADNI is the result of efforts of many co-investigators from a broad range of academic
institutions and private corporations. Presently, more than 800 participants, aged 55 to 90 years,
have been recruited from over 50 sites across the United States and Canada, including
approximately 200 cognitively normal older individuals (i.e., healthy controls or HCs) to be
followed for 3 years, 400 people with MCI to be followed for 3 years, and 200 people with
early AD to be followed for 2 years. Baseline and longitudinal imaging, including structural
MRI scans collected on the full sample and PIB and FDG PET imaging on a subset are collected
every 6-12 months. Additional baseline and longitudinal data including other biological
measures (i.e. cerebrospinal fluid (CSF) markers, APOE and full-genome genotyping via blood
sample) and clinical assessments including neuropsychological testing and clinical
examinations are also collected as part of this study. Written informed consent was obtained
from all participants and the study was conducted with prior institutional review board's
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approval. Further information about ADNI can be found in the study of Jack et al. (2008) and
Mueller et al. (2005a,b) and at www.adni-info.org.

DNA isolation and SNP genotyping

Single nucleotide polymorphism (SNP) genotyping for more than 620,000 target SNPs as was
completed on all ADNI participants using the following protocol. Seven milliliters of blood
was taken in EDTA containing vacutainer tubes from all participants and genomic DNA was
extracted using the QlAamp DNA Blood Maxi Kit (Qiagen, Inc., Valencia, CA) following the
manufacturer's protocol. Lymphoblastoid cell lines were established by transforming B
lymphocytes with Epstein-Barr virus as described by Neitzel (1986). Genomic DNA samples
were analyzed on the Human610-Quad BeadChip (Illumina, Inc. San Diego, CA) according
to the manufacturer's protocols (Infinium HD Assay; Super Protocol Guide; Rev. A, May
2008). Before initiation of the assay, 50 ng of genomic DNA from each sample was examined
qualitatively on a 1% Tris—acetate—-EDTA agarose gel to check for degradation. Degraded
DNA samples were excluded from further analysis. Samples were quantitated in triplicate with
PicoGreen® reagent (Invitrogen, Carlshad, CA) and diluted to 50 ng/ul in Tris—EDTA buffer
(10 mM Tris,1 mM EDTA, pH 8.0). DNA (200 ng) was then denatured, neutralized, and
amplified for 22 h at 37 °C (this is termed the MSA1 plate). The MSA1 plate was fragmented
with FMS reagent (lllumina) at 37 °C for 1 h, precipitated with 2-propanol, and incubated at
4 °C for 30 min. The resulting blue precipitate was resuspended in RAL reagent (Illumina) at
48 °C for 1 h. Samples were then denatured (95 °C for 20 min) and immediately hybridized
onto the BeadChips at 48 °C for 20 h. The BeadChips were washed and subjected to single
base extension and staining. Finally, the BeadChips were coated with XC4 reagent (Illumina),
dessicated, and imaged on the BeadArray Reader (Illumina). The Illumina BeadStudio 3.2
software was used to generate SNP genotypes from bead intensity data. All SNP genotypes
are publicly available for download at the ADNI website (http://www.loni.ucla.edu/ADNI).

MRI analysis and extraction of imaging phenotypes

Two widely employed automated MRI analysis techniques were used to process and extract
brain-wide target MRI imaging phenotypes from all baseline scans of ADNI participants as
previously described (Risacher et al., 2009). First, voxel-based morphometry (VBM,;
Ashburner and Friston, 2000; Good et al., 2001; Mechelli et al., 2005) was performed to define
global grey matter (GM) density maps and extract local GM density values for 86 target regions
(Table 1). Second, automated parcellation via FreeSurfer V4
(http://surfer.nmr.mgh.harvard.edu/) was conducted to define 56 volumetric and cortical
thickness values (Table 2). All included ADNI participants had a minimum of two 1.5 T MP-
RAGE scans at baseline following the ADNI MRI protocol (Jack et al., 2008). Each raw scan
was independently processed using FreeSurfer and VBM.

For VBM analysis, SPM5 (http://www.fil.ion.ucl.ac.uk/spm/) was used to create an
unmodulated normalized GM density map (1x1x1 mm voxel size, 10 mm FWHM Gaussian
kernel for smoothing) in the MNI space for each scan as previously described (Risacher et al.,
2009). A mean GM density map was created as an average of two independent smoothed,
unmodulated normalized GM density maps for each participant using SPM5. The MarsBaR
region of interest (ROI) toolbox (Brett et al., 2002; Tzourio-Mazoyer et al., 2002) as
implemented in SPM5 was then used to extract a single mean GM density value for 86 target
regions in MNI space (Table 1) to be used as target QTs for the imaging genetic analyses. In
addition to the individual MarsBaR ROls, larger target regions defined by combining the mean
GM density value from a set of MarsBaR ROIs were used as imaging phenotypes. All
individual and combined mean GM density values are referred to as VBM phenotypes; see
Table 1 for a total list and explanation of the 86 VBM phenotypes.
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For automated segmentation and parcellation, FreeSurfer V4 was employed to automatically
label cortical and subcortical tissue classes using an atlas-based Bayesian segmentation
procedure (Dale et al., 1999; Fischl and Dale, 2000; Fischl et al., 2002, 1999) and to extract
target region volume and cortical thickness, as well as to extract total intracranial volume (ICV)
for all participants. Extracted FreeSurfer values for two independently processed MP-RAGE
images of the same participant were averaged to create a mean value for volumetric and cortical
thickness measures for all target regions. Mean volumetric and cortical thickness measures
extracted using automated parcellation are referred to as FreeSurfer phenotypes; see Table 2
for a total list of the 56 FreeSurfer phenotypes defined for selected target regions.

Genome-wide association analysis of imaging phenotypes

APOE genotype—The APOE gene is an important target gene in AD research (Farrer et al.,
1997). However, the two previously identified APOE SNPs important in AD susceptibility
(rs429358, rs7412) were not available on the Illumina array. Therefore, we determined the
genotypes of the two APOE SNPs (rs429358, rs7412) using the APOE £2/£3/¢4 status
information from the ADNI clinical database for each participant.

Quality control—The original genotype data contained 620,903 markers, including 620,901
genomic markers on the Illumina chip plus 2 APOE SNPs whose values were obtained from
the APOE status data. Only SNP markers were analyzed in this study. The following quality
control (QC) steps were performed on these genotype data using the PLINK software package
(http://pngu.mgh.harvard.edu/~purcell/plink/), release v1.06. SNPs were excluded from the
imaging genetics analysis if they could notmeet any of the following criteria: (1) call rate per
SNP >90%, (2) minor allele frequency (MAF) >5%, and (3) Hardy—Weinberg equilibrium test
of p<1075 using healthy control (HC) subjects only. Participants were excluded from the
analysis if any of the following criteria was not satisfied: (1) call rate per participant >90% (1
participant was excluded); (2) gender check (2 participants were excluded); and (3) identity
check (3 sibling pairs were identified with PI_HAT over 0.5; one participant from each pair
was randomly selected and excluded). Population stratification analysis suggested the
advisability of restricting analyses to non-Hispanic Caucasians (79 participants were excluded
from this report). After the QC procedure, 733 out of 818 participants and 530,992 out of
620,903 markers remained in the analysis and the overall genotyping rate for the remaining
dataset was over 99.5%.

GWAS analyses—One hundred forty-two separate GWAS analyses on 142 selected imaging
phenotypes (86 VBM phenotypes and 56 FreeSurfer phenotypes) were completed using the
quality-controlled SNP data. All the imaging phenotypes were adjusted for the baseline age,
gender, education, handedness, and baseline intracranial volume (ICV) using the regression
weights derived from the HC participants, prior to any of the GWAS analyses (Risacher et al.,
2009). Using the PLINK software package (v1.06) with the quantitative trait association option,
each GWAS analysis calculated the main effects of all SNPs on the target quantitative imaging
phenotype. An additive SNP effect was assumed and the empirical p-values were based on the
Wald statistic (Purcell et al., 2007). Right hippocampal GM density was selected for a detailed
sample analysis of a target QC because it had the largest number of associations at p<1076. A
Manhattan plot and a quantile-quantile (Q-Q) plot were used to visualize GWAS results for
the right hippocampal GM density. All association results surviving the significance threshold
of p<10~8 were saved and prepared for additional pattern analysis.

Sample definition and demographics

The sample employed in the GWAS analyses of FreeSurfer phenotypes included participants
that passed the genotype QC procedure and FreeSurfer processing. The sample used in the
GWAS analyses of VBM phenotypes included participants that passed the genotype QC
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procedure, FreeSurfer processing, and VBM processing. Demographic information, including
baseline age, years of education, gender distribution, and handedness distribution, was
compared between baseline diagnostic groups for each sample separately using one-way
ANOVAs and chi-squared analyses as applicable in SPSS (version 16.0.1).

Pattern analyses of GWAS results

To expedite the review of GWAS results and data reduction for subsequent analyses, we
employed heat map and hierarchical clustering approaches (Eisen et al., 1998; Levenstien et
al., 2003; Sloan etal., submitted for publication) for visualizing associations between identified
SNPs and their associated imaging phenotypes at various significance levels. Heat maps are
colored images mapping given values (in this study, —log1g(p) of the corresponding
association) to coded colors. Generally, heat maps have dendrograms, representing hierarchical
clustering results along both the x-axis and y-axis (in this study, x: imaging phenotypes, y:
SNPs). R (v.2.9.0) (http://www.r-project.org/), an open source statistical computing package,
was employed to create the heat maps. Hierarchical clustering was completed using Euclidean
distance methods to define dissimilarity between two nodes and average of distances between
all pairs of objects in two clusters to measure the distance between two clusters. On each heat
map, significant associations between imaging phenotypes and SNPs were marked with an “x”
to facilitate visual evaluation of the results. The color bar on the left side of the heat map
encodes the chromosome IDs for the corresponding SNPs. In addition to the heat maps, a
summary statistic detailing the number of significant associations at the p<10~° level for each
imaging phenotype and SNP was evaluated to help guide the refined analyses. In the present
study, all imaging GWAS results are presented and analyzed using heat maps and summary
statistics.

Detailed analysis of a target SNP identified by cluster analysis

An in-depth analysis was performed for one of the top SNPs selected by inspecting the heat
maps and summary statistics. The refined analysis included two steps: (1) a global voxel-based
analysis on the entire brain using VBM and (2) regional analyses of identified target
phenotypes. We included both types of analyses as they provide complementary information
relevant to assessing risk for AD or disease progression (Risacher et al., 2009; Saykin et al.,
2006).

For global analyses, VBM was performed on a voxel-by-voxel basis using a general linear
model (GLM) approach as implemented in SPM5. After identifying the SNP of interest, a two-
way ANOVA assessing the effects of baseline diagnostic group and SNP genotype value was
performed to compare the smoothed, unmodulated normalized GM maps to determine any
significant effects of diagnosis, SNP genotype, and SNP-by-diagnosis interactions on global
GM density between and within groups. Contrasts between genotypes were displayed with a
significance threshold of p<0.01 corrected for multiple comparisons using a false discovery
rate (FDR) technique when including the entire sample. For contrasts within a single diagnostic
group, the p<0.01 (FDR) threshold was too stringent given the reduced power and no significant
voxels were observed. Therefore, we used a slightly less stringent significance threshold of
p<0.001 (uncorrected for multiple comparisons) when examining SNP effects with in a
diagnostic group, in order to evaluate the pattern of GM density associated with genotype. A
minimum cluster size (k) of 27 voxels was required for significance in all comparisons and an
explicit GM mask was used to restrict analyses to GM regions. Age, gender, education,
handedness and baseline ICV were included as covariates in all analyses.

For ROI analyses, a two-way multivariate ANOVA in SPSS (version 16.0.1) was completed
to determine the effect of baseline diagnosis and genotype on bilateral hippocampal and mean
medial temporal lobar GM density. Similar to the VBM analysis, age, gender, education,
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handedness, and baseline ICV were included as covariates in all comparisons. Independent
effects of baseline diagnosis and genotype, as well as the interaction effect of baseline
diagnosisxgenotype for each SNP, were assessed for selected imaging variables. All graphs
were created using SigmaPlot (version 10.0).

Sample characteristics after QC

After quality control of the genotyping data including the exclusion of 79 participants to avoid
potential population stratification confounds, 733 out of 818 ADNI participants remained in
the present study. Among these 733 participants, 729 sets of scans were successful in
FreeSurfer segmentation and parcellation and were included in GWAS analyses of FreeSurfer
phenotypes (56 volumetric and cortical thickness values described in Table 2). Seven hundred
fifteen participants had successful VBM processing and were used in GWAS analyses of VBM
phenotypes (86 GM density values described in Table 1). Table 3 shows the demographics
information of the sample analyzed for both FreeSurfer and VBM studies. In both samples,
gender and education are significantly different (overall p<0.05) among baseline diagnostic
groups (HC, MCI, AD). In the subsequent GWAS analyses, baseline age and gender, as well
as education, handedness, and baseline ICV are included as covariates.

GWAS of imaging phenotypes

For convenience, in this paper, an SNP is described by its rs number together with its respective
gene (i.e., the closest gene, as annotated in IHlumina's Human610-Quad SNP list). Shown in
Fig. 1 are all the imaging genetics associations at a significance threshold of p<10~7 (a typical
threshold for genome-wide significance), which are discovered by GWAS analysis of 142
imaging phenotypes (i.e., quantitative traits, or QTS).

At the p<10~ significance level, 22 strong SNP-QT associations (see blocks labeled with “x”
in Fig. 1) were identified in the GWAS analyses, and five SNPs were involved in these
associations. As a well-established AD risk factor (Farrer et al., 1997), the APOE SNP
rs429358 confirmed to have multiple associations with both FreeSurfer QTs and VBM QTs,
showing as the most prominent imaging genetics pattern at the significance level of p<10~".
In addition, associations with multiple FreeSurfer QTs were identified for rs2075650
(TOMMA40), supporting the recent finding of TOMMA40 as a gene adjacent to APOE and an
additional contributor to AD (Osherovich, 2009;Potkin et al., 2009a). Three additional SNPs
were found to have strong associations with one or more VBM QTs: rs6463843 (NXPHL1),
rs4692256 (LOC391642), and rs10932886 (EPHA4). Further information about these SNPs
is available in Table 4.

A number of imaging phenotypes were identified to have strong associations with target SNPs
in the GWAS analyses, suggesting that these values may be sensitive QTs to imaging genetics
studies of AD. As expected, both the left and right amygdalar and hippocampal regions were
found to be strongly associated with rs429358 (APOE) using volumetric and GM density
measures. In addition, rs2075650 (TOMM40) was significantly associated with bilateral
hippocampal volume and left amygdalar volume. Additional imaging phenotypes found to be
sensitive QTs, include (a) volume measures from the right cerebral cortex and cerebral white
matter, (b) cortical thickness measures from left and right inferior parietal gyri, and right middle
temporal gyrus, and (¢) GM density measures from the left middle orbital frontal gyrus, left
precuneus, left superior frontal gyrus, and left and right mean frontal lobe regions (see
MeanFrontal definition in Table 1).
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Heat maps of clustered associations at a somewhat less stringent significance level (p<1075)
are shown in Fig. 2. As expected, more SNPs and QTs are involved. The top 10 SNPs and their
respective genes ranked by the total number of significant QT associations at p<10~% are shown
in Table 4. With more SNPs and QTs available in the heat maps, interesting clustering patterns
in both the imaging and genetics dimensions were revealed by examining the corresponding
dendrograms (i.e., hierarchical clustering results). In the imaging dimension (x-axis), many
pairs of left and right measures of the same structure were clustered together, supporting the
symmetric relationship between these phenotypes and genetic variation. In addition, regional
similarity was also detected including a prominent pattern of multiple orbital frontal measures
clustered together in Fig. 2b. In the genomic dimension (y-axis), three SNPs from LOC391642
were grouped together in Fig. 2b, suggesting an increased likelihood of linkage disequilibrium
(LD) effects.

Refined analysis for a sample target QT

Subsequent analyses focused on a target QT and a target SNP selected from heat maps in Fig.
2. Shown in Fig. 3 are the Manhattan and Q—-Q plots of the GWAS for the target QT, right
hippocampal GM density (RHippocampus in Fig. 2b). In the Q—Q plot, for most of the p-values,
the observed p-values from GWAS are almost the same as the expected p-values from the null
hypothesis. There was little or no evidence of systematic bias, which could be caused by factors
such as a strong population substructure and genotyping artifacts. The p-values in the upper
tail of the distribution do show a significant deviation suggesting strong associations between
these SNIPs and the QT.

Refined analysis for a sample target SNP

A target SNP, rs6463843 (NXPH1), was selected for detailed imaging analyses since it was
the only SNP strongly associated with both left and right hippocampi other than rs429358
(APOE) and rs2075650 (TOMMA40). The results of a two-way ANOVA using VBM to compare
the effects of baseline diagnostics group and rs6463843 (NXPH1) genotype on global GM
density are shown in Fig. 4. After evaluating hippocampal GM density group means for each
diagnosis-genotype group, we chose to contrast GG vs. TT (GG>TT) using all participants
(n=715; 166 AD (44 TT, 78 GT, 44 GG); 346 MCI (82 TT, 170 GT, 94 GG); 203HC (35 TT,
105 GT, 63 GG)). As shown in Fig. 4a, TT participants had significantly reduced global GM
density throughout the brain relative to GG participants (p<0.01 (FDR), k=27). Maximal
differences between groups were found in a number of regions known to be associated with
AD, including the medial temporal lobe (36, —30, —17; T=5.20) and frontal (19, 56, —15;
T=5.56), parietal (26, —59, 67; T=5.71) and temporal (-59, 2, —30; T=4.81) lobe cortical
surfaces. In order to determine whether a particular diagnostic group was responsible for the
effects seen in the full sample contrast of GG>TT, we evaluated the same comparison within
each baseline diagnostic group (Fig. 4b; AD, MCI, HC). The pattern of significant voxels for
GG>TT was largest in the AD group, with highly significant clusters in the right hippocampus
(31, —26, —15; T=5.34), left medial temporal lobe (-25, —32, —7; T=4.37), and frontal lobe
(—35, 49, —13; T=4.33). MCI and HC groups also showed significant voxels in the contrast of
GG>TT, with maximum voxels found in the inferior frontal lobe (45, 25, —13; T=3.82) and
middle frontal lobe (—25, 6, 62; T=4.58), respectively. The AD panel in Fig. 4b showed more
prominent patterns, while the MCI and HC panels appeared less structured. This suggested a
possible SNP-by-diagnosis interaction effect on brain structure, which is examined below at a
more detailed level for several candidate imaging phenotypes. Furthermore, the inclusion of
APOE genotype as a covariate did not significantly alter these effects (data not shown).

Based on the heat map and VBM results, four GM density measures were further evaluated as
phenotypes for additional associations with rs6463843 (NXPH1). As shown in Fig. 5, expected
baseline diagnostic differences in left (Fig. 5a; F(7,708)=79.4, p<0.001) and right (Fig. 5b; F
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(7,708)=78.4, p<0.001) hippocampal GM density, as well as left (Fig. 5¢; F(7,708)=60.3,
p<0.001) and right (Fig. 5d; F(7,708)=59.4, p<0.001) mean medial temporal lobe GM density
were found. Pairwise comparisons indicated that AD participants had significantly reduced
hippocampal and mean medial temporal lobe GM density relative to both MCI and HC
participants (all p<0.001). MCI participants also showed a significantly reduced GM density
in all these regions relative to HCs (p<0.001). The main effect of genotype across all
participants was also significant for left and right hippocampal GM density (left, F (7,708)
=10.4; right, F(7,708)=9.9, both p<0.001) and left and right mean medial temporal lobe GM
density (left, F(7,708)=7.9; right, F(7,708)=9.0, both p<0.001). Paired comparisons indicated
significantly reduced left and right hippocampal and mean medial temporal lobar GM density
in participants with a TT genotype relative to those with a GG genotype in the rs6463843
(NXPH1) SNP (p<0.01). In addition, participants with the TT genotype had significantly
reduced left and right mean medial temporal lobe GM density relative to TG heterozygotes
(p<0.01). The interaction effect of baseline diagnosis and rs6463843 genotype was also
significant for right hippocampal GM density (p<0.05), but not for the other three regions,
which suggested that AD patients with TT genotype were particularly vulnerable to increased
GM density loss in right hippocampus.

Discussion

Methodological overview

Employing a whole genome and entire brain strategy, we presented an imaging genetics

methodological framework for systematically identifying associations between genotypes and
imaging phenotypes, and demonstrated the utility of this method using the ADNI cohort. Our
imaging genetics method can be broadly summarized as the following four steps after quality
control and preprocessing: (1) imaging phenotype definition, (2) GWAS of image phenotypes,
(3) cluster and heat map analysis of imaging GWAS results, and (4) refined statistical modeling.

Imaging phenotype definition—Eight-six GM density ROI measures and 56 volume and
cortical thickness ROl measures were extracted, using VBM and FreeSurfer methods
respectively, and analyzed as image phenotypes in independent GWAS analyses. This
approach is complementary to another recently proposed imaging genetics analysis method,
voxel-wise GWAS (VGWAS) (Stein et al., submitted for publication). The vVGWAS technique
explores SNP associations with all voxels in the image space. Our study is ROI-based,
analyzing fewer but anatomically meaningful imaging phenotypes and thus, requires less
computational resources. In addition, we used multiple techniques to define imaging
phenotypes. Among the top 5 SNPs identified as part of the present study (Table 4), rs10932886
(EPHAA4), rs7610017 (TP63) and rs6463843 (NXPH1) are primarily associated with VBM
QTs, rs2075650 (TOMMA4O0) is associated with FreeSurfer QTs, and rs429358 (APOE) is
associated with ROIs extracted using both techniques. These results suggest that the VBM and
FreeSurfer QTs are not equally sensitive to the same genetic markers and consequently may
provide complementary information. The VBM measures we employed are not modulated
(Good et al., 2001) and therefore measure GM densities (Ashburner and Friston, 2000), which
are different from the volume and thickness measures that FreeSurfer generates for analysis.
The complementary nature of GM density, volumetric, and cortical thickness ROls in assessing
of early AD, MCl, and pre-MCI samples is consistent with our recent findings examining ADNI
baseline MRI data (Risacher et al., 2009) as well as an independent cohort (Saykin et al.,
2006).

GWAS of image phenotypes—Following quality control of the genotyping data, genome-

wide association studies were conducted on each of the 142 imaging phenotypes. The entire
set of the GWAS analyses was performed and completed on a 112-node parallel computing
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environment within 20 min, suggesting an excellent potential for larger scale future extensions.
One extension could be to investigate more sophisticated statistical models (e.g., exploring
SNP-by-SNP or SNP-by-diagnosis interactions). Another extension could be to involve more
imaging phenotypes from other imaging modalities or longitudinal data.

Cluster and heat map analysis of imaging GWAS results—Heat maps and
hierarchical clustering have been used frequently for grouping results in gene expression
analysis for pattern discovery (Eisen et al., 1998; Levenstien et al., 2003). In imaging genetics,
heat maps can be equally useful for performing relevant pattern analysis tasks thanks to the
rich information contained within the maps and their effective mechanism to organize and
visualize complicated imaging GWAS results. A straightforward use of a heat map is to select
target QTs, SNPs, or associations for further analyses. Due to its intuitive representation, some
obvious patterns (e.g., the APOE SNP in Fig. 1) can be easily identified. For less obvious cases,
other criteria could be used, for example, the selection of rs6463843 (NXPH1) because of its
associations with multiple candidate phenotypic regions (i.e., hippocampus) affected by AD
(Fig. 2b). In addition, a heat map can also be used to discover new patterns or structures. All
the QTs and SNPs are hierarchically clustered as dendrograms on the x-axis and y-axis,
respectively. In the genomic domain, for those SNP clusters that do not match the existing LD
relationships, the dendrogram provides the ability to identify novel inter-SNP structures (e.g.,
Sloan et al., submitted for publication). In the imaging domain, for those phenotype clusters
that do not follow a regional or bilaterally symmetric pattern, there might be an opportunity to
identify an underlying brain connectivity pattern associated with a genetic variation.

Refined statistical modeling—In this paper, each heat map includes all the strong
associations at a given significance threshold level, and can be used to guide further analyses
using refined statistical models (e.g., involving diagnosis and other biomarkers, addressing
interaction effects, etc.). These analyses can be performed using different strategies as follows:
(1) select a target phenotype from the heat map and examine its whole genome mapping (e.g.,
Fig. 3); (2) pick a target SNP from a heat map and perform detailed image analysis (e.g., Fig.
4); and (3) choose a target SNP-QT association based on a heat map and/or an imaging analysis
results, and perform a refined statistical modeling (e.g., Fig. 5). In this study, we conducted
sample analyses for each of the above cases. The ultimate goal of these types of analyses is to
identify genetic markers affecting brain structure and function, how these imaging and genetic
markers interact with each other, as well as with diagnosis and/or other clinically and
biologically relevant measures, and to gain a better understanding of disease risk and
pathophysiology.

Imaging and genetics findings

The APOE SNP rs429358 and TOMM40 SNP rs2075650 were confirmed to be top markers
affecting multiple brain structures in a mixed population of HC, MCI and AD (Farrer et al.,
1997; Osherovich, 2009; Potkin et al., 2009a). Other SNPs, including rs10932886 (EPHA4),
rs7610017 (TP63) and rs6463843 (NXPH1), were also among the top markers influencing
brain structures in our analysis (Table 4). These SNPs and the genes in which they are found
or flank have a number of important functions and potential pathways through which they may
influence the pathophysiological processes underlying AD.

The EPHA4 [EPH receptor A4] gene belongs to the ephrin receptor subfamily of the protein-
tyrosine kinase family (Fox et al., 1995). The interaction between neuronal EphA4 and glial
ephrin-A3 was found to bidirectionally control synapse morphology and glial glutamate
transport, which may ultimately regulate hippocampal function (Carmona et al., 2009). In
addition, EphA4 and EphB2 receptors were reported to be reduced in the hippocampus before
the development of impaired object recognition and spatial memory in transgenic mouse
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models of AD (Simon et al., 2009). The TP63 [Tumor protein 63] gene encodes a member of
the p53 family of transcription factors (Yang et al., 1998). A literature search did not locate
any articles associating TP63 with AD, cognitive impairment or neurode-generation.
Additional imaging genetics analyses on both rs10932886 (EPHA4) and rs7610017 (TP63)
appear warranted for future study.

The NXPH1 [Neurexophilin 1] gene is a member of the neurexophilin family and encodes a
secreted protein which features a variable N-terminal domain, a highly conserved, N-
glycosylated central domain, a short linker region, and a cysteine-rich C-terminal domain. This
protein forms a very tight complex with alpha neurexins, a group of proteins that promote
adhesion between dendrites and axons (Missler and Sudhof, 1998). This gene has previously
been implicated as a candidate gene for neuroticism (van den Oord et al., 2008). In the present
study, a VBM analysis of rs6463843 (NXPH1) revealed significantly reduced global and
regional GM density in participants with the TT genotype relative to those with the GG
genotype. Additional analyses indicated an interaction between rs6463843 (NXPH1) and
baseline diagnostic group in which AD patients homozygous for the T allele were differentially
vulnerable to decreased GM density in the right hippocampus, a finding presumably reflecting
greater atrophy associated with this genotype in patients with AD.

Heat maps of imaging genetics associations at two significance threshold levels (p<10~/ and
p<10-%) were also reported. At the conventional p<10~7 significance threshold, measures of
hippocampal and amygdalar GM density and volume were strongly associated with the APOE
and TOMMA40 SNPs. Ten additional imaging phenotypes were strongly associated with at least
one of the top SNPs (Fig. 1). We also examined a somewhat less stringent threshold
(p<1075) in order to identify additional SNP and imaging QT associations, as well as to examine
patterns of genotype and phenotype clustering. SNPs associated with multiple unrelated or
loosely related imaging phenotypes may represent an interesting genetic marker affecting
overall brain structure or neurodegeneration. In addition, imaging variables associated with a
number of SNPs from multiple genes may be particularly sensitive phenotypic markers for
examining disease associated genetic variation. Therefore, heat maps at multiple statistical
thresholds are useful in identifying candidate SNPs and imaging phenotypes warranting further
investigation.

Limitations and future directions

The majority of analyses presented in this study focused on the extraction and evaluation of
imaging phenotypes and the relationship of genetic variation to these phenotypes. However,
we also included a limited assessment of the effects of baseline diagnostic group and the
interaction effect of SNP and diagnosis in the analysis of candidate SNPs and phenotypes.
Future studies could incorporate additional variables (e.g., clinical measures, other types of
imaging and biomarkers) in the GWAS design to examine their effects and interactions with
SNPs and/or target imaging phenotypes. The present analysis did not address epistasis or gene—
gene interactions, a potentially very important topic. Future analyses should include models
that incorporate epistatic interactions which are likely to be important for understanding
susceptibility and protective factors in AD and other complex diseases.

Although we employed reasonably stringent thresholds for assessing genome-wide
significance, a large number of ROIs represent a multiple comparison problem. The issue of
determining the proper statistical threshold for a whole genome and whole brain search for
associations is a challenging area for investigation (Nichols and Holmes, 2002; Nichols and
Inkster, 2009; Stein et al., submitted for publication). The issue is complicated by the fact that
variables within both the genomic and neuroimaging dimensions are non-independent due to
LD and spatial autocorrelation, respectively. The determination of the effective number of
independent statistical tests under these conditions is an area of investigation. Models for the

Neuroimage. Author manuscript; available in PMC 2010 November 1.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Shen et al.

Page 12

joint distribution of both dimensions under the null hypothesis require development and
validation.

Replication of current and future GWAS results in independent samples will remain of critical
importance for confirmation. Although our follow-up analyses examine additional statistics at
a more detailed level for yielding additional insights, these statistics are non-independent of
the statistics used to select candidate ROIs and candidate associations. Given the recent interest
in the non-independent analysis issue (e.g., Kriegeskorte et al., 2009), independent datasets for
replication will be important for future studies to confirm the findings. For the current ADNI
sample, given its modest size, we were unable to use one half of the data for hypothesis
generation and the other half for confirmation, since one half of the data (i.e., n=367 in this
study) cannot provide sufficient power to detect moderate/small genetic effects (Potkin et al.,
2009b). With additional replication and extension opportunities under development, we
anticipate that there will be ample statistical power and the ability to replicate potentially
important findings in multiple independent data sets in the future.

At present there are few opportunities for replication of imaging genetics results such as those
emerging from ADNI given the unique nature of this multi-dimensional data set. Fortunately,
a worldwide ADNI consortium is actively being developed and large scale international data
sets are likely to become available in the next few years that can provide adequate replication
samples. In addition, the new NIH sponsored AD Genetics Consortium (ADGC) is assembling
large meta-analytic databases of GWAS results that can provide confirmation of novel findings.
Finally, the AlzGene meta-analytic database (www.alzgene.org) of candidate genes for AD,
curated by Lars Bertram and colleagues (Bertram et al., 2007), provides a regularly updated
source for determining the replication and validation status of AD genes.

The AAL atlas (Tzourio-Mazoyer et al., 2002) used to create the ROIs for the VBM analysis
in this study is based on a single individual. To take anatomical variability into account, an
important future direction will be to employ a probabilistic atlas, e.g., the Harvard-Oxford atlas
(distributed with the FSL software package; http://fsl.fmrib.ox.ac.uk/fsl/), or the LONI
probabilistic brain atlas (Shattuck et al., 2008). The most appropriate method to derive a GM-
based summary statistic (e.g., density or volume) for a probabilistic ROI is a topic warranting
investigation.

Despite the limitations and challenges, the encouraging experimental results obtained using
the proposed analytic framework appear to have substantial potential for enabling the discovery
of imaging genetics associations and for localizing candidate imaging and genomic regions for
refined statistical modeling and further characterization. Ultimately, imaging genetics holds
the promise of providing important clues to pathophysiology that could inform development
of methods for earlier detection and therapeutic intervention.
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Fig. 1.

Heat maps of SNP associations with quantitative traits (QTs) at the significance level of
p<10~'. GWAS results at a statistical threshold of p<10~7 using QTs derived from FreeSurfer
(top) and VBM/MarSBaR (bottom) are shown. —logo(p-values) from each GWAS are color-
mapped and displayed in the heat maps. Heat map blocks labeled with “x” reach the
significance level of p<10~7. Only top SNPs and QTs are included in the heat maps, and so
each row (SNP) and column (QT) has at least one “x” block. Dendrograms derived from
hierarchical clustering are plotted for both SNPs and QTs. The color bar on the left side of the
heat map codes the chromosome IDs for the corresponding SNPs. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2.

Heat maps of SNP associations with quantitative traits (QTs) at the significance level of
p<1076. GWAS results at a statistical threshold of p<10~% using QTs derived from FreeSurfer
(top) and VBM/MarSBaR (bottom) are shown. —logqo(p-values) from each GWAS are color-
mapped and displayed in the heat maps. Heat map blocks labeled with “x” reach the
significance level of p<10~%. Only top SNPs and QTs are included in the heat maps, and so
each row (SNP) and column (QT) has at least one “x” block. Dendrograms derived from

hierarchical clustering are plotted for both SNPs and QTs. The color bar on the

left side of the

heat map codes the chromosome IDs for the corresponding SNPs. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Manhattan and Q-Q plots of GWAS of the mean grey matter density of the right hippocampus (RHippocampus)
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Fig. 3.

Manhattan and Q—Q plots of genome-wide association study (GWAS) of an example
guantitative trait (QT). The QT examined in this analysis is the mean GM density of the right
hippocampus (i.e., VBM phenotype RHippocampus, see Table 1) which was calculated using
VBM/MarsBaR and adjusted for age, gender, education, handedness and ICV. Shown on the
top panel is the Manhattan plot of the p-values (—log;g(observed p-value)) from GWAS
analysis of the QT. The horizontal lines display the cutoffs for two significant levels: blue line
for p<105, and red line for p<10~'. Shown on the bottom panel is the quantile-quantile (Q—
Q) plot of the distribution of the observed p-values (—logjg(observed p-value)) in this sample
versus the expected p-values (—log;g(expected p-value)) under the null hypothesis of no
association. Genomic inflation factor (based on median chi-squared) is 1.01667. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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(a) Comparison across all diagnostic groups, displayed at a threshold of p<0.01 (corrected with FDR)

Fig. 4.

VBM genetics analysis for rs6463843 (NXPH1). A two-way ANOVA was performed on mean
GM density maps to compare rs6463843 SNP genotype and baseline diagnostic group within
the ADNI cohort. Analysis of the contrast of two genotype groups, GG>TT, is shown (n=715;
166AD(44 TT, 78 GT, 44 GG); 346 MCI (82 TT, 170 GT, 94 GG); 203 HC (35 TT, 105 GT,
63 GG)). Age, gender, education, handedness, and baseline ICV are included as covariates in
all comparisons. Shown in the top panel (a) are the results of comparison involving all 715
subjects (i.e., across all the diagnostic groups), which are displayed at a threshold of p<0.01
(corrected with FDR) with minimum cluster size (k)=27. Shown in the bottom panel (b) are
the results of comparisons within each of the three baseline diagnostic groups (AD, MCI, and
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HC), which are displayed at a threshold of p<0.001 (uncorrected), with minimum cluster size
(k)=27.
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Fig. 5.

Refined analysis of sample imaging phenotypes in relation to rs6463843 (NXPH1) and baseline
diagnosis. Two-way ANOVAs were applied to examine the effects of rs6463843 (NXPH1)
and baseline diagnosis on four target GM density measures: (a—b) left and right hippocampal
GMDs, and (c—d) left and right mean medial temporal lobe GMDs. All the analyses included
age, gender, education, handedness and baseline ICV as covariates. n=715 subjects were
involved: 166 AD (44 TT, 78 GT, 44 GG); 346 MCI (82 TT, 170 GT, 94 GG); 203 HC (35
TT, 105 GT, 63 GG). The p-values for the main effect of diagnosis (DX), the main effect of
SNP (SNP), and the interaction effect of SNP-by-diagnosis (DXxSNP) were shown in each
plot.
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Table 1

VBM phenotypes defined as mean GM densities of various regions of interest (ROIs). SPM5 was applied for
computing voxel-wise GM density values, while the MarsBaR ROI toolbox was used to define ROIs in the MNI
space. A total number of 43 x 2 = 86 phenotypes were calculated. Each of the 43 1Ds shown in the table
corresponds to two phenotypes: one for the left side and the other for the right side. For example, “LAmygdala”
indicates the mean GM density of the left amygdala. Each region marked with * in the table is a combined set
of more than one MarsBaR ROI. For example, “RMeanLatTemporal” indicates the mean GM density of the right
lateral temporal region defined by a set of MarsBaR ROls, including right inferior temporal gyrus, right middle
temporal gyrus, and right superior temporal gyrus.

Phenotype ID

Amygdala
Angular
AntCingulate
Fusiform

Heschl
Hippocampus
InfFrontal_Oper
InfFrontal_Triang
InfOrbFrontal
InfParietal
InfTemporal
Insula

Lingual
MedOrbFrontal
MedSupFrontal
MidCingulate
MidFrontal
MidOrbFrontal
Phenotype ID

Region of interest (Phenotype isdefined  Phenotype ID Region of interest (Phenotype

as the mean GM density of the ROI) phenotype is defined as the mean GM
density of the ROI)

Amygdala MidTempPole Middle temporal pole

Angular gyrus MidTemporal Middle temporal gyrus

Anterior cingulate Olfactory Olfactory gyrus

Fusiform gyrus Parahipp Parahippocampal gyrus

Heschl's gyrus PostCingulate Posterior cingulate

Hippocampus Postcentral Postcentral gyrus

Inferior frontal operculum Precentral Precentral gyrus

Inferior frontal triangularis Precuneus Precuneus

Inferior orbital frontal gyrus Rectus Rectus gyrus

Inferior parietal gyrus Rolandic_Oper Rolandic operculum

Inferior temporal gyrus Supfrontal Superior frontal gyrus

Insula SupOrbfrontal Superior orbital frontal gyrus

Lingual gyrus SupParietal Superior parietal gyrus

Medial orbital frontal gyrus SupTempPole Superior temporal pole

Medial superior frontal gyrus SupTemporal Superior temporal gyrus

Middle cingulate SuppMotorArea Supplementary motor area

Middle frontal gyrus Supramarg Supramarginal gyrus

Middle orbital frontal gyrus Thalamus Thalamus

Regions of interest (phenotype is defined as the average GM density of multiple MarsBaR ROIs)

MeanCing*

MeanFrontal*

MeanLatTemporal*

MeanMedTemporal*

MeanOccipital*
MeanParietal*

MeanTemporal*

Anterior cingulate, middle cingulate, and posterior cingulate

Inferior frontal operculum, inferior orbital frontal gyrus, inferior frontal triangularis, medial orbital frontal gyrus, middle
frontal gyrus, middle orbital frontal gyrus, superior frontal gyrus, medial superior frontal gyrus, superior orbital frontal
gyrus, rectus gyrus, rolandic operculum, and supplementary motor area

Inferior temporal gyrus, middle temporal gyrus, and superior temporal gyrus

Amygdala, fusiform gyrus, Heschl's gyrus, hippocampus, lingual gyrus, olfactory gyrus, parahippocampal gyrus, middle
temporal pole, and superior temporal pole

Calcarine gyrus, cuneus, inferior occipital gyrus, middle occipital gyrus, and superior occipital gyrus
Angular gyrus, inferior parietal gyrus, superior parietal gyrus, supramarginal gyrus, and precuneus

Amygdala, fusiform gyrus, Heschl's gyrus, hippocampus, lingual gyrus, olfactory gyrus, parahippocampal gyrus, inferior
temporal gyrus, middle temporal gyrus, middle temporal pole, superior temporal pole, and superior temporal gyrus
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Table 2

FreeSurfer phenotypes defined as volumetric or cortical thickness measures of various regions of interest (ROISs).
FreeSurfer was applied for automated parcellation to extract volume and cortical thickness values for a total
number of 28x2=56 ROIs. Each of the 28 IDs shown in the table corresponds to two phenotypes: one for the left
side and the other for the right side. For example, “LAmygVol” indicates the volume of the left amygdala, while
“RSupTemporal” indicates the (mean) thickness of the right superior temporal gyrus.

Phenotype ID Phenotype description

AmygVol Volume of amygdala

CerebCtx Volume of cerebral cortex
CerebWM Volume of cerebral white matter
HippVol Volume of hippocampus

InfLatVent Volume of inferior lateral ventricle
LatVent Volume of lateral ventricle

EntCtx Thickness of entorhinal cortex
Fusiform Thickness of fusiform gyrus
InfParietal Thickness of inferior parietal gyrus
InfTemporal Thickness of inferior temporal gyrus
MidTemporal Thickness of middle temporal gyrus
Parahipp Thickness of parahippocampal gyrus
PostCing Thickness of posterior cingulate
Postcentral Thickness of postcentral gyrus
Precentral Thickness of precentral gyurs
Precuneus Thickness of precuneus

SupFrontal Thickness of superior frontal gyrus
SupParietal Thickness of superior parietal gyurs
SupTemporal Thickness of superior temporal gyrus
Supramarg Thickness of supramarginal gyrus
TemporalPole Thickness of temporal pole
MeanCing Mean thickness of caudal anterior cingulate, isthmus cingulate, posterior cingulate, and rostral anterior cingulate
MeanFront Mean thickness of caudal midfrontal, rostral midfrontal, superior frontal, lateral orbitofrontal, and medial orbitofrontal gyri

and frontal pole
MeanLatTemp Mean thickness of inferior temporal, middle temporal, and superior temporal gyri
MeanMedTemp  Mean thickness of fusiform, parahippocampal, and lingual gyri, temporal pole and transverse temporal pole
MeanPar Mean thickness of inferior and superior parietal gyri, supramarginal gyrus, and precuneus
MeanSensMotor ~ Mean thickness of precentral and postcentral gyri

MeanTemp Mean thickness of inferior temporal, middle temporal, superior temporal, fusiform, parahippocampal, and lingual gyri, temporal
pole and transverse temporal pole
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