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Abstract
Acquisition and quantitative analysis of high resolution images of dendritic spines are challenging
tasks but are necessary for the study of animal models of neurological and psychiatric diseases.
Currently available methods for automated dendritic spine detection are for the most part customized
for 2D image slices, not volumetric 3D images. In this work, a fully automated method is proposed
to detect and segment dendritic spines from 3D confocal microscopy images of medium-sized spiny
neurons (MSNs). MSNs constitute a major neuronal population in striatum, and abnormalities in
their function are associated with several neurological and psychiatric diseases. Such automated
detection is critical for the development of new 3D neuronal assays which can be used for the
screening of drugs and the studies of their therapeutic effects. The proposed method utilizes a
generalized gradient vector flow (GGVF) with a new smoothing constraint and then detects feature
points near the central regions of dendrites and spines. Then, the central regions are refined and
separated based on eigen-analysis and multiple shape measurements. Finally, the spines are
segmented in 3D space using the fast marching algorithm, taking the detected central regions of
spines as initial points. The proposed method is compared with three popular existing methods for
centerline extraction and also with manual results for dendritic spine detection in 3D space. The
experimental results and comparisons show that the proposed method is able to automatically and
accurately detect, segment, and quantitate dendritic spines in 3D images of MSNs.
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1. Introduction
Dendritic spines are post-synaptic parts of glutamatergic synapses. Dendritic spines undergo
activity-dependent structural remodeling, which has been proposed to be involved in learning
and memory (De Roo et al., 2008; Yuste and Bonhoeffer, 2001). Spines with larger heads are
dynamically more stable, express larger numbers of α-amino-3-hydroxyl-5-methyl-4-
isoxazole-propionate type (AMPA-type) glutamate receptors, and contribute to stronger
synaptic connections. By contrast, spines with smaller heads contribute to weaker or silent
synaptic connections (Kasai et al., 2003). In addition, synaptogenesis associated with
experience-dependent learning and environmental complexity is reflected in changes in the
number of spines (De Roo et al., 2008; Leuner et al., 2003; Muller et al., 2002). Structural
changes in dendritic spines also accompany long-term synaptic plasticity, such as long-term
potentiation (LTP) and long-term depression (LTD) of excitatory synaptic transmission
(Luscher et al., 2000; Yuste and Bonhoeffer, 2001). LTP-inducing stimuli have been shown
to increase the proportion of large spines while LTD-inducing stimuli have been shown to
decrease the proportion of large spines and cause retraction of spines (Toni et al., 1999; Zhou
et al., 2004). LTP and LTD are thought to be involved in learning and memory (Bliss and
Collingridge, 1993; Kandel, 2001).

The striatum is a subcortical region of the cerebrum and is the major input station of the basal
ganglia system. Abnormalities in striatal function are associated with neurological and
psychiatric diseases (Greengard, 2001), including Parkinsonism, schizophrenia, Attention
Deficit Hyperactivity Disorder (ADHD), mental depression, and drug addiction. Compared to
other brain regions, the striatum is relatively large and remarkably homogeneous. About 95%
of all striatal neurons have a similar morphology and are referred to as medium-sized spiny
neurons (MSNs) (Greengard et al., 1999). MSNs receive midbrain dopaminergic input, which
serves to modulate excitatory glutamatergic input from the prefrontal cortex (Hyman and
Malenka, 2001). The initial site of interaction between dopamine and glutamate is within the
dendritic spines of MSNs. Notably, the changes of density or morphology of dendritic spines
of MSNs in the striatum have been observed in several disease models and are likely associated
with neuronal function and pathology (Day et al., 2006; Deutch et al., 2007; Kalivas, 2009;
Kim et al., 2009; Lee et al., 2006; Robinson and Kolb, 2004). Dendritic spine morphology of
MSNs is highly heterogeneous compared to that observed in other types of neurons, such as
pyramidal neurons in the cerebral cortex and hippocampus (Kim et al., 2009; Shen et al.,
2009). Acquisition and accurate analysis of high resolution images of dendritic spines are
highly challenging but necessary tasks for better understanding of many neurological and
psychiatric diseases. Modern fluorescence microscopy techniques, such as confocal scanning
microscopy and 2-photon excitation laser scanning microscopy, provide powerful tools to
image neurons at relatively high resolution. With these advanced modern imaging techniques,
the analysis of dendritic spines, however, remains largely manual. Manually extracting spine
measurements is a labor intensive process, suffers from substantial subjective bias, and often
yields inaccurate spine extraction.

In order to overcome the aforementioned difficulties, researchers seek a 2D or 3D automatic
way to analyze dendrites and spines. Previous works on dendritic spine detection can be roughly
divided into two groups: classification-based methods (Rodriguez et al., 2008) and centerline
extraction-based methods (Janoos et al., 2009; Zhang et al., 2007). Classification-based
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methods separate points into different groups using a certain classifier. For example, Rodriguez
et al. (Rodriguez et al., 2008) proposes an automated 3D spine detection approach using point
clustering. In this method, only the distances from the points to the closest point of the surface
are used as the clustering criteria, which may cause spurious spines. Centerline-extraction
based methods detect all the possible centerlines of certain objects in the image and treat
dendritic spines as small protrusions attached to the dendrites. Koh et al. (Koh et al., 2002)
adopts the thinning method to extract centerlines and applies the grassfire propagation
technique to assign each dendritic point a distance to the medial axis of the dendritic structure.
Since segmentation is achieved by global thresholding and very limited geometric information
is considered for spine detection, this method may detect pseudo spines. Zhou et al. (Zhou et
al., 2009) uses a local binary fitting model of level sets to do the spine segmentation, followed
by a label-based 3D thinning strategy to do the medial axis extraction and a grassfire approach
to do the spine detection. This method requires heavily designed post-processing procedures
to remove pseudo medial axes from the 3D thinning method and is limited to processing
relatively simple neuron structures. Zhang et al. (Zhang et al., 2007) proposes a 2D tracing
algorithm that uses a curvilinear structure detector for dendrite and spine centerline analysis.
This method requires several parameters to be fine-tuned and currently works only on 2D
projections of images. Thus, 3D information is lost, and spines orthogonal to the projection
plane are missed. Janoos et al. (Janoos et al., 2009) presents a method for dendritic skeleton
structure extraction using a curve-skeletons approach based on the medial geodesic function
which is defined on the reconstructed isosurfaces. Some existing commercial software tools,
such as Imaris†, perform semi-automated dendrite and spine analysis and visualization, but
they are limited in their scope and capability for fully automated analysis of neuron images
with complex neuron structures.

In dendritic spine detection, object centerline extraction plays an important role in analyzing
the morphology of dendritic backbones and segmenting dendritic spines. Centerline extraction
has been widely used in a variety of application areas. For example, researchers in computer
vision utilize object skeletons to specify animation (Bloomenthal, 2002; Siddiqi et al., 2002).
In visualization and computer graphics, centerlines are used as a compact representation of
complex 3D models (Cornea et al., 2007; Zhou and Toga, 1999). In the medical imaging area,
anatomical structure segmentation and modeling of blood vessels and nerve structures involve
centerline extraction as a necessary step (Bouix et al., 2005). Centerline extraction has also
been used in 3D virtual navigation to utilize symmetric features to generate meaningful paths
through a scene or an object (Perchet et al., 2004; Wan et al., 2002). Conventional methods for
centerline extraction can be grouped into skeletonization methods and model-based methods.
Skeletonization is based on the notion that the geometric medial axis captures the object
topology. Lee et al. (Lee et al., 1994) proposes a 3D topological and geometrical preserving
thinning method to detect centerlines. Cornea et al.(Cornea et al., 2005) generates a repulsive
force field (RFF) over a discretization of the 3D object and uses topological characteristics of
the resulting vector field, such as critical points and critical curves to extract the curve-skeleton.
Bouix et al.(Bouix et al., 2005) utilizes an average outward flux measure to distinguish skeletal
points from non-skeletal ones and combines this measure with a topology-preserving thinning
procedure. In practice, the skeletons generated by these aforementioned methods contain many
spurious branches due to noise which causes irregularities on the binarized surface. In addition,
many real branches are missed.

Model-based methods apply explicit geometric shape models to extract centerlines. Sato et al.
(Sato et al., 1998) introduces a multi-scale Gaussian smoothing and Hessian-based technique
to model the local line structure for centerline measurements. Frangi et al. (Frangi et al.,

†Imaris: http://www.bitplane.com/
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1998) proposes a generalized centerline measurement using all eigenvalues simultaneously.
Manniesing et al. (Manniesing et al., 2006) improves Frangi et al.’s method by applying a non-
linear anisotropic Hessian-based diffusion along the local line directions. The advantages of
model-based methods include a natural ability to capture local image features, robustness to
noise, and accuracy. However, most of these models on 3D image computing are limited due
to increased computation complexity dealing with multi scales and difficulty in scale selection.
The recently launched highly automated tool, Neuronstudio (Rodriguez et al., 2008), contains
tools aimed at neuron structure tracing and reconstruction. However, it still requires user
interaction while the tracing and reconstruction is not optimized for processing MSNs.

In this work, we explore the potential to improve model-based methods and apply it to the
application of dendritic spine detection and segmentation in 3D high resolution images of
dendritic spines. Figure 1 shows the image processing pipeline of the proposed method. First,
a series of pre-processing methods are applied to the input images to remove noise and improve
the image quality. Second, a gradient vector field is calculated and normalized using a
Generalized Gradient Vector Flow (GGVF) framework with an enhanced smoothing strategy.
Then a series of feature points are detected by tracking along the gradient vectors, and these
feature points are used for further eigen-based analysis. Third, the eigen-analysis-based method
is applied to the feature points to detect spines. The proposed eigen-analysis method is novel
compared to previous methods, as it automates the selection of scales when calculating second-
order derivatives of the image, and the scale selection is adaptive and specific for each
individual point. Since the derivative calculation and eigen-analysis are applied only to those
feature points, and scale selection is improved and automated, spine detection is more accurate
and faster compared to previous methods. Furthermore, we propose to use a combination of
various shape measurements and spine geometric features to improve the spine detection
performance. Finally, a fast marching method is employed to segment the spines from the
previously detected spine central regions, and spine segmentation is further improved by a
series of post-processing steps, including spine head connection and pseudo spine removal.

The remainder of this paper is organized as follows: The next section is composed of our image
acquisition method, the detailed spine detection algorithm and discussion on parameter
selection. Section 3 reports experimental and comparison results, followed by conclusions in
Section 4.

2. Materials and Methods
2.1 Image acquisition and preprocessing

Perfusion of mouse brain and preparation of brain slices labeled with the fluorescent dye, DiI,
were described previously (Kim et al., 2009). Mice were anesthetized with sodium
pentobarbital and perfused transcardially with 5 ml of PBS, followed by rapid perfusion with
40 ml of 4% paraformaldehyde in PBS (20 ml/min). Brains were quickly removed from the
skull and post-fixed in 4% paraformaldehyde for 5 min. Brain slices (100 µm) were labeled
by ballistic delivery of fluorescent dye DiI (Molecular Probes). Fluorescent dendritic images
of MSNs were taken using a confocal microscope (Zeiss LSM 510) with an oil immersion lens
(EC Plan-Neofluar 100×, 1.4 N.A.) and a 2.8× digital zoom. DiI was excited using a Helium/
Neon 543 nm laser line. A LP 585 filter was used. Images of distal dendrites (2nd to 4th order
dendrites) were examined in this study. For dendritic spines, a stack of images was acquired
in the z dimension with an optical slice thickness of 0.12 μm (with oversampling). The
resolution along x and y dimensions are 0.06 μm (with oversampling). A typical image volume
has a size of 512×512×120 pixels. Based on the observation that a dendritic branch only covers
a small part of each image (Figure 2(a)), image cropping is applied to reduce processing time
so that only the neuron area is kept for further analysis (Figure 2(b)). To correct the images for
the microscope’s point spread function (PSF), which causes out-of-focus objects to appear in
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the optical slices, a deconvolution method is adopted. Usually, the 3D microscope image h can
be represented by the convolution operation between PSF p and the 3D specimen of interest
f as:

(1)

where ε is the noise. In our experiment, the PSF is set based on the setup of the microscopy,
and the de-convolution result is obtained by using Dougherty’s iterative 3D de-convolution
method (Dougherty, 2005). In Dougherty’s method, a regularized Wiener filter is used as a
preconditioning, and a non-negatively constrained Landweber iteration is adopted to estimate
f. Figure 2(c) shows the de-convolved image, which is obtained after 50 iterations. Then, an
Otsu thresholding (Otsu, 1979) procedure is employed to separate the neuron points from the
background to prepare the data for further gradient vector diffusion, followed by a
morphological close operation to fill small holes. In this work, the thresholding-based
binarization works well since the intensity values are uniformly distributed in the image, and
all foreground points are regions of interest for further analysis.

2.2 Feature Point Detection and Automated Scale Selection Using Gradient Vector Tracking
Our previous work (Zhang et al., 2007) has shown the effectiveness of applying model-based
methods for dendritic spine detection in 2D space. This previous method models the spines as
2D lines with variational lengths and widths. Spines are detected based on 2nd order derivative
calculation and eigen-analysis of the corresponding Hessian matrix. However, this method
cannot be effectively extended to 3D space due to the following two reasons: (1)
Computationally expensive for multi-scale selection. To effectively calculate the 2nd order
derivatives, a proper scale has to be selected for the Gaussian kernel. Since the widths of the
objects (including dendrites and spines) may vary greatly, multiple scales have to be used for
different Gaussian kernels when dealing with different objects. The state-of-the-art method for
multi-scale selection is to search within a given scale space and find the maximum responses
according to a certain measurement calculation (Frangi et al., 1998). The searching and
calculation is for each location in the image and the scale space usually contains a large number
of scales that is enough to find the best one, both of which significantly increase the
computational complexity. (2) Complex and variational spine shapes in 3D space. In 3D space,
the dendritic spines are seen as different geometric shape structures: for example, as blobs,
tubes, plates, and a combination of any of these three shapes. Thus, modeling a spine only as
a 3D tube is not accurate enough for spine detection. In this work, we propose a novel method
to automatically select scales for eigen-analysis, and the measurement calculations are only
applied to a set of feature points. Furthermore, a more complex spine modeling method is
explored in 3D space and a new framework is established and optimized for spine detection
and segmentation of MSNs specifically.

In our method, spines are first detected, then segmented. Spine detection consists of two steps:
(1) gradient vector tracking to find feature points, and (2) Hessian matrix-based eigen-analysis
to detect spines. In this work, we use “central region” instead of “centerline” to indicate the
central part of the spines due to various spine shapes in 3D space. We use “feature points” to
indicate those points that are within or near the central region of the objects. For better
computational efficiency, the derivative calculation, eigen-analysis, and spine modeling
computing are only applied to the feature points. The method to detect feature points is as
follows: first the gradient vector field is calculated; then a tracking from the edge point is
applied along the gradient vectors. When the tracking stops under a certain stopping criterion,
the current point will be selected as the feature point.
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2.2.1 Gradient Vector Calculation—The conventional method to calculate the gradient
vector is to convolve the image with derivatives of a Gaussian smoothing kernel (Sato et al.,
1998), which requires a proper selection of the standard deviation for the Gaussian kernel. In
this work, a new approach is used to avoid using the Gaussian kernel such that no standard
deviation selection is required. To calculate the gradient vectors, inspired by the gradient vector
field feature-preserving diffusion method (Xu and Prince, 1998), we design a new generalized
gradient vector flow (GGVF) based on the distance transform information. The GGVF is
defined as the gradient vector field v(x) that minimizes:

(2)

where x = (x, y, z) indicates the location of the point and D(x) is the Euclidean distance between
the nearest edge point and point x. The weighting function g (·) is defined using the distance
as follows:

(3)

where K is a positive constant. We will discuss how to select this value in section 2.5. By using
the weighting function g (·), the central regions will have bigger smoothing factors compared
to the other locations, thus leading to a smoother gradient vector field. The purpose of using
the new smoothing criteria is to ensure that the gradient vector is pointing to the central regions
of the local objects. Thus, the central regions of those objects can be detected from the gradient
vector tracking procedure. Figure 3 compares the normalized vector fields obtained by the
proposed GGVF scheme using new smoothing criteria and those obtained by conventional
gradient vector flow (GVF) diffusion. It clearly illustrates the effects of the new smoothing
criteria. Figure 3(b) and 3(c) show that the vectors obtained by conventional GVF are mostly
pointing to the central regions of big spines or dendrites instead of small spines. This is because
the conventional GVF field seeks the fastest change of intensity values, which leads the vectors
pointing to the global central regions, instead of local central regions. That means the vector
tracking can only detect central regions of the big spines and dendrites, but not all the spines.
However, the vectors obtained by the proposed GGVF with new smoothing criteria are mostly
pointing to central regions of spines (local objects), thus yielding more accurate central region
detection results than those from the conventional GVF, as shown in Figure 3(b) and 3(c). After
using the GGVF, all the gradient vectors will point to their central region, which is similar to
the results using the proper standard deviation by Gaussian convolution. The GGVF field is
further normalized as vn(x): vn (x) = v(x)/|v(x)|. The reason to normalize the GGVF field is
that it helps to improve the detection of feature points, as only direction information (not
magnitude information) is considered in GGVF vector tracking. Figure 4 compares the
normalized gradient vector fields calculated with different methods. These methods include
Gaussian kernel convolution with a small scale, with a large scale, and the GGVF method.
Comparing Figure 4(a2) with Figure 4(c2) illustrates that the normalized gradient vector
calculation using GGVF for spine area is equivalent to the Gaussian kernel convolution method
with small scale; comparing Figure 4(b1) with Figure 4(c1) illustrates that the normalized
gradient vector calculation using GGVF for dendrite area is equivalent to the Gaussian kernel
convolution method with large scale. This means that the Gaussian kernel convolution method
can achieve similar results on gradient vector calculation, but requires proper selection of
multiple scales. The GGVF based method, however, does not require scale selection. Figure 4
(a1) and Figure 4(b2) further illustrate that it is critical to select proper scales to obtain desired
gradient vectors if using the Gaussian kernel convolution method, thus making the Gaussian-
based method undesirable for gradient vector calculation in our application.
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2.2.2 Feature Point Detection Using Gradient Vector Tracking—In the gradient
vector field, the vectors smoothly point toward the central regions of the object (see Figure 3
and Figure 4). To detect the rough central regions (i.e., feature points), a gradient vector
tracking procedure is proposed. The tracking procedure is as follows. First, the normalized
vector field vn(x) = [u,v,w] is quantized into one of the 26 different directions corresponding
to the 26-connected points in 3D space to indicate which one of the 26 neighborhoods x points
to. The quantized discrete direction vector d(x) = [du,dv,dw] is calculated as follows:

(4)

and dv,dw are calculated in a similar way. By using direction quantization, searching among
all the 26 neighborhoods is avoided. Then, from a starting point x0 on the surface of the
foreground with a discrete vector d(x0), the next point x ' on the path is computed as:

(5)

At each new location x′, the angle between the two gradient vectors of x′ and its preceding x
is calculated as cos−1(v(x′)·v(x)). If this angle is greater than 90°, both x′ and x will be detected
as feature points and the tracking stops. Otherwise, the tracking continues until feature points
are detected. Figure 5 shows an example of the feature point detection results, and it is clear
that most of the detected feature points are on or near the central region of the objects. Once a
tracking stops, the Euclidian distance between the starting point x0 and the detected feature
point xf is calculated and stored for further scale selection.

2.3 Spine Detection Using Variational Shape Modeling
After the tracking procedure, the detected feature points are on or near the central regions of
the objects. However, not all the feature points belong to spines. See Figure 5 for example:
some feature points belong to pseudo branches; some belong to dendrites and other objects. In
this work, we use shape information to detect spines. To achieve better spine detection, a
variational shape modeling concept is proposed to further detect the spine central regions from
these feature points. In 3D neuron images, a spine is modeled as a tubular shape, a blob shape,
a plate shape, or a combination of any of the previous three variational shapes. To detect these
variational shapes, we apply an eigen-analysis-based method using the Hessian matrix and a
shape measurement calculation. A Hessian matrix is calculated using the second order
derivatives at point x:

(6)

where the second order derivatives are calculated as the image convolved with the derivatives
of a Gaussian kernel Gσ(x). That is: ∂xxI(x) = I(x)*∂xxGσ(x) and * is the convolution operator.
In this work, the image derivatives are calculated only at the feature points instead of over the
entire image domain to reduce the computational load. The derivatives at a single point using
the Gaussian kernel-based method are calculated as follows:

(7)
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Other derivatives along different directions are calculated in a similar way. The selection of
the scale σ for the Gaussian kernel is unavoidable here, as the proper selection of σ is very
important to correctly calculate the derivatives and to obtain the maximum feature responses
which are calculated based on the derivatives. In previous work (Zhang et al., 2007), we have
proposed to use a scale searching method to find the best scale for a point x. Because it is
expensive for computation and memory usage, this method is not suitable for 3D volume
images. In this work, we develop another method to select a proper scale value for each feature
point. The scale selection method is based on the fact that the proper scale of the Gaussian
kernel is related to the sizes of the objects. We regard the cross-section of a dendrite or spine
as an ellipse. The relationship between the two diameters of the ellipse (transverse diameter
dt and conjugate diameter dc) and the best scale σo is obtained by examining the maximum
measurements calculated using Angita’s shape measurement (Antiga, 2007) for synthetic
testing images with variational ellipse-shape cross-sections. To better mimic the possible sizes
of dendrites and spines in neuron images, the values for dt and dc are selected as dt = {1,2,…,
30}, dc = {1,2,…,30}. These values are maintained in a table, and Figure 6 displays a surface
plot of the table of the best scale corresponding to dt and dc. In practice, when a pair of real
dt and dc is known, the real σo value is selected by nearest-neighbor interpolation using the
four nearest neighbor grid points in the relationship table. The problem is then how to determine
dt and dc for each feature point. During the gradient vector tracking procedure, the Euclidian
distance between the tracking starting point x0 and the detected feature point xf is calculated.
For each xf, there exist multiple such distances as multiple tracking may find the same feature
point. Denoting the multiple distances as {ei},i = 1,…,L for a feature point, the pair of dt and
dc for that point can be obtained by the following method:

(8)

Once the Hessian matrix H(xf)is calculated for each feature point xf, a special feature response,
called the shape measurement, is calculated using the three eigenvalues of H(xf). The shape
measurement is a value between 0 to 1 indicating what the probability is for a point belonging
to a certain shape. Denoting the three eigenvalues of H(xf) as λ1,λ2λ3 in ascending order (|λ1|
≤|λ2|≤3|), the shape measurement MS is calculated using Antiga’s method (Antiga, 2007):

(9)

where S is an integer to represent a particular shape (S = 0 for blobs, S = 1 for tubes, and S =
2 for plates). The expressions for RA,RB,RC are as follows:

(10)

The parameters α,β,γ are all fixed at 0.5 in our experiments. Since the scale is pre-selected and
the eigen-analysis method is applied only to feature points, the accuracy and speed are

Zhang et al. Page 8

Neuroimage. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



significantly improved in comparison to the previous methods (Frangi et al., 1998; Sato et al.,
1998).

For dendrites, only the tube measurement (M1) is considered since the dendrites can be modeled
as tube-like objects; for dendritic spines, various measurements need to be considered since
spines may have different geometric shapes. In this work, each voxel in the detected set of
feature points is assigned a shape measurement to represent how close it is to a certain shape.
Since spines have various shapes, i.e., it could be a blob, a tube, a plate, or a combination of
these three shapes, we use the maximum shape measurements among all three shapes as the
final shape measurement for a certain voxel. That means a spine could be partly tube and partly
blob as an example. Thus, the shape measurement could be seen as a certainty value assigned
to each voxel. The maximum value of all possible shape measurements is selected as follows
to improve the detection of spines of various shapes:

(11)

where M is the shape measurement for a voxel. Since the calculation for dendrite measurement
is different from that for spines, it is necessary to distinguish spine feature points from dendrite
feature points. Based on the observation that dendrites usually have much bigger radii than
spines, a threshold value is set for the radii (in terms of the Euclidian distances) obtained by
the gradient vector tracking. Feature points with radii less than the threshold value will be
treated as spine feature points; the rest will be dendrite feature points. After the measurements
are obtained, the central regions of dendrites and spines can be detected by discarding those
feature points with very small measurement values (ie. thresholding). Figure 5(b) shows the
detected spine central regions after removing the dendrite backbones and the points with small
shape measurements. Certain feature points that are not near the central regions are removed,
while spines with various shapes are kept. Also, as illustrated in the red circle of Figure 5(b),
the touching spines are well-separated using gradient vector-based tracking.

In summary, two separate steps, gradient vector tracking and eigen-analysis, complete the spine
detection. The tracking step is to effectively find points on or near object central regions and
the eigen-analysis step is to filter the points to find those belonging to spines. Both steps involve
image derivative calculations which capture the image local shape and intensity features. The
advantages of the proposed method are that scale selection is automated, and the calculation
is only applied to the points close to the central regions of the objects, which significantly
improves the computational efficiency.

2.4 Spine Segmentation using Fast Marching
Once spine central regions are detected, the fast marching algorithm is applied to solve spine
segmentation. In this work, spine segmentation is modeled as a moving boundary problem.
The moving boundary problem is that, given an initial boundary (i.e., a boundary partitioning
an image into two regions) and a speed at each point on the boundary to specify the movement
of the point, how to track the location of the moving boundary at a certain time. In dealing with
moving boundaries, partial differential equation-based numerical methods usually build
computational fluid equations to model the motion and solve them using techniques based on
high-order upwind formulations. Such a numerical method has two complementary
approaches, namely, the fast marching approach for certain specialized front problems and the
level set approach for general front problems. The fast marching method (Sethian, 1996) is
designed to deal with the situation that the boundary is always moving forward or backward.
Instead of directly calculating the position of the boundary at a certain time as the conventional
level set approach, the fast marching method computes the arrival time of each voxel first, and
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then obtains the moving boundary by extracting the locations at a certain time by interpolation.
Defining a seed point as the point with the minimum arrival time, the fast marching method
calculates the arrival time in an iterative way. During each iteration, only the arrival time of
the neighborhood points of the current seed point is updated to speed up the evolution.

Theoretically, given an initial boundary B0 = {x,x = (x, y, z)} and a speed function Gx which
indicates how fast a point x moves along its normal direction, B0 can be viewed as the zero
level set of a higher dimensional function Φ x(t) at time t = 0. The level set function can be
formulated as follows,

(12)

If Gx > 0, i.e., the boundary always moves forward, the fast marching approach can be applied
to solve the level set equation (12) very efficiently. Denote Tx as the time used at which the
boundary crosses the point x, then |∇Tx|Gx = 1, which means the gradient of the arriving time
is inversely proportional to the speed of the boundary evolution (Sethian, 1996). Thus, the
problem can be described as the evolution of a closed boundary as a function of time Tx with
speed Gx in its normal direction. In our application, an initial closed boundary is the detected
spine central points (inside the spine central regions); the speed function Gx is specified by the
normalized gradient vectors obtained by the GGVF method (see Section 2.2); the time at which
the closed boundary crosses a point can be numerically calculated by the fast marching method.
Thus, the problem of spine segmentation is equivalent to a problem of finding the time that it
takes each spine central point to evolve to other points in the whole volume. The input to the
fast marching segmentation is the set of detected spine central regions, and the output will be
the segmented spines. All points with evolution time less than infinity will be segmented as
spine points. Spine segmentation using the fast marching technique can be summarized by
three steps:

Step 1: Initialization—During initialization, all points are assigned with initial values of
Tx and Sx, where Tx represents the time at which the boundary crosses the point x, and Sx
represents the current status of point x. Here Sx ∈{PROCESSED, FREE, Jx}, where Jx is an
index value representing the current index of the point x in a queue. For background points
and spine central points, Sx = PROCESSED, indicating that these points will not be considered
in the fast marching evolution; for all other points, Sx = FREE, indicating that these points are
currently available and should be considered for fast marching evolution. If Sx has any value
other than PROCESSED and FREE, then it indicates the corresponding point has been
processed before and the new value of Tx should be compared with the previous one to
determine whether to update Tx. For spine central points, Tx are initialized as zero since these
points will be used as the starting points (called seed points) for the fast marching method;
Tx are set to be INFINITE for all of the other points (called infinite points).

Step 2: Fast Marching Evolution—The fast marching starts at a seed point, i.e., each of
the spine central points. A queue is maintained to hold all the points in the fast marching
process. The marching time Tx is quantized to an integer value and used as the index in the
queue. In our application, the marching is considered separately for x-, y-, and z- directions,
For each x-, y-, or z- direction, there are only two possibilities for the current point to march:
forward or backward. Thus, only the 6-neighborhood is considered in the 3D space: xk =
{x1,2(x±1,y,z,),x3,4(x,y±1,z),x5,6(x,y,z±1)}, where (x,y,z) is the spatial location for the current
starting point s. For each neighbor point xk,k =1,2,…,6, denote its normalized gradient vector
flow as vn(xk) = [u(xk),v(xk),w(xk)], where u(xk),v(xk),w(xk) represents the speed values along
the x-, y-, and z- directions, respectively. If its status is not processed (Sx = FREE or Jx) and
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any one of u(xk),v(xk),w(xk) points to the current seed point, then a new time value is calculated
and compared with the previous time value for this neighbor point. Such a neighbor point is
then called a propagating point. Figure 7 illustrates the fast marching propagation in the 2D
case. The new time value T ̃xk is calculated as follows:

(13)

where rx,y,z are the spacing values along the x-, y-, or z- directions, respectively. If T ̃xk <T ̃xk,
then point xk is updated with T ̃xk and added to the queue using T ̃xk as the index. If point xk is
in the queue already, then the position of xk is updated based on the new marching time T ̃xk.
All six neighbor points are processed to find all the possible propagating points along the x-,
y-, and z- directions in 3D space.

The points in the queue are processed using the described fast marching technique one-by-one,
based on their index values. The point with the smallest marching time (i.e., index values) will
be processed first. Each time a point is processed, it is removed from the queue and set Sx =
PROCESSED. The processing continues until the queue is empty. Once the queue is empty,
the next seed point will be processed to create a new queue and the above queue-based fast
marching process is repeated.

Step 3: Spine Segmentation—Once all the seed points are processed using step 1 and step
2, each point in the 3D neuron image will have a Tx with a value from zero to INFINITE. To
segment a spine is straightforward: every time a spine central region is processed, all the points
with marching time Tx that are smaller than INFINITE are regarded as the spine points. Then,
a unique label value is set to Tx for all of these points to indicate that they have been processed
and belong to a spine. The advantages of using fast marching for spine segmentation are that
the segmentation is rapid and complete and the attached spines can be separated as they have
different initial boundaries and the tracking is not merged.

2.5 Parameter Selections
The proposed method requires minimal parameter selection. In GGVF diffusion, the only
parameter to set is the constant K. This value is selected based on experiments. Figure 8
illustrates the diffusion fields with different K values (0.1, 0.5 and 2) on two test images. Figure
8(a) shows that if K is too small (K = 0.1), the function g would vary sharply, which causes
the diffusion to be unsmooth; on the other hand, if K is set at a large value (K = 2), our proposed
GGVF will have the same form as the conventional GVF method, as shown in Figure 8 (c).
The experiments show that 0.5 is a good choice for K.

For central region detection, a threshold value is used to filter out non-central region points
with low shape measurements. We manually select this threshold based on the observation of
shape measurement from one training data and apply the same value on all the other data.
Although the accuracy can be further improved by tuning this parameter for each individual
image, the current method of using a fixed threshold obtained from a testing image is good
enough to be used in various neuron images.

Another threshold value is used to distinguish dendrite feature points and spine feature points
based on their transverse distances. Based on the observation that the dendrites are always
much bigger than the spines, a value which is smaller than the dendrite radii is adopted. This
value should be selected based on the width of the dendrite. If this value is set too large, some
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dendrite central region will be treated as spine central region; if it is too small, big spines may
be missed. In our experiments, this value is determined based on the distribution of transverse
distance of the spines and dendrites and applied to all the neuron images.

3. Experimental results
The proposed method is applied to fifteen dendritic images of MSNs for dendritic spine
segmentation. For spine and dendrite central region extraction, the proposed method is
compared with three other methods, namely, the 3D Thinning Algorithm (Lee et al., 1994),
3D Skeletonization with repulsive force field (RFF) (Cornea et al., 2005), and the flux driven
centerline extraction method (Bouix et al., 2005). The parameters for these methods have been
carefully selected to obtain relatively good results. As an example, for the 3D Skeletonization
with RFF, the “percentage of high divergence points to return” is set to be 50%, which should
return a more detailed skeleton. Figure 9 compares extracted central regions among different
methods. The comparisons show that previous methods detect a lot of branches and some
central regions are missing, while our proposed method is able to extract dendrite and spine
central regions more accurately and completely. Table 1 compares the running time (in
minutes) for the four centerline extraction methods on a PC with 2.66 GHz CPU and 4.0
Gigabytes RAM.

Figure 10 shows representative segmentation results using our proposed method. The
segmented spines are visualized using surface rendering and labeled in color (the selection of
a color for a specific spine has no meaning here). Note that some of the images are orientated
vertically to save space. Figure 11 displays partial spine segmentation results, and each image
is zoomed-in such that various spine shapes and their segmentations can be better inspected.
Various spine shapes, including branching spines (marked with yellow arrow), plate-like spines
(stubby type, marked with brown arrow), bulb-like spines (mature and thin spines, marked with
pink arrow), and tube-like spines (filopodia, marked with black arrow), are represented in these
images.

Table 2 shows a detailed quantitative comparison for each test image between our proposed
method and the manual segmentation results. In our experiment, one expert labels the spines
on the de-convolved images manually, using the software ITK-Snap ‡ (Yushkevich et al.,
2006). First, these spines are labeled using 6 kinds of labels (represented by different colors in
ITK-Snap), where the touching spines are labeled with different colors. Thus, no touching
spines exist on each label channel. Then, based on the region connectivity, each spine is
assigned with a distinct integer value. The final manual segmentation result is the combination
of the labeled images of 6 channels. In this quantitative comparison, true positive (TP) is
defined as those spines that are detected accurately and completely, i.e., the overlap between
the segmented results and the manual results are at least 80%; partial detected (PD) as
incomplete detection (i.e., 20% < overlap < 80%); miss as the overlap less than 20%; over-
segmentation (OS) if one spine is segmented as multiple ones; and under-segmentation (US)
if several spines are segmented as one. Table 3 compares segmentation results in terms of the
total number of true or false spines. True negative (TN) is defined as the total of PD, miss, OS,
and US; false positive (FP) is defined as those detected by the proposed method but not detected
by the manual method. The overall sensitivity for our method is 87.0% while the positive
predictive value is 90.4%. These results show that our proposed fully-automated method is
able to segment spines and dendrites more accurately and completely from neuron images with
complicated spine structures.

‡ITK-Snap: http://www.itksnap.org/
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The contributions of the proposed method include a new framework of central regions detection
with automated parameter selection and improved computational efficiency, a new method for
detecting objects with variational shapes, and a new application of the fast marching algorithm.
We believe that the proposed method can be used for other applications of object detection and
segmentation because:

1. The method is fully automated and requires no user interaction.

2. The method is very computationally efficient, making it more practical to be used on
various types of images and in 3D space than other methods.

3. The method is able to effectively detect objects with variational shapes and sizes. By
extending the shape measurement using equations 9 and 10, the method can be used
to detect objects with other shapes.

4. Conclusion
In this work, we propose a new method for dendritic spine detection and segmentation in 3D
confocal microscopy images of MSNs. This method detects central regions for both dendrites
and spines using gradient vector tracking and feature point detection. An eigen-analysis-based
method is applied to each feature point to calculate a shape measurement and to remove those
feature points that are not on or near the central regions of the spines. The spine central regions
are then used as seed points for spine segmentation using the fast marching method. Our
contributions include the proposed gradient vector tracking method for detecting dendrite and
spine central regions; the automated scale selection for the Gaussian kernels for the eigen-
analysis based method; and spine detection based on variational shape modeling. It is also the
first successful application of the fast marching algorithm to solve spine segmentation
problems. The advantages of the proposed method are that it is fully automated, requires only
minimal parameter selection, and can accurately and completely detect and quantify dendritic
spines of various shapes. The experimental results and comparisons show that the proposed
method achieves good performance in terms of dendritic spine segmentation of MSNs in 3D
space. Future work includes expanding our methods for other types of neurons or more complex
assays. One possible expansion would be the design of methods to analyze dendritic spines
co-stained with synaptic boutons, knoblike enlargements at the end of axons and/or with
neurotransmitter receptors. Such methodological development would allow us to analyze not
only the morphological aspect but also the functional state of synapses.
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Fig. 1.
Image Processing Pipeline for 3D dendritic spine detection and segmentation
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Fig. 2.
3D view of (a) the original image, with red lines indicating the cropped region, (b) cropped
image, (c) deconvolved image
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Fig. 3.
Comparison of gradient vector fields using the conventional GVF method and proposed GVF
with strong smoothing criteria. (a) A test neuron image with gradient vector fields
superimposed. (b)&(c) zoomed area 1 and 2 to better visualize gradient vector fields. Vectors
in red color are obtained by the conventional GVF method, and vectors in black color are
obtained by the proposed method. It is clear that by using the proposed weighting function, the
vectors can be further smoothed such that they are better aligned to pointing to the central
regions.
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Fig. 4.
Normalized gradient vector fields using first-order derivatives of the Gaussian kernel
convolved with (a) small scale, (b) large scale, and using (c) Generalized Gradient Vector Flow
(GGVF) field. (a1)(a2), (b1)(b2), and (c1)(c2) are the enlarged areas of region 1 and 2 in (a),
(b), and (c) respectively. Comparing (a2) with (c2) illustrates that the normalized gradient
vector calculation using GGVF for spine area is equivalent to the Gaussian kernel convolution
method with a small scale; by comparing (b1) with (c1) it illustrates that the normalized gradient
vector calculation using GGVF for dendrite area is equivalent to the Gaussian kernel
convolution method with a large scale. This shows the advantage of the proposed gradient
vector calculation method: that there is no need to select multiple scales. (a1) and (b2) illustrate
that proper scales have to be selected to obtain desired gradient vectors if using conventional
calculation methods.
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Fig. 5.
Results of the detected feature points. (a) using gradient vector tracking, the arrows indicate
some of the non-central points; (b) detected spine central regions after thresholding shape
measurements and removing dendrite central regions. Regions belonging to different spines
are labeled in different colors. It is clear that touching spines inside the red circle in (b) are
well-separated by the gradient vector tracking and non-central points are removed.
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Fig. 6.
Surface plot of the best scale selection according to different combinations of transverse and
conjugate diameters.
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Fig. 7.
Illustration for fast marching propagation in the 2D case. The black point indicates the current
seed point and the solid arrows in its 4-neighborhood points represent their normalized GGVF
vectors. The dashed arrows represent projected components of the corresponding GGVF
vectors along the x- or y- directions. If any of the projected components points to the seed
point, the neighbor point will be considered for time value calculation and comparison with
the previous time value. Such a neighbor point is then called a propagating point.
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Fig. 8.
Two examples of GGVF diffusion fields calculated using different values of parameter K with
(a) K=0.1; (b) K=0.5 and (c) K=2. If K is too small (K=0.1), the field is not smoothed; If K is
set a big value (K=2), the diffused vectors are pointing to big spines or dendrites instead of
local spines, similar to with conventional GVF vectors. According to the experiments, 0.5 is
a good choice for K.
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Fig. 9.
Comparison of central region extraction using (a)(e) 3D thinning, (b)(f) the flux driven method,
(c)(g) 3D skeletonization with RFF, and (d)(h) the proposed method before backbone removal.
The extracted results are shown in red.
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Fig. 10.
Spine segmentation results using our proposed method. The segmented spines are visualized
using surface rendering and labeled in color (the selection of a color for a specific spine has
no meaning here). Note that some of the images are orientated vertically to save space for
display.
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Fig. 11.
Partial spine segmentation results. Each dendrite is zoomed in such that various spine shapes
and their segmentations can be better inspected. This figure illustrates various spine shapes
including branching spines (yellow arrow), plate-like spines (brown arrow), bulb-like spines
(pink arrow), and tube-like spines (black arrow).
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Table 1

Average CPU time for central region extraction using different methods.

Methods Thinning Flux Skeletonization with RFF Proposed method

Processing Time(min) 3 25 45 3
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Table 3

Spine number quantitative results.

Proposed Method

Positive Negative

Manual
True 1015 108

False 152 -
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