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Abstract
The structure of the human brain is highly heritable, and is thought to be influenced by many common
genetic variants, many of which are currently unknown. Recent advances in neuroimaging and
genetics have allowed collection of both highly detailed structural brain scans and genome-wide
genotype information. This wealth of information presents a new opportunity to find the genes
influencing brain structure. Here we explore the relation between 448,293 single nucleotide
polymorphisms in each of 31,622 voxels of the entire brain across 740 elderly subjects (mean age
±s.d.: 75.52±6.82 years; 438 male) including subjects with Alzheimer's disease, Mild Cognitive
Impairment, and healthy elderly controls from the Alzheimer's Disease Neuroimaging Initiative
(ADNI). We used tensor-based morphometry to measure individual differences in brain structure at
the voxel level relative to a study-specific template based on healthy elderly subjects. We then
conducted a genome-wide association at each voxel to identify genetic variants of interest. By
studying only the most associated variant at each voxel, we developed a novel method to address the
multiple comparisons problem and computational burden associated with the unprecedented amount
of data. No variant survived the strict significance criterion, but several genes worthy of further
exploration were identified, including CSMD2 and CADPS2. These genes have high relevance to
brain structure. This is the first voxelwise genome wide association study to our knowledge, and
offers a novel method to discover genetic influences on brain structure.
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Introduction
A key goal in imaging neuroscience is to discover specific genetic variants that influence brain
structure and function (Glahn et al., 2007a; Glahn et al., 2007b). The dynamic trajectory of
brain development and aging throughout life is strongly influenced by genetic factors, and
genetic variants have been discovered that increase risk the for Alzheimer's disease (Corder et
al., 1993), other mental illness, (Gottesman and Gould, 2003; Meyer-Lindenberg and
Weinberger, 2006; Purcell et al., 2009) and even obesity (Frayling et al., 2007; Ho et al.,
submitted for publication). The goals are both scientific and practical: by selecting those at
genetic risk for early treatment, drug trials will be better powered to detect treatment effects
(Frisoni et al., in press). A more mechanistic understanding of mental illness will be achieved
if gene variants over-represented in patients are studied both at the molecular level and in terms
of their effects on brain structure.

Early neuroimaging studies of twins found that several aspects of brain structure are under
strong genetic control (Thompson et al., 2001; Posthuma et al., 2002) and that common sets
of genes may influence brain structure and cognition (Posthuma et al., 2002). These “first-
generation” studies estimated the relative influence of genetic contributions from relatives or
family members, based on the expected genetic similarity among different types of relatives.
Studies of identical and fraternal twins, and their siblings, have consistently identified heritable
aspects of brain structure (Thompson et al., 2001; Styner et al., 2005; Hulshoff Pol et al.,
2006; Peper et al., 2007; Schmitt et al., 2008; Brun et al., 2009; Chou et al., 2009). Except for
the genotyping necessary to confirm the zygosity of twins in these studies, specific variations
at the DNA level are not used in these analyses.

Early studies that use more detailed genotype information focus on specific candidate gene
effects on brain structure. Several studies of candidate genes such as APOE, COMT, and
BDNF have divided populations into carriers and non-carriers of risk polymorphisms within
these genes, and detected systematic differences in brain structure using a standard statistical
comparison of two groups (Egan et al., 2001; Pezawas et al., 2004; Hua et al., 2008; Chiang
et al., 2009).

More recently, the second generation of studies has used genome-wide scans to search the
entire genome for genetic polymorphisms that influence brain structure. In Stein et al.
(submitted for publication), a common variant in the GRIN2B glutamate receptor gene was
found to be over-represented in Alzheimer's disease and was associated with ~1.5% lower
temporal lobe volume per risk allele in the elderly (N=742 subjects; P<5×10−7). Genome-wide
searches have not generally been the most efficient or feasible approach in imaging genetics,
as they require large samples of subjects to discover gene effects that survive stringent multiple
comparisons corrections for searching over the entire genome. However, several international
efforts are now underway to scan genotyped healthy and diseased subjects with the goal of
discovering which genetic variants contribute to brain architecture (Thompson and Martin,
2010).

Perhaps surprisingly, no genome-wide study of brain images has used the armory of statistical
methods that are now standard in human brain mapping, such as statistical parametric mapping
(Friston et al., 1994; Frackowiak, 2004). One study has looked at statistical power for statistical
parametric mapping with simulated genome-wide data (Hayasaka, 2009), but no experimental
whole-brain whole-genome approach has been implemented to our knowledge. Most twin
morphometric studies still break up the brain into subvolumes (Schmitt et al., 2007) and run
genetic analysis on the numerical summaries (subvolumes).

By contrast, voxel-based morphometric approaches can make detailed 3D images of volume
differences throughout the brain, without the need to specify a priori regions of interest or time
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consuming manual tracing of anatomy in brain images. These maps of individual differences
in brain morphometry make it possible to create detailed maps of gene and environmental
effects on the brain, identifying spatially-varying patterns of genetic control that may not be
evident if the images were summarized using a few summary indices. Maps of genetic
influences on cortical anatomy reveal strong genetic control of frontal anatomy (Thompson et
al., 2001), and regionally-varying gene effects (Panizzon et al., 2009). Genetic maps based on
tensor-based morphometry suggest that there may be some gradients in the degree of genetic
influence, with earlier developing occipital lobe structures showing stronger genetic control
than frontal brain regions that mature over a more protracted developmental time-course (Brun
et al., 2009; Lee et al., submitted for publication).

Here we extend the notion of statistical parametric mapping, using voxel-based methods, to
include genome-wide association (GWAS) data in large populations. The result may be termed
voxelwise GWAS (or vGWAS). GWAS is usually applied to study a single trait, such as IQ
or the diagnosis of a specific disease, but here it is applied at each location in a brain image.
The result is a 3D map of the specific genetic variants that have the greatest statistical effect
in accounting for volume variations in each part of the brain, and a method to assess their
statistical significance.

Recent advances in neuroimaging and genetics have made it possible, and financially feasible,
to scan populations with multi-modality brain imaging and collect genome-wide data (Toga,
2002; McCarthy et al., 2008). The Alzheimer's Disease Neuroimaging Initiative (ADNI) has
recently acquired genome-wide genotype data as well as structural MRI scans of 740 subjects
(Mueller et al., 2005). This wealth of data is a blessing and a burden: 448,293 genotypes and
31,622 voxels in the brain in each of 740 subjects present powerful and previously unknown
spatial and genetic resolution to detect specific variants that influence the brain. However, this
vast amount of data requires new ways to deal with the computational load and account
statistically for multiple comparisons. A genetic association is usually conducted by
performing a linear regression of a phenotype on each genotype of interest, controlling for
other confounding variables of no interest. Generally, a genome-wide association study
examines only a few phenotypes of interest (Wellcome Trust Case Control Consortium,
2007; Sabatti et al., 2009). When conducting a voxelwise genome-wide association study, each
voxel represents a phenotype, so a regression must be run at each voxel and at each SNP
(~1.4×1010 tests), which requires large amounts of computation time (years) if run serially on
one computer. Parallelizing this process across a computing cluster can ease the computational
burden, giving results in a reasonable amount of time (days). Additionally, by conducting many
statistical tests (in this case ~1.4×1010) on the same dataset, we are highly prone to false-
positive findings (Curran-Everett, 2000). Finding a method to determine only those genetic
hits that are interesting to pursue without overlooking those with potentially important effects
is a difficult question explored further here.

For the first time, we conducted a voxelwise genome-wide association study (vGWAS) in 740
subjects to discover genes influencing brain structure across the entire brain. Each genetic
variant identified is a potential candidate with the ability to effect brain structure. If these brain
traits lie on the path from genes to disorders that involve the brain (Gottesman and Gould,
2003), they could represent candidates for further study in neurological and psychiatric
diseases.

Materials and methods
Sample

Neuroimaging and genetic data were acquired from 818 subjects as part of the Alzheimer's
Disease Neuroimaging Initiative (ADNI), a large 5-year study launched in 2003 by the National
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Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies, and
non-profit organizations, as a $60 million, public-private partnership. The goal of the ADNI
study is to determine biological markers of Alzheimer's disease through neuroimaging,
genetics, neuropsychological tests and other measures in order to develop new treatments,
monitor their effectiveness, and lessen the time of clinical trials. The Principal Investigator of
this initiative is Michael W. Weiner, M.D., VA Medical Center and University of California
– San Francisco. Subjects were recruited from 58 sites in the United States. The study was
conducted according to the Good Clinical Practice guidelines, the Declaration of Helsinki, and
U.S. 21 CFR Part 50—Protection of Human Subjects, and Part 56—Institutional Review
Boards. Written informed consent was obtained from all participants before protocol-specific
procedures were performed. All data acquired as part of this study are publicly available
(http://www.loni.ucla.edu/ADNI/).

All subjects underwent thorough clinical and cognitive assessment at the time of scan
acquisition to determine diagnosis. The mini-mental state exam (MMSE) was administered to
provide a global measure of mental status (Cockrell and Folstein, 1988). The clinical dementia
rating (CDR) was used to assess dementia severity (Morris, 1993). Healthy volunteer status
was determined through MMSE scores between 24 and 30 (inclusive), a CDR of 0, non-
depressed, non-MCI, and non-demented. MCI diagnosis was determined by MMSE scores
between 24 and 30 (inclusive), a memory complaint, objective memory loss measured by
education adjusted scores on the Wechsler Memory Scale Logical Memory II, a CDR of 0.5,
absence of significant levels of impairment in other cognitive domains, essentially preserved
activities of daily living, and an absence of dementia. Diagnosis of AD was made according
to NINCDS-ADRDA criteria for probable AD (McKhann et al., 1984), MMSE scores between
20 and 26 (inclusive), and CDR of 0.5 or 1.0.

Population stratification is a known problem in genetic association analyses, which can produce
false-positive or false-negative results (McCarthy et al., 2008). When multiple subpopulations
are present in the data (population stratification), spurious associations (or lack of associations)
can result from allele frequency differences between populations rather than associations with
the phenotype (Lander and Schork, 1994). 818 subjects were genotyped as part of the ADNI
study. However, only unrelated Caucasian subjects (non-Hispanic; N=740) identified by self-
report and confirmed by MDS analysis (see Stein et al., submitted for publication) were
included to reduce population stratification effects. Volumetric brain differences were assessed
in 173 AD patients (78 female/95 male; mean age±standard deviation=75.54±7.66), 361 MCI
subjects (130 female/231 male; 75.16±7.29), and 206 healthy elderly subjects (112 male/94
female; 76.13±4.94). The genome-wide analyses were not split into diagnostic groups as the
goal was to present as broad a phenotypic continuum (Petersen, 2000) as possible, to provide
the highest power to detect genetic associations.

MRI analysis methods
3D T1-weighted baseline brain MRI scans were analyzed using tensor-based morphometry
(TBM) as detailed in a previous study (Hua et al., 2008). Briefly, high-resolution structural
brain MRI scans were acquired at 58 ADNI sites with 1.5 T MRI scanners using a sagittal 3D
MP-RAGE sequence developed for consistency across sites (Jack et al., 2008) (TR=2400 ms,
TE=1000 ms, flip angle=8°, field of view=24 cm, final reconstructed voxel resolution=0.9375×
0.9375×1.2 mm3). Images were calibrated with phantom-based geometric corrections to ensure
consistency across scanners. Additional image corrections included (Jack et al., 2008): (1)
correction of geometric distortions due to gradient non-linearity, (2) adjustment for image
intensity inhomogeneity due to B1 field non-uniformity using calibration scans, (3) reducing
residual intensity inhomogeneity, and (4) geometric scaling according to a phantom scan
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acquired for each subject to adjust for scanner- and session-specific calibration errors. Images
were linearly registered with 9 parameters to the International Consortium for Brain Imaging
template (ICBM-53) (Mazziotta et al., 2001) to adjust for differences in brain position and
scaling.

For TBM analysis, the protocol was identical to that of a prior study analyzing the clinical
correlates of temporal lobe atrophy (Hua et al., 2008) in a smaller population; since then,
genome-wide genotype data was collected. First, a minimal deformation template (MDT) was
created for the healthy elderly group to serve as an unbiased average template image to which
all other images were warped using a nonlinear inverse-consistent elastic intensity-based
registration algorithm (Leow et al., 2005). Volumetric tissue differences were assessed at each
voxel in all individuals by calculating the determinant of the Jacobian matrix of the
deformation, which encodes local volume excess or deficit relative to the mean template image.
The map of volumetric tissue differences were then down-sampled using trilinear interpolation
to 4×4×4 mm3 isotropic voxel resolution for computational efficiency. This percentage
volumetric difference relative to a population-based brain template at each voxel served as a
quantitative measure of brain tissue volume difference for genome-wide association.

DNA isolation and SNP genotyping methods
DNA was isolated from B lymphocytes cells taken from blood (Neitzel, 1986) and extracted
(Lahiri et al., 1992) using standard procedures. 7 ml of EDTA blood was extracted using the
QIAamp DNA Blood Maxi Kit (Qiagen, Inc., Valencia, CA). Samples were processed
according to the manufacturer's protocol. Genomic DNA samples were analyzed on the
Human610-Quad BeadChip (Illumina, Inc. San Diego, CA) according to the manufacturer's
protocols (Infinium HD Assay; Super Protocol Guide; Rev. A, May 2008). Before initiation
of the assay, 50 ng of genomic DNA from each sample was examined qualitatively on a 1%
Tris-acetate-EDTA agarose gel for visual signs of degradation. Any degraded DNA samples
were excluded from further analysis. Samples were quantitated in triplicate with PicoGreen®
reagent (Invitrogen, Carlsbad, CA) and diluted to 50 ng/µl in Tris-EDTA buffer (10 mM Tris,
1 mM EDTA, pH 8.0). 200 ng of DNA was then denatured, neutralized, and amplified for 22
h at 37 °C (this is termed the MSA1 plate). The MSA1 plate was then fragmented with FMS
reagent (Illumina) at 37 °C for 1 h and then precipitated with 2-propanol and incubated at 4 °
C for 30 min. The resulting blue precipitate was then resuspended in RA1 reagent (Illumina)
at 48 °C for 1 h. The samples were then denatured (95 °C for 20 min) and immediately
hybridized onto BeadChips at 48 °C for 20 h. BeadChips were then washed and subjected to
single base extension and staining. Finally, the BeadChips were coated with XC4 reagent
(Illumina), dessicated, and imaged on the BeadArray Reader (Illumina).

Genetic analysis
Genome-wide genotype information was collected at 620,901 markers. Multiple types of
genetic variants were genotyped, but only Single Nucleotide Polymorphisms (SNPs) were
included in this analysis. Alleles on the forward strand are reported. Individual markers were
excluded from the analysis that did not satisfy the following quality criteria based on previous
genome-wide association studies (Wellcome Trust Case Control Consortium, 2007): genotype
call rate <95% (42,670 SNPs removed), significant deviation from Hardy–Weinberg
equilibrium P<5.7×10−7 (871 markers removed), minor allele frequency <0.10 (161,354 SNPs
removed), and a platform-specific recommended quality control score of <0.15 (variable
number of SNPs removed across subjects). A minor allele frequency cut-off of 0.10 (10%) was
used to ensure that sufficient numbers of subjects would be found in our sample in each
genotypic group (homozygous major allele, heterozygous, homozygous minor allele) using an
additive genetic model. If alleles are in Hardy–Weinberg equilibrium, a minor allele frequency
cut off of 0.10 ensures that at least 7 subjects are in the smallest genotypic category. If this cut-
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off is not imposed, there is a risk of findings being driven by a small number of subjects in the
sample, which may be less robust to sampling effects. 448,293 SNPs remained for analysis
after quality control. Missing data still occurs over these remaining SNPs, but after filtering
>95% of the subjects must have a successfully genotyped SNP for it to be included.

Association was conducted using a modified version of the Plink software package (Purcell et
al., 2007) (version 1.05; http://pngu.mgh.harvard.edu/purcell/plink/) to conduct a genome-
wide association at each of 31,622 voxels within a whole-brain mask of the MDT across all
740 subjects. At each voxel, a regression was conducted at each SNP with the number of minor
alleles, age, and sex as the independent variables and the quantitative phenotype (percentage
volume difference relative to a subject specific template at each voxel) as the dependent
variable, assuming an additive genetic model. To simplify and condense the large results (~140
MB) output at each voxel, the open-source Plink software was modified to only output the
identifier and P-value of the most associated SNP (21 bytes). Each genome-wide regression
required ~9 min of computation time, so the process was split for parallel computing across
300 cluster nodes using the Laboratory of Neuro Imaging (LONI) pipeline
(http://pipeline.loni.ucla.edu/). The total computation time was approximately 27 h.

An additional analysis was performed to determine if spatial clustering of P-values occurred
in a null map. Though a calculation of an extensive permutation distribution was not feasible,
we conducted one permutation to get an idea of how the data on top (most significant) SNPs
might look in a null distribution. The genomes, sex, and age were randomly swapped among
subjects and the same analysis as above was run again. The output from this analysis is shown
in Fig. 5.

Genes and ESTs (expressed sequence tags) in close proximity to significant SNPs were
localized through the UCSC genome browser (Kent et al., 2002) (http://genome.ucsc.edu/) and
are reported in Table 2. Additionally, gene functions and known associations with disease were
reviewed using the gene ontology information from the Entrez Gene
(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene) database.

Determination of statistical threshold
Selecting only the P-value for the most highly associated SNP at each voxel does not give, in
the null case, a usual uniform distribution of P-values from which to calculate the corrected
significance of the findings. Because we are using only the minimum P-value from a set of
tests of each of the genetic markers, we must find the appropriate type of null distribution to
use in this situation. If n independent random variables X1, X2, …, Xn are uniformly distributed
on the unit interval [0,1], the minimum of these variables follows the probability density
function (Ewens and Grant, 2001):

The PDF derived above fmin(χ) is a Beta distribution with parameters α=1 and β=n. At each
voxel then, the null distribution for the P-value of the most strongly associated SNP across n
independent genomic markers (the minimum P-value) approximately follows a Beta(1, n)
distribution.

It is well known, however, that all genomic markers are not independent (Frazer et al., 2007).
Genetic variation is often inherited in contiguous segments of DNA, such that there tends to
be correlation between the inheritance of alleles at markers close to each other on the same
chromosome. This genetic correlation is called linkage disequilibrium (LD), and, as a result,
the effective number of independent tests (Meff) conducted is less than the total number of
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markers (M). By effective number of tests, we mean the number of independent tests that would
have to be conducted to lead to a null distribution for the minimum P-values that was
approximately the same as that obtained when conducting tests that are necessarily correlated
due to LD.

To estimate the effective number of tests conducted as part of the study, simpleM
(https://dsgweb.wustl.edu/rgao/) was used (Gao et al., 2008; Gao et al., 2010). This program
first derives the composite LD structure between SNPs, calculates eigenvalues through
principal component analysis on the composite LD matrix, and sets Meff equal to the number
of principal components required to jointly explain 99.5% of the variance in the SNPs. This
process has been verified to give Meff estimates similar to those derived from a gold-standard
permutation-based null distribution when applied to several commonly used SNP chips (Gao
et al., 2010).

SimpleM requires that there must be no missing genotype information. Therefore, it was
necessary to perform imputation of the genetic data prior to Meff analysis. Imputation was done
using Mach (version 1.0; http://www.sph.umich.edu/csg/abecasis/MaCH/index.html) to infer
the phase of the haplotype and automatically impute missing genotypes (Li et al., 2009). The
parameters of Mach were set to 50 iterations of the Markov Sampler and 200 haplotypes
considered when updating each individual. Each chromosome was imputed separately.
Imputation was not conducted for sex chromosomes or for mitochondrial DNA. SimpleM was
used on the imputed dataset, and the resulting Meff estimates are presented in Table 1. Meff was
set to be equal to M for sex chromosomes and mitochondrial DNA as the use of simpleM in
this context has not been verified (Gao et al., 2008; Gao et al., 2010).

The effective number of tests was estimated to be 275,575, which is markedly reduced from
the 448,293 markers directly measured in this experiment. A comparable reduction was
reported by (Gao et al., 2010). We therefore chose to model the null distribution as Beta(1,
275575). Because the inter-SNP correlation depends on the number and density of SNPs
examined, this distribution would need to be re-estimated for new types of genomic data, for
instance if a chip with a different density were used (e.g., 1 million SNPs). To determine how
well the analytic Beta distribution derived above fits the observed data, a histogram of the
observed distributions is compared to PDF of the theoretical distribution in Fig. 1. Both
distributions are compared directly in a Q–Q plot. The theoretical distribution fits the observed
data well for the most part.

Based on the theoretical distribution of the minimum P-value from all genetic markers, the P-
values from the empirical studies were then “corrected” through the cumulative distribution
function (CDF) of the derived beta distribution. By adjusting the data using the CDF of the
theoretical distribution, common corrections for multiple comparisons may be used on the
“corrected” P-values (Pc-values). The False Discovery Rate (FDR) correction for multiple
comparisons (Benjamini and Hochberg, 1995) is reliant on receiving data that has a null P-
value distribution that is uniform on the interval [0,1] (Dabney and Storey, 2006). The
minimum P-value distribution above clearly does not meet that criterion, but the Pc-value data
at least approximately does, as shown in the histogram and quantile–quantile plot of the Pc-
value distribution (Fig. 2).

False discovery rate correction for multiple comparisons
Following correction of the raw P-values, a False Discovery Rate (FDR) correction for multiple
comparisons may be used to estimate if there is a statistical threshold that can be applied to the
maps that controls the expected rate of false-positives at a nominal rate (usually 5%) among
all rejected hypotheses (Benjamini and Hochberg, 1995; Genovese et al., 2002). The FDR
method for multiple comparisons correction is especially suitable for exploratory analyses like
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those presented here where we search for genes affecting brain structure (Storey, 2003). Here
we set the FDR to q=0.05, so that, on average, 95% of voxels declared significant are true
positives. The maps show that our data can only be thresholded at a level that gives a false
discovery rate of roughly 50%, and no statistical threshold controls the FDR at the conventional
q=0.05 level (Fig. 3).

The original FDR method (Benjamini and Hochberg, 1995) assumes that the data for each test
is statistically independent and the P-values are sampled from a uniform [0,1] distribution
(Dabney and Storey, 2006). The data are not statistically independent as the genomic structure
has linkage disequilibrium, or correlation between markers, and the neuroimaging data also
has spatial smoothness. If the data have a “positive regression dependency”, i.e., the test
statistics of the regression are positively correlated, the Benjamini– Hochberg procedure
controls the FDR successfully (Benjamini and Yekutieli, 2001). This is most likely a valid
assumption for neuroimaging and genetic data (Genovese et al., 2002; Storey and Tibshirani,
2003).

The original FDR method (Benjamini and Hochberg, 1995) is the most conservative of FDR
methods in that it will always control the number offalse-positives among rejected hypothesesat
the specified q-level, given independence of the data and sampling from a uniform distribution
when null. Given added assumptions, though, several alternative FDR methods may be used
to correct for multiple comparisons, and can give less conservative estimates of significance
(Pounds, 2006). The positive False Discovery Rate (pFDR) is a modification of FDR,
conditioningon one finding positive finding having occurred (i.e., one null hypothesis being
rejected) (Storey, 2003). The pFDR method is implemented inthe R statistics program
(http://www.r-project.org/; Version 2.8.1) as the “q-value” package (Version 1.20.0), used here
to calculate the q-values according to the pFDR method.

Several alternative methods have been proposed to correct empirical data to fit the assumptions
of the FDR method (Leek and Storey, 2008), or to correct the FDR assumptions to fit the non-
independence of the data (Li and Ji, 2005).

Estimation of sample size needed for replication
To estimate how many subjects would be needed to replicate the finding that these genetic
variants are associated with brain structure conditional on the dataset, we used a re-sampling
approach. The most associated voxel for each of the 5 most significantly associated SNPs (see
Table 2) was used as an example phenotype. For each SNP, three subjects, one from each
diagnostic category (AD, MCI, and healthy control), were randomly picked and removed from
the analysis and the P-value for each of the significant SNPs was calculated at the most
associated voxel. The process was repeated until no more subjects remained in the diagnostic
category with the least number of subjects (165AD subjects). Toestimate confidence intervals
for this estimate, the resampling was repeated 1000 times. 95% confidence intervals were based
on the 2.5th and 97.5th percentiles of the resampled distribution.

Results
Voxelwise GWAS results

Maps of the significance level at each voxel for the most associated SNP within that voxel
were recorded and displayed in Fig. 4. There are spatially contiguous hot spots of significant
association, with a “raw” minimum P-value of 2.56×10−10 (Pc-value=7.05×10−5) across the
entire brain. There is a certain amount of spatial clustering because all voxels are not
independent so some spatial clustering is expected even if the null hypothesis were true. To
get an approximation of how much spatial clustering is expected by chance, Fig. 5 shows the
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minimum P-values in each voxel after the genomes have been randomly assigned to each
subject. A certain amount of clumping is expected when top SNP maps are made from null
data. One source of spatial coherence in these maps is that they are based on smooth maps of
volumetric differences computed using tensor-based morphometry, which uses nonlinear
image registration of each subject's imaging data to a template. These methods generate
spatially smooth maps of volume differences, where the level of smoothness is dependent on
the form of the regularizer (Laplacian, elastic, fluid, etc.) and also on the spatial resolution of
the numerical grid used to solve the differential equations whose solution is the deformation
field. In our approach, the elastic regularizer is decomposed into its eigenfunctions so that the
warping fields can be computed using a Fast Fourier transform. Because these deformation
fields are smooth, so are averages and differences of their Jacobian (gradient) maps, and so are
the resulting statistical maps. In the future, it may be interesting to see if there is more latent
structure or anatomical coherence in the top SNP maps than would be otherwise expected if
the data were completely null. Even so, there may be relevant genes that influence brain
structure but are never the top SNP in a map of this kind. If so, their effects might be more
spatially distributed (coherent) without ever being represented in a top SNP map. Given this,
clearly extensions of vGWAS might be proposed that emphasize the total extent, or cluster
size, as well as the peak height of the association P-values, a tactic that can be more powerful
than a peak height or maximum statistic (top SNP) test for detecting subtle but distributed
effects of weak effect size in statistical parametric maps.

The voxelwise GWAS showed 8,212 unique SNPs which were most associated at each voxel.
In other words, if the “winning SNP” was picked for each voxel, the same SNP was picked
over spatially coherent regions. There does not appear to be a great deal of hemispheric
symmetry in the spatial distribution of the “winning” SNP at each voxel (Fig. 6). However,
the SNPs presented here do have an effect on brain volume beyond the most highly associated
voxels shown. The 20 “top” SNPs with the most significant association to any voxel are shown
in Table 2. The most significant SNPs were found in several genes.

The two most significantly associated SNPsin the study, rs2132683 and rs713155, are both
found in intergenic regions of chromosome 6. These SNPs are the “winning SNP” at voxels
located in the white matter near the left posterior lateral ventricle (rs2132683) and in the
cerebral aqueduct and fourth ventricle (rs713155; Fig. 6). The allele frequency of the minor
allele at rs2132683 has a trend level difference between diagnostic groups (AD and MCI: 0.339;
healthy elderly: 0.291; P=0.0793; OR=1.25) as does rs713155 (AD and MCI: 0.416; healthy
elderly: 0.347; P=0.016; OR=1.34).

SNP rs476463 is located within an intronic region of the CSMD2 gene. CSMD2 has highest
expression in the brain and may be a oligodendroglioma suppressor (Lau and Scholnick,
2003), though the function of the protein is largely unstudied. Additionally, it has been
associated with ADHD (Lesch et al., 2008) and addiction (Liu et al., 2006). The allele frequency
of this SNP did not statistically differ between diagnostic groups (AD and MCI: 0.116; healthy
elderly: 0.131; P=0.428; OR=0.871).

SNP rs2429582 is located within an intronic region of the CADPS2 gene and is the SNP that
associated with brain structure the most in the lateral temporal lobe. This gene regulates
synaptic and large dense core vesicle priming in neurons, especially promoting monoamine
uptake and storage in neurons (Brunk et al., 2009). CADPS2 is strongly expressed in the brain,
specifically in cerebellum, cortex, olfactory bulb, hippocampus, striatum, thalamus, and
superior and inferior colliculi (Speidel et al., 2003). The gene is located in an area with known
linkage to autism (Cisternas et al., 2003). Splice variants of this gene may also be relevant to
autism (Sadakata et al., 2007), though there is some controversy over this finding (Eran et al.,
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2009). The allele frequency for this SNP had a trend level difference between diagnostic groups
(AD and MCI: 0.355; healthy elderly 0.307; χ2=2.989; OR=1.24).

The fifth most associated SNP in this analysis, rs9990343, is in an intergenic region of the
genome on chromosome 3. It is the “winning SNP” in voxels of the superior frontal lobe (Fig.
6). The allele frequency for this SNP did not statistically differ between diagnostic groups (AD
and MCI: 0.489; healthy elderly 0.461; P=0.341; OR=1.12).

Other genes of interest identified here are WFDC2, expressed in epithelial cells and thought
to be involved in ovarian cancers (Bingle et al., 2002); SPINT3, serine peptidase inhibitor,
Kunitz type 3 (Lundwall, 2007); SHB, involved in apoptosis, signal transduction (Lindholm,
2002), cell differentiation, and may interact with other proteins to cause neurite growth (Zhang
et al., 2006); KIAA0090 which currently has an unknown function; MRTO4 which may be
involved in mRNA turnover and ribosome assembly (Lo et al., 2009); AKR7L which is an aldo-
keto reductase (Mindnich and Penning, 2009); BOK which is in a family of proteins that act
as anti- and pro-apoptotic regulators (Bartholomeusz et al., 2006); THAP4, which does not
have a known function (Roussigne et al., 2003); RBBP6, which encodes a retinoblas-toma
tumor suppressor (Sakai et al., 1995); FARP1, which promotes dendritic growth (Zhuang et
al., 2009); FRMD6 and GLYATL3 have unknown function. Additionally, SNPs were found in
ESTs BG436399 and BC036700 (Strausberg et al., 2002) and BG334794.

Statistical threshold
The statistical threshold was calculated using two methods that control the FDR on the Pc-
values. The original FDR method (Benjamini and Hochberg, 1995), which is valid in cases of
positive regression dependency (Benjamini and Yekutieli, 2001), sets a critical P-value
significance threshold for the second-most associated SNP (rs713155), with a false discovery
rate of q=0.50 (or ~50%) when the Pc-value threshold is 2.97×10−4 (Fig. 3). The pFDR
threshold gives a q-value of 0.25 for the most associated voxel of SNP rs2132683.

Sample size needed for replication
Replication is crucial for any experiment, but especially so in genomic studies that have a high
chance for false-positive results because so many tests are conducted. Here, we conducted a
resampling approach to determine how many subjects would be needed to replicate our findings
with 95% confidence (Fig. 7). This resampling procedure shows that an independent sample
of fewer than 312 subjects for rs2132683, 263 subjects for rs713155, 291 subjects for rs476463,
299 subjects for rs2429582, and 319 subjects for rs9990343 would be required to replicate the
effects shown here with 95% confidence in a new sample at a significance level of P < 0.01 (a
nominal P < 0.05, Bonferroni corrected for five independent tests). We note that the standard
P < 0.05 level rather than the genome-wide significance would be applicable to a replication
sample, as a prior hypothesis regarding the specific gene variant exists. In general, it seems
desirable for imaging genetics studies to estimate the sample size needed to replicate a given
finding, and to rank them for different findings, so that promising leads can be followed with
maximum efficiency. In the imaging genetics community, it may also be possible to facilitate
data sharing through the ENIGMA (Thompson and Martin, 2010) network
(http://enigma.loni.ucla.edu/) sufficient to replicate a finding if the sample size required is
known. The tables of “top SNPs” may then be shared with useful estimates of the sample sizes
needed for replication.
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Discussion
Methodological overview

Here we present a method to conduct a voxelwise genome-wide association study (vGWAS).
In summary: (1) we conducted a genome-wide association analysis using volume differences
relative to a mean brain image template at each voxel as a phenotype, after controlling
statistically for age and sex; (2) we selected only the most associated voxel, saving its P-value
and identifier; (3) the effective number of tests was calculated through determination of the
number of principal components that describe 99.5% of the genotypic variance; (4) the P-value
was corrected across SNPs through a transformation using the CDF of an analytic Beta
distribution with parameter estimated by the effective number of tests; and (5) the Pc-value
maps were assessed for how they controlled the false discovery rate, using various
implementations of the FDR theory to correct for multiple comparisons.

Overall, no SNPs survived FDR correction at the conventional q=0.05 threshold, but several
interesting genes were identified that already have a known mechanistic relation to brain
structure or to specific diseases of the brain, making them worthy of attempting replication.

Assumptions of model
This method defined above is equivalent to a “winner-take-all” map for SNPs, where the most
associated SNP is represented in each voxel. Our method is losing information by only looking
at one SNP per voxel, but even this data reduction technique requires novel analysis methods
and extensive computational time. Other methods have been proposed to assess the
simultaneous effects of multiple SNPs across multiple voxels, such as multivariate principal
or independent component analysis (Liu et al., 2009). In addition, canonical correlation analysis
(CCA) (Hotelling, 1935, 1936; Lee et al., submitted for publication), could be used to seek an
optimal basis (or linear combination) for two high-dimensional vectors (i.e., the images and
the SNP set), to maximize their correlation or mutual information. This basis can then be used
to determine the maximum correlations between the two datasets, by diagonalizing the total
covariance matrix between the vectors (Fillard et al., 2005). CCA, and its nonlinear variants
such as kernel CCA and adaptive boosting, are especially attractive as they could be used to
find optimal image projections that maximally correlate with subsets of genes. A region of an
image, with specific weights derived from CCA, could then become a candidate phenotype of
interest. This multivariate correlation method has been adapted already to seek genetic
influences on 6-dimensional diffusion tensors in twins, without throwing away the substantial
information in the diffusion tensor by dimension reduction (Lee et al., submitted for
publication). Even so, the extension of these multivariate correlation methods to genome-wide
data has not been explored and would require a great deal of memory.

Both the Beta transformation and FDR correction for multiple comparisons work under the
assumption of independence (or positive dependence in the case of FDR). This assumption of
independence is not precisely true for neuroimaging or genetic data. Neuroimaging data has
spatial smoothness due to both scan acquisition and analysis parameters. The smoothness of
the Jacobian maps that are derived from TBM analysis is partially determined by pre-specified
registration parameters that affect the spatial covariance (Green's function) in the 3D
deformation vector fields that are used to measure volumetric differences. These Green's
functions can be set adaptively, in principle, and can be considered equivalent to spectral or
neural network model of neuroanatomical variation that may be estimated from the data rather
than specified analytically (Grenander and Miller, 1998; Fillard et al., 2005). Because of this,
some spatial autocorrelations (spatial coherences) in the maximum SNP map are expected even
when null (Fig. 5). Similarly, because genetic variation is inherited in contiguous segments of
DNA due to recombination happening often in specific locations, there is a great deal of
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correlation between genetic markers recorded here, which is taken into account through
calculation of Meff (Table 1).

A common method to correct for multiple comparisons taking into account non-independence
of the data is to calculate exact P-values by shuffling labels, in this case genetic variation and
voxels, between subjects. By doing this many times, a true null distribution is developed which
automatically accounts for the spatial and genetic correlations in the sample. Unfortunately,
with data sets this large it is not computationally feasible to calculate a null distribution through
resampling in a reasonable amount of time. Each analysis takes 27 h to complete even when
parallelized across 300 computing nodes, so a resampling with only 1000 permutations would
take ~3 years.

Permutation tests are the gold standard for calculating significance levels and determining
Meff. As mentioned above, permutation tests are not computationally feasible here, so we used
a quick and effective method for determining Meff. Using a measure of the effective number
of independent tests is controversial (Nichols and Hayasaka, 2003; Dudbridge and Koeleman,
2004). Previous work has shown that when calculating the effective number of tests conducted,
the calculated distribution was significantly different from a permutation-derived distribution
(Dudbridge and Koeleman, 2004). However, a different algorithm is used here for determining
the effective number of tests (simpleM) and was found to match very well with the effective
number of independent tests fit to a Beta distribution of permuted data in two datasets (Gao et
al., 2010). Other work has shown that in neuroimaging data, the effective number of
independent tests does not match that of a permuted dataset when there is high spatial
smoothness (local autocorrelation) in the residuals of the dataset after statistical model fitting
(Nichols and Hayasaka, 2003). However, here we use the effective number of tests to correct
across the genetic data, an application where the procedure has been shown to give accurate
results in comparison to a gold-standard permuted null dataset (Gao et al., 2010).

Validity of the beta distribution and effects of violations of distributional assumptions
Serious consideration must be given to how violations of the assumptions of the Beta
transformation might affect the results of the analyses. In fact, if null data deviates from a
Beta distribution (e.g., in the tails) will impact some steps of the analysis (the FDR correction,
which is based on significance) but not others (the ranking of the SNPs and the top SNP map).
The goal of the Beta(1, Meff) method of adjusting the raw P-values is “uniformization” of the
Pc-values under the null hypothesis. In other words, if the data are truly null, then the Pc-values
should approximately follow a uniform distribution on the unit interval [0,1]. In Figs. 1 and 2,
the Q–Q plots show the approximate fit to the Beta(1, Meff) distribution in the bulk regime (i.e.
where the effect sizes are lowest), but in the tail, there may be deviations from the fit. True
positives would induce such deviations, but an inappropriate fit could also do this. In
simulations with correlated Gaussian samples, a Beta(1, Meff) fit does well in the bulk, but
there are deviations from uniformity for small Pc-values (we acknowledge an anonymous
reviewer for noting this). Such deviations will not affect the SNP ranking, as any conversion
from P to Pc is monotonic. However, they would affect the significance testing. Although FDR
applied to the images here did not give a significant finding, so the point does not affect the
conclusions drawn, if the P-to-Pc is used as the basis for significance testing, its empirical fit
should be tested more thoroughly and perhaps modified based on a partially permuted dataset,
where feasible.

Methods to increase power in vGWAS
First, minimal N plots (Fig. 7) estimate, through a resampling procedure, how many subjects
might be needed to replicate a finding. These SNPs could be validated by conducting a similar
experiment in a new sample, looking at only the SNPs of interest at the voxels or regions found
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here. By reducing the number of comparisons (fewer voxels and fewer SNPs), a less stringent
statistical threshold is needed for comparison because fewer tests are conducted.

This minimal N analysis differs from experiments which do not reject the null hypothesis, and
then attempt to determine the experimental power to reject the null. The idea of a post-hoc
power calculation has been shown to be fallacious (Hoenig and Heisey, 2001; Levine and
Ensom, 2001) and is not the goal here. Instead we look to estimate, approximately, the reduced
number of subjects that might be needed to replicate our results in a separate experiment. Using
an initial sample to determine the number of subjects needed to replicate a finding in a
completely independent sample does not have the same fallacy of the post-hoc power
calculation which attempts to calculate the power to achieve significance on the same sample.
The goal of the analysis presented is to determine how many subjects are needed to pass a
lower replication significance threshold. If the finding is true, and if the sample here is
representative of the population, 95% of the time in new experiments the SNP will be
significant at a replication threshold.

Notably, because vGWAS does lead to restricted regions of interest for associations, future
studies could take advantage of the limited search region to specify a region of interest,
increasing power by eliminating false-positive voxels. The selection of statistically-defined
regions of interest has been useful in other large voxel-based morphometry studies. For
example, in a study of 515 ADNI subjects scanned twice, Hua et al. (2009) found that the
sample sizes needed to find drug effects on the rates of brain atrophy were drastically reduced
if the analysis focused on voxels that had shown strong effects sizes in a small independent
training sample. Summary measures from this statistical region of interest were more powerful
than those based on atlas-based anatomic criteria, suggesting the benefit of voxel-based
methods, at least in some cases, over anatomical parcellation.

To implement such an approach, one could use two datasets: one for training and one for testing.
The training dataset could be trained to specify areas of greatest heritability or areas of greatest
genetic association. These areas could then be used as “training” ROIs to search for genetic
influence. Using vGWAS, the most associated SNPs at the most associated voxels could be
used as “testing” ROIs where we would expect much higher power in the “testing” dataset, as
fewer voxels and fewer SNPs are tested for association. The ADNI study has used this method
successfully to increase power to detect changes with greatest statistical effect sizes in AD
(Hua et al., 2009; Ho et al., in press). Genetics studies have also advocated this multi-stage
approach to maximize power with reduced genotyping cost (Skol et al., 2006).

Additionally, machine learning algorithms such as support vector machines (Burges, 1998) or
Adaboost (Freund and Schapire, 1997; Morra et al., 2008) could offer a method to identify the
most powerful phenotype, that is a set of voxels, and an associated set of weights, with the
greatest power to associate with genetic variation. A linear version of this approach is canonical
correlation analysis; a nonlinear version might use machine learning methods such as kernel
CCA, support vector machines, or boosting (Morra et al., 2009). If the performance of this
system were high on new data, one could use the new classifier output as the endophenotype
(Sun et al., 2009) and regress it against genetic variation using standard association software,
such as Plink.

Conversely, machine learning methods could be used to find gene sets or networks that best
predict the image value (Gu et al., 2009). In this way, one would be directly building a genetic
model for the data. The gene set could be limited to the best candidates from the training/
screening phase of the data as detailed above. This could motivate a design where one detrends
the effects of the top SNPs when looking for others. Adaptive boosting could be applied to this
problem, as it could fit a powerful weighted model ranking the top SNPs even if they each had
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a small effect (similar to “weak learners”, in terminology of machine learning) (Morra et al.,
2009).

Biological significance of the findings
Genome-wide association using brain phenotypes in humans has only been started in a few
previous studies, to our knowledge (Seshadri et al., 2007; Potkin et al., 2009a; Potkin et al.,
2009b). These studies used data reduction techniques by only studying gross phenotypes of
interest like total cranial, lobar, ventricular, or hippocampal volumes. Our analysis offers a
conceptual advantage as it searches for voxelwise genetic associations in 3D, which should
offer much greater anatomical detail about genomic association, with potentially higher
statistical power. Using this method, we found several genes with high relevance to brain
structure. Specifically, CADPS2 is involved with monoamine uptake in neurons; CSMD2 and
CADPS2 have been associated with psychiatric illness; and SHB and FARP1 are associated
with neurite growth. Given this prior information on how these genes function on the brain, it
is likely that some of the genetic variants found here have important effects on the structure of
the brain. Many other genes have not been well-studied or characterized so may well have an
effect on brain structure.

In Fig. 6, many of the locations of greatest association beyond any other SNP for the 5 most
associated SNPs are near a significant edge in the brain—next to the brain surface, major
fissure, or ventricles. It is worth considering whether such a localization may be due to a bias
(differential sensitivity) that might arise from the method of image warping followed by using
the warp's Jacobian determinant as the dependent variable. If statistical maps based on
deformation fields tended to detect effects more frequently at edges than in the rest of the brain,
then this would be a possible source of bias, but it appears not to be the case in other empirical
studies using TBM (in fact the opposite tends to be the case). Most studies with deformation
morphometry tend to show the greatest effect sizes throughout large homogeneous regions,
and notably our TBM studies of Alzheimer's disease find greatest effects in broad regions of
the brain's white matter, or throughout the lateral ventricles, both at 1.5 T and 3T, and in large
samples (Hua et al., 2009;Ho et al., in press). Also, statistical effects are not preferentially
detected at edges in images when the effects of single candidate genes on the brain are assessed
with TBM (Ho et al., submitted for publication). Although the deformation is driven by a body
force (image gradient, or variational derivative of a cost function) that is generally greatest at
the edges of structures in the images, the interiors of structures still tend to be better registered
than their boundaries once all the data are aligned. In the interiors of structures, coherent
patterns (such as atrophy) are more likely to be reinforced across all members of a group than
at boundary voxels that may be less well registered across all subjects in the group, even after
nonlinear registration. After all, the registration algorithm focuses on improving the alignment
of edges as they are always the least well registered parts of the image, and therefore these
regions are likely to show low effect sizes in a population study. Even so, some warping
methods use regularizers that are designed to make the Jacobian determinant as uniform as
possible in regions of homogeneous image intensity (e.g., the sKL-MI method, see Yanovsky
et al., (2009)), so the Jacobian determinant will change the most at an image edge. If this is
true, and if the “top SNP” is a different SNP for different structures, then it is more likely that
the top SNP in a vGWAS map will change at the boundary of a structure. This is speculative,
and the spatial coherence of top-SNP maps may depend on the sample size, the true spatial
correlation in the “top SNP” maps in an arbitrarily large sample, as well as the methods
(maximum statistic vs. cluster size statistic) used to detect them. The spatial correlation for
single gene effects on brain structure can be quite large, in TBM studies of candidate genes
that influence brain structure (Ho et al., submitted for publication).
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As in other ADNI analyses, we did not covary for medication status of the subjects. It cannot
be absolutely ruled out that some of the volumetric brain differences between AD, MCI, and
normal subjects might arise due to differences in medications, but such effects are likely
minimal. The major treatments for AD, including acetylcholine eesterase inhibitors (AChE-I)
and NMDA receptor modulators, have effects at the synaptic (neurotransmitter) level that can
provide limited symptomatic relief and have not been found to resist the progression of atrophy,
despite many efforts to find such effects. In their ADNI study of 269 MCI subjects, Kovacevic
et al. (2009) noted that 45% of the MCI subjects were being treated with AchE-Is, but
controlling for treatment status in prediction of decline did not change the association between
medial temporal lobe volumes on MRI and cognitive decline, not did treatment status affect
regional volumes. In addition, some psychiatric medications do have direct effects on brain
structure that are not attributable to the illness itself, and these include lithium a treatment for
bipolar disorder (Bearden et al., 2007; Bearden et al., 2008), and the antipsychotics haloperidol
or olanzapine (Thompson et al., 2009). However, ADNI's exclusion criteria required subjects
to be free from major depression, bipolar disorder, or any history of schizophrenia.

Conclusion
In summary, here we presented a novel method for discovering genetic variations associated
with brain structure. The resulting method, termed vGWAS, is capable of integrating a large
amount of biological information, yet still allows sufficient power to detect significant variants.
This method will be useful in any brain maps that have coordinate systems, such as voxel-
based morphometry, cortical surface data, and parameterized tracts derived from diffusion
tensor imaging. In addition, we have provided a ranked list of new candidate genes with
potential effects on brain structure that are worthy of further study.
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Fig. 1.
The theoretical and observed distributions of the minimum P-value across voxels. (a) The
normalized histogram of the observed minimum P-values is shown. Lines represent the PDF
of the Beta(1, 275575) distribution (solid line) based on Meff and the Beta(1, 448293)
distribution (dashed line) based on the number of measured markers. (b) The Q–Q plot shows
the observed P-values plotted against those expected from the Beta(1, 275575) (blue dots).
The black line gives a purely null distribution. The observed data matches well with that
expected by the Meff based null distribution. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 2.
A histogram and quantile–quantile plot for the “corrected” P-values (Pc-values). (a) The
histogram shows the Pc-values approximately follow a uniform distribution. (b) The Q–Q plot
shows the expected ordered −log10(Pc-values) as drawn from a uniform distribution plotted
against the observed ordered −log10(Pc-values) as blue dots. The black line shows the null
distribution. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 3.
The cumulative distribution function of corrected P-values. The cumulative distribution
function of Pc-values is shown (red) with two lines representing thresholds of q=0.50 (blue),
and q=0.05 (green). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 4.
The significance of the most associated SNP at each voxel. Each image represents slices
through the brain at 8 mm intervals from inferior to superior. The top of the page represents
anterior of the brain and the bottom of represents posterior. The images are in radiological
convention (left of the image is the right side of the subject). Each voxel is colored by the –
log10 of the P-value of the genetic association at each point (warmer colors are more strongly
associated). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 5.
The significance of the most strongly associated SNP at each voxel in a single permuted dataset.
Each image represents slices through the brain at 8 mm intervals from inferior to superior. The
top of the page represents anterior of the brain and the bottom of represents posterior. The
images are in radiological convention (left of the image is the right side of the subject). Each
voxel is colored by the –log10 of the P-value of the genetic association at each point (warmer
colors are more strongly associated). The same color scale is used from Fig. 4 for comparisons.
(For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 6.
The locations of association for the 5 most associated SNPs. Slices through the MDT are shown
in regions where the indicated SNP is the most associated at the voxel (red). The SNPs have
effects on brain structure beyond the red colored voxels, but these voxels are associated with
the labeled SNP more than any other. The slices through the MDT are every 4 mm and go from
inferior (left of page) to superior (right of page). The images are in radiological convention
(left of the image is the right side of the subject). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7.
The minimum number of subjects needed to replicate the findings for the top 5 most associated
SNPs was estimated with a resampling approach. Subjects were randomly removed from each
of the diagnostic categories until none was left in a category, and the association P-value of
the SNP was calculated. This process was repeated 1000 times, to estimate 95% confidence
intervals (red lines). The median P-value of the repetitions for each number of subjects removed
is shown as the solid black line. The blue line shows the replication threshold for the first 5
SNPs, a Bonferroni corrected P-value of 0.01. The dotted blue line shows the estimated
minimum sample size that would be required to detect a replication of the finding with 95%
confidence (N=312 for rs2132683; N=263 for rs713155; N=291 for rs476463; N=299 for
rs2429582; N=319 for rs9990343). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Table 1

Number of SNPs measured and the effective number of tests (Meff) on each chromosome. The effective number
of tests was not estimated in sex chromosomes or for mitochondrial DNA, where the effective number of tests
was set to be equal to the number of SNPs measured in those regions, rather than a smaller number. This is the
most conservative estimate. Chromosome XY refers to SNPs on both the X and Y chromosomes.

Chr Number of SNPs Meff

1 33,850 20,205

2 36,384 21,747

3 30,765 18,275

4 27,072 15,972

5 27,396 16,245

6 30,054 16,669

7 24,446 14,680

8 24,768 14,710

9 21,283 13,231

10 23,089 13,806

11 21,796 13,066

12 21,461 12,787

13 16,605 9809

14 14,501 8916

15 13,355 8557

16 13,460 9111

17 11,721 7764

18 13,198 8232

19 7,895 5425

20 11,169 7148

21 6,582 4193

22 6,757 4341

X 10,637 10,637

Y 12 12

XY 25 25

Mitochondrial 12 12

Total 448,293 275,575
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