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Abstract
The automated volumetric output of FreeSurfer and Individual Brain Atlases using Statistical
Parametric Mapping (IBASPM), two widely used and well published software packages, was
examined for accuracy and consistency relative to auto-assisted manual (AAM) tracings (i.e., manual
correction of automated output) when measuring the caudate, putamen, amygdala, and hippocampus
in the baseline scans of 120 HIV-infected patients (86.7% male, 47.3±6.3 y.o., mean HIV duration
12.0±6.3 years) from the NIH-funded HIV Neuroimaging Consortium (HIVNC) cohort. The data
was examined for accuracy and consistency relative to auto-assisted manual tracing, and construct
validity was assessed by correlating automated and AAM volumetric measures with relevant clinical
measures of HIV progression. When results were averaged across all patients in the eight structures
examined, FreeSurfer achieved lower absolute volume difference in five, higher sensitivity in seven,
and higher spatial overlap in all eight structures. Additionally, FreeSurfer results exhibited less
variability in all measures. Output from both methods identified discrepant correlations with clinical
measures of HIV progression relative to AAM segmented data. Overall, FreeSurfer proved more
effective in the context of subcortical volumetry in HIV-patients, particularly in a multi-site cohort
study such as this. These findings emphasize that regardless of the automated method used, visual
inspection of segmentation output, along with manual correction if necessary, remains critical to
ensuring the validity of reported results.
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Introduction
Magnetic resonance imaging (MRI) based brain volumetry is a valuable technique for
identifying subcortical morphometric changes in vivo and determining the regional
neurological impact of psychopathology, disease progression, and advancing therapeutic
regimens. This approach has been useful for characterizing the effects of dementia (Carmichael
et al. 2005, Teipel et al. 2008, Thompson et al. 2001), psychiatric disorders (Csernansky et
al. 1998, Hickie et al. 2005, Konarski et al. 2008, Styner et al. 2004), and normal aging
(Brickman et al. 2008, Elderkin-Thompson et al. 2008, Walhovd et al. 2005), as well as
uncovering regional and global neurological consequences of systemic diseases such as the
Human Immunodeficiency Virus (HIV) (Carmichael et al. 2007, Sporer et al. 2005, Stout et
al. 1998, Thompson et al. 2005, Thompson et al. 2006), diabetes (Jongen and Biessels 2008,
Perantie et al. 2007, Tiehuis et al. 2008, Wessels et al. 2007), and scoliosis (Liu et al. 2008).
As techniques in MRI continue to advance, in vivo volumetric measurement will become
increasingly valuable in the drive to understand the evolution and progression of injury for
CNS disorders as well as typical aging.

The range of clinical applications for MRI volumetry has generated intense interest in
maximizing the accuracy and efficiency of automated segmentation techniques. For years,
manual delineation by trained experts has remained the “gold standard” of accuracy in
volumetric analyses. Yet while it remains the current reference standard for segmentation, the
accuracy of manual volumetry relative to true structure volume is still widely debated, as results
can be influenced by factors such as anatomical protocols, tracer experience, scan acquisition
parameters, image quality, and even the computer hardware employed in the tracing procedure
(Jack et al. 1990, Jack et al. 1995, Warfield et al. 2004). Moreover, manual tracings are time
consuming, taking up to two hours per structure (though this time may vary depending on
structure complexity, slice thickness, and rater experience). Thus, the required time, financial
and personnel resources render manual volumetry in large cohort studies impractical.

Multiple automated methods have been developed to reduce tracing time while ensuring
excellent reliability (Andersen et al. 2002, Heckemann et al. 2006, Powell et al. 2008). In
particular, the FreeSurfer software package (Martinos Center, Boston, MA) and Individual
Brain Atlases toolbox (IBASPM; Cuban Neuroscience Center, Havana, Cuba) of the popular
Statistical Parametric Mapping package (SPM; Wellcome Trust Centre for Neuroimaging, UK)
are widely used and have well-published methods. Both packages are fully automated,
employing an atlas-based segmentation approach to generate an individualized anatomical
label map for a spatially normalized patient image, based on an atlas composed of manually
traced reference scans (Aleman-Gomez et al. 2006, Ashburner and Friston 1997, Ashburner
et al. 1999, Ashburner and Friston 2005, Fischl et al. 2002, Han and Fischl 2007, Tzourio-
Mazoyer et al. 2002).

While both of these packages have been validated by their creators, their accuracy and/or
consistency may vary depending on image quality, scan parameters, and scanning hardware
(Jovicich et al. 2009, Han and Fischl 2007, Tae et al. 2008). Additionally, previous
comparisons of competing automated methods have shown notable differences in their
performance relative to manual segmentation, despite examining only a limited number of
structures (Cherbuin et al. 2009, Klauschen et al. 2009, Morey et al. 2009, Shen et al. 2009,
Tae et al. 2008). Some have suggested the patient composition of the source atlas, particularly
the inclusion of healthy or diseased subjects, may in fact influence how robust each software
package will be with diseased patients or otherwise morphologically different brains (Csapo
et al. 2009, Tae et al. 2008, Zhang 1996). Differences in FreeSurfer and IBASPM processing
pipelines in addition to atlas composition, such as the algorithms for registration and statistical
application of the information contained in the atlases, underscore the importance of re-
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validating these packages prior to analyzing data obtained with scan parameters or patient
populations that are distinct from those of previous validation studies, especially in the case of
a large sample size or multi-site study.

The purpose of this study was to address previously described inconsistencies in FreeSurfer
and IBASPM subcortical segmentation results by examining the automated volumetric
measurement of several clinically relevant subcortical structures from a large multisite
consortium study of HIV infection. We compared the accuracy and consistency of volumetric
results for the caudate, putamen, hippocampus, and amygdala obtained using three methods:
AAM segmentation, FreeSurfer (Martinos Center for Biomedical Imaging, Boston, MA), and
IBASPM (Cuban Neuroscience Center, Havana, Cuba). Cognitive decline is a well-described
feature of HIV progression, and a small number of studies have linked this to atrophy of
subcortical structures (Gonzalez-Scarano and Martin-Garcia 2005, Hall et al. 1996, Paul et
al. 2002, Ragin et al. 2005, Robertson et al. 2007, Stout et al. 1998). Future investigations of
this relationship will call for large-scale studies that will rely on automated volumetric
procedures to efficiently obtain data. To ensure the data is interpreted correctly, it will be crucial
to anticipate and thereby minimize the possible shortcomings of these automated methods. To
this end, we will attempt to characterize the accuracy and variability of these methods, as well
as examine the ability of each to uncover significant, valid relationships when correlated with
clinical measures of HIV progression.

Materials and Methods
Subjects

One hundred twenty HIV infected patients were examined in this study (86.7% male; mean
age 47.3 ± 7.2 years). Patients were recruited as part of the ongoing multisite NIH-funded MRS
(magnetic resonance spectroscopy) HIV Neuroimaging Consortium (HIVNC) study based on
the following inclusion criteria: HIV-positive, age ≥ 18 years, duration of HAART > 12 weeks,
nadir CD4 count < 100 cells/ml during HIV history. Patients were considered to be on stable
treatment (highly active antiretroviral therapies (HAART); median CD4 365.6 ± 224.7 cells/
mm3; 64.2% undetectable plasma viral load (< 75 copies/mL); median HIV duration 12.0 ±
6.3 years). Patients with history of major psychiatric illness, confounding neurological
disorders, hepatic or renal dysfunction, diabetes mellitus, or chronic/active alcohol or substance
abuse were excluded from participation. In addition to neuroimaging, patients were also given
baseline cognitive and psychiatric assessments, as well as assays for relevant clinical variables.
The study was approved by the institutional review board at each data collection site. All
patients provided informed consent and received approved compensation. The subjects used
in this study were selected at random from the larger HIVNC cohort, and a comparison of
demographic data ensured that the subset was representative.

Image acquisition
Imaging of each participant followed a strict standardized protocol established at the beginning
of the study and monitored using automated and manual checking routines. Scans at all sites
were performed using 1.5T GE Signa scanners with a minimum operating system requirement.
T1-weighted SPGR (Spoiled Gradient Recalled) MR images were acquired for each participant
using the following sequence parameters: TR=20 (minor variation allowed), TE=5 (minor
variation allowed), 1×1×1.3 mm, flip angle=30, axial slices. Images were visually inspected
for quality control purposes and re-acquired if necessary (e.g. presence of motion artifacts,
etc.).
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Automated Volumetry
FreeSurfer—FreeSurfer’s built-in mri_convert function was used to convert scans to a format
compatible with FreeSurfer (.mgz). Resulting 8-bit images were processed using FreeSurfer
version dev4 (released September 4th, 2008; Martinos Center, Harvard University, Boston,
MA) on a local computing cluster running the Red Hat Enterprise Linux (ES 4). As
implemented here, the workflow for creating subcortical segmentations consists of the
following steps, which have been previously described in detail by FreeSurfer's creators (Fischl
et al. 2002, FreeSurfer Wiki):

Pre-processing: Non-parametric, non-uniform intensity normalization is performed
on the MRI image.

Registration: A transform matrix to Talairach space is calculated for later steps using
a twelve degrees of freedom affine transformation.

Intensity normalization: Fluctuations in scan intensity are corrected and scan
intensities are collectively adjusted to achieve a mean white matter intensity of 110.

Skull Stripping: The skull and meningeal surfaces are removed from the scan, leaving
only the brain and overlying pial surface.

Registration: A transform matrix to align the patient volume with the FreeSurfer atlas
is calculated for use when applying segmentation labels.

Labeling: Final volume labels are applied to subcortical structures based on the prior
probabilities of voxel identity assigned by the atlas in addition to the probability of
voxel identity based on the tissue class assignment of surrounding voxels, and
volumetric statistics are computed.

In order to make spatial comparisons with IBASPM output, FreeSurfer images were resampled
to the axial space with a voxel size of 0.977 × 0.977 × 1.300 mm using the FreeSurfer
tkregister2 and mri_label2vol functions, as recommended by the program creators and utilized
in previous studies (Klauschen et al. 2009, Morey et al. 2009). Volume statistics were obtained
using the FreeSurfer mri_segstats function.

FreeSurfer and its documentation can be freely downloaded at
http://surfer.nmr.mgh.harvard.edu.

IBASPM—Mri_convert (see above) was used to convert scans into the ANALYZE format
(.img) to ensure compatibility with IBASPM. The resulting images were visually inspected to
confirm proper orientation and the absence of warping. Images were then processed using the
IBASPM toolbox (Cuban Neuroscience Center, Havana, Cuba) functions of SPM5b
(Wellcome Department of Cognitive Neurology, University College, London, UK),
implemented in MATLAB 7.5 (Mathworks, Natick, MA) on Mac Pro machines running OS
10.5. Using the parameters of this study, IBASPM (Individual Brain Atlases using Statistical
Parametric Mapping) carries out the following five processes in order, the last three of which
operate outside SPM5:

Segmentation: The images are segmented into broad tissue types: CSF, gray matter,
and white matter.

Normalization: The T1 image is mapped to stereotaxic MNI space using the ICBM
152 T1 template, minimizing the sum of square differences between images in order
to correct for global brain differences while maintaining feature-specific variations
in images that are crucial to detecting difference. This produces a spatial
transformation matrix that is used in later processing steps.
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Labeling: Gray matter voxels identified in the segmentation step are mapped to the
inverse of the transformation matrix produced during normalization and aligned to
the 116 automatic anatomical label (AAL) structures (Tzourio-Mazoyer et al. 2002).
This step ensures that each voxel is labeled exclusively as one structure and that each
structure is in the space of the atlas Final volume labels are applied to subcortical
structures based on the prior probabilities of voxel identity assigned by the atlas.

Atlasing: The deformation fields calculated during the normalization step are inverted
and the Matlab "imfill" function is used to fill holes and isolated points in the final
structure volumes.

Volume Statistic: The volume of each identified structure is calculated and descriptive
statistics are compiled.

For the purpose of statistical analyses, the output of IBASPM was flipped such that RAS
orientation agreed with that of FreeSurfer output and AAM tracings. The IBASPM and SPM5
software packages and their documentation are freely Available at
http://www.thomaskoenig.ch/Lester/ibaspm.htm and http://www.fil.ion.ucl.ac.uk/spm/,
respectively.

Auto-assisted manual segmentation
AAM segmentation was performed on Mac Pro machines (OS 10.5) using a "semi-automated"
method to reduce tracing time. Rather than trace all structures from raw data, we chose to make
corrections to the output of a customized version of the FreeSurfer processing pipeline.
Modifications were made as follows: after intensity normalization of raw imaging data,
FreeSurfer uses a set of predefined pixel intensity ranges that are considered acceptable values
for gray matter regions of interest (aseg.mgz file output). Visual inspection of aseg.mgz output
resulted in the modification of pixel intensity ranges to be more inclusive of additional pixel
intensity values due to the consistent gross underestimation of ROIs examined in this study.
These values were incrementally adjusted until visual inspection revealed the fewest amount
of errors in segmentation labels.

We chose this output as a starting point in order to minimize the time required to produce a
reliable and accurate segmentation while ensuring that the method would not bias the results
toward default (i.e. unoptimized) FreeSurfer output and taking advantage of the FreeSurfer
visualization and segmentation tools with which our delineators had already developed
expertise during previous studies.

From this starting point, manual corrections were made to produce segmentations of the
caudate, amygdala, putamen, and hippocampus using anatomical landmarks consistent with
previously published protocols for each of these nuclei (Westmoreland and Cretsinger (a, b),
Pantel et al. 2000, Pulsipher et al. 2007). To confirm that using optimized FreeSurfer output
would not bias manual corrections in favor of default output, corrections were also performed
on a subset of ten segmentations from IBASPM as well as from the raw data. Excellent intra-
rater, intra-subject reliability was achieved between the fully manual and semi-automated
segmentations in all structures (Cronbach’s α > 0.90), as well as between IBASPM- and
FreeSurfer-initiated semi-automated segmentations (Cronbach’s α > 0.95), confirming the
reliability and validity of the manual corrections regardless of the starting point. Additionally,
high segmentation overlap was achieved between manual and AAM tracings, with dice
coefficients greater than 0.9 in all structures except the right amygdala (0.86) and sensitivity
measures greater than 0.85 in all structures except the left amygdala (0.823) and right amygdala
(0.76). To minimize inter-subject variability, one technician oversaw quality control on every
tracing for a particular structure (caudate: J.D.; putamen: J.P.; amygdala & hippocampus: T.R.)
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for which high intra-rater reliability had been achieved (Cronbach's α > 0.92). Raters were
blinded to the clinical variables for each subject.

Statistics
While no standard metric for comparing segmentation methods has yet been established,
measures of spatial overlap are common in the literature to date. Moreover, our investigation
lends itself well to measures of overlap, as we are making comparisons within the feature space
of each subject rather than across subjects. In the present study overlap was assessed using the
following two metrics:

Dice coefficient, also called kappa index (Archibald et al. 2003, Fischl et al. 2002, Shattuck
et al. 2001, Van Leemput et al. 1999, Zaidi et al. 2006), with A representing the AAM
segmentation, B representing the automated segmentation, and v(A) or v(B) representing the
voxel count, i.e. volume, of a structure from its respective segmentation:

Sensitivity, also called true positive volume fraction (Udupa et al. 2006):

Fully overlapping regions of interest will yield a value of 1.0 for both metrics, with lower values
describing less optimal overlap. Overlap measures with AAM segmentations for both
automated methods were obtained using Matlab v7.7.0 for the Mac OS.

The absolute volume difference between the output of each method was also calculated. While
this measure lacks the ability to characterize positional similarity, it has been shown to be the
most sensitive for detecting variances in segmentation results (Zhang 1996). Furthermore,
because most studies are based solely on the volume of structures irrespective of their positions,
it is important to quantify the variance that may be observed in the results of a study depending
on which segmentation procedure is used. While varying forms of this metric have appeared
throughout the literature (Fischl et al. 2002, Iosifescu et al. 1997, Morey et al. 2009), for ease
of interpretation it was calculated here using the form proposed by Zhang (1996):

The resulting percentage represents the difference between the volumes obtained by AAM
tracing and each automated method expressed as a percentage of the AAM obtained volume.
Paired Student’s t-tests to assess the significance of differences between automated and AAM
segmentations across all of the above metrics were performed using SPSS v16 (SPSS, Inc.,
Chicago, IL).

Additionally, after checking the normality of the distribution using the Kolmogorov-Smirnov
test, Pearson correlations between FreeSurfer/SPM and AAM segmentations were also
calculated to assess the degree of association between these measures using SPSS and R v2.9.1
(R Foundation for Statistical Computing, Vienna, Austria). As an adjunct to traditional
correlation methods, we used R to construct Bland-Altman plots, which are commonly used
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in the methodological scientific literature to examine the association between two methods
without the underlying assumption that one method is superior to the other. This is
accomplished by plotting the difference between the two measures of each case against the
mean of these measures. The distribution of the differences between each method and AAM
tracing was also plotted in order to reveal any systematic error present in the automated
measurements.

As a secondary set of analyses, volumetric data from both automated methods, as well as AAM
tracing, was examined in conjunction with several commonly measured clinical markers of
HIV disease severity: nadir CD4 count, age, duration of infection, CD4 count at time of image
acquisition, AIDS dementia complex (ADC) stage, and plasma viral load (PVL) (Table 1). The
rationale for this approach was that an effective automated segmentation method will return
results accurate enough to detect relationships with clinical data similar to those that can be
detected with AAM tracing. The correlations between continuous variables were estimated
using Pearson’s correlation coefficient, with the following adjustments: 1) in order to account
for skewed distributions, nadir CD4 and CD4 counts were natural log transformed prior to
analyses; 2) ADC stage was treated as ordinal data and a polyserial correlation was used; 3)
plasma viral load was dichotomized to account for different assay sensitivity limits across sites
and a skewed distribution, and a biserial correlation was used. Results from these correlational
analyses were directly compared to one another for each volume/clinical variable comparison
using the paired.r function of the R psych package, because it can account for the inherent
correlation between the volumetric measurements of the methods being compared.

Results
Spatial overlap with AAM segmentation

As measured by the dice coefficient, FreeSurfer (FS) segmentations exhibited significantly
higher (paired t-test, p < 0.001) mean spatial overlap in all structures (Figure 1). This difference
was most pronounced in the right amygdala (FS 0.740 ± 0.071; IBASPM 0.259 ± 0.114) and
right hippocampus (FS 0.749 ± 0.069; IBASPM 0.374 ± 0.112). While the difference in dice
coefficients was smallest in the right caudate (FS 0.813 ± 0.065; IBASPM 0.721 ± 0.128), the
difference was nonetheless significant (p < 0.001).

The mean sensitivity of IBASPM did surpass that of FreeSurfer in the right caudate (FS 0.666
± 0.060; IBASPM 0.714 ± 0.150; p < 0.001). However, FreeSurfer sensitivity was significantly
higher (p < 0.001) in all other structures examined (Figure 2).

Absolute volume difference relative to AAM measurement
FreeSurfer volumes were significantly closer (paired t-test, p < 0.01) to the AAM segmented
results in five of the eight structures examined (Figure 3), with the difference being most
prominent in the left caudate (FS 6.76% ± 5.71%; IBASPM 26.05% ± 47.76%) and left putamen
(FS 13.99% ± 5.44%; IBASPM 40.48% ± 28.38%). IBASPM volumes were more accurate in
the right amygdala and the hippocampus in both hemispheres (p < 0.01), with the largest
discrepancy in the right hippocampus (FS 28.64% ± 7.13%; IBASPM 15.43% ± 10.62%). In
all cases, these differences were found to be significant (p < 0.01). IBASPM exhibited higher
variability in measurement accuracy across all structures.

Consistency of automated methods relative to AAM segmentation
Consistency between FreeSurfer/IBASPM and AAM tracing was measured using Pearson’s
rho. The coefficients of FreeSurfer volumes to those of AAM tracing were significantly higher
(p<0.003) than those of IBASPM to AAM results across all structures (Figure 4). This
difference was particularly apparent in the putamen in both left (FS: 0.874; IBASPM: 0.171)
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and right (FS: 0.771; IBASPM: 0.364) hemispheres, as well as the right hippocampus (FS:
0.754; IBASPM: 0.345).

A distribution of volumetric differences, i.e. (automated volume)-(AAM volume), across
structures demonstrated that FreeSurfer systematically overestimated the volume of the
hippocampus, amygdala, and to a lesser extent the putamen (Figure 5). While IBASPM appears
to have underestimated the caudate and putamen and overestimated the hippocampus on
average, it is difficult to consider this systematic due to the wide variation of the volumetric
error in these structures. A notable exception is the right amygdala, in which IBASPM exhibited
a similar degree of variability to FreeSurfer (FS: ±203 mm3; IBASPM: ±212 mm3) while
achieving a smaller mean difference in measurement relative to AAM tracing. An examination
of Bland-Altman plots revealed that the amount or direction of error did not vary systematically
with the volume of the structure except the putamen as measured by FreeSurfer and the
amygdala as measured by IBASPM.

Correlation with clinical data
AAM-obtained segmentations demonstrated four statistically significant (p<0.05) correlations
between the nuclei volumes and clinical measures of disease severity (Table 2). Relative to the
AAM data set, two common and two unique correlations with clinical variables were identified
by FreeSurfer while IBASPM identified one common correlation and four unique correlations.
FreeSurfer and IBASPM did not identify any significant correlations in common (Table 3a).

Tests for significant differences (p<0.05) between correlations found by the three methods in
each comparison are summarized summarized in Table 3b. FreeSurfer correlations with clinical
covariates were not significantly different in three of the four significant correlations found in
the AAM data. Moreover, the two unique FreeSurfer correlations described in the previous
analysis were not significantly higher than those found with AAM data. Similarly, IBASPM
correlations were not significantly different from three of the four correlations found with AAM
data. However, all four of the correlations identified by IBASPM that were not supported by
significant AAM correlations were also significantly higher.

Discussion
Performance characteristics of FreeSurfer and IBASPM

Past validation studies examining automated segmentation methods have varied widely in the
measures they have used. The analyses in this study were chosen in an attempt to apply the
full range of metrics that have appeared in various combinations in prior publications.
Moreover, each metric characterizes a slightly different aspect of segmentation performance
and must be considered in relation to one another in order to adequately interpret the results
of an analysis. For example, absolute volume difference does not assess spatial overlap, which
requires a Dice coefficient. Calculation of sensitivity characterizes the ability of a method to
identify true positives, but it does not account for false positives and thus must be interpreted
in the context of the Dice coefficient. Additionally, measures of correlation are required to
present the direction of error and determine the degree to which this over- or under-estimation
is systematic across a group of patients. When these measures are considered as a whole, an
accurate picture of segmentation performance can be assembled.

The performances of FreeSurfer and IBASPM were not consistent across the metrics described
above. FreeSurfer mean volumetric results were closer to those of AAM tracings in five of
eight structures, but FreeSurfer spatial overlap was higher in all structures examined.
Furthermore, FreeSurfer displayed higher sensitivity in seven of eight structures. Though these
results may seem incompatible, they merely suggest that while FreeSurfer may have greater
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mean volumetric differences when compared to IBASPM when measuring some structures, it
more accurately characterizes the actual shape and location of all the structures examined.

The higher correlation between FreeSurfer and AAM volumes across all structures suggests
that the error in FreeSurfer measurements is more predictable in nature, whereas the direction
of IBASPM volumetric error may vary widely within a group of patients. A measurement error
distribution plot (Figure 5) confirms that FreeSurfer systematically overestimated the volumes
of the putamen, amygdala, and hippocampus in both hemispheres. While this trend may also
appear to be present in IBASPM measures of the left putamen and left hippocampus, the large
variability of measurement error in these structures precludes the error being considered
systematic.

This last observation highlights a noteworthy difference in the relative reliability of FreeSurfer
and IBASPM measurements. While neither method emerged as categorically superior to the
other in measures of accuracy, the standard deviation of FreeSurfer data was lower than that
of IBASPM in every comparison. This may be due to the more localized areas of anatomical
variance observed in FreeSurfer segmentations across all structures. FreeSurfer tended to
overestimate the inferior surface of the caudate head and body, often including the nucleus
accumbens and stria terminalis in the caudate segmentation. The vast majority of FreeSurfer
putamen overestimation was attributable to expansion of the lateral aspect to include parts of
the external capsule and claustrum. The border between the amygdala and hippocampus was
frequently erratic in FreeSurfer segmentations, and the tail of the hippocampus was often
expanded to include the inferior horn of the lateral ventricles on the lateral aspect and adjacent
cortex on the medial aspect. IBASPM error was less systematic, and much of the variation and
discrepancy in volumetric measurements and spatial overlap is likely due to the holes and spiny
projections observed in all structures, particularly the putamen and hippocampus (Figures 6
and 7).

While not heavily emphasized in previous validation studies, the variability of error can
significantly affect the utility of any automated segmentation method. Data containing
systematic errors can still capture trends and may be of some use when correlated with other
variables of interest. Moreover, if systematic error is sufficiently consistent, it can even be
minimized or eliminated through post-hoc corrections. While this may not be the case for the
data presented here, the significantly higher degree of predictability in FreeSurfer error (i.e.,
systematic over-estimation of volumes) is worth considering when planning investigations that
utilize this tool.

Correlation with clinical measures
In our data set, neither FreeSurfer nor IBASPM volumetric data yielded significant correlations
with clinical covariates similar to those found using AAM-obtained data (Table 3a). Four
significant correlations were found between AAM segmentations and clinical variables, of
which FreeSurfer data yielded two and IBASPM data one. Moreover, two additional significant
correlations were found in FreeSurfer data, and four in IBASPM data, that were not found
using the AAM segmented data set. These findings suggest that, at least in a data set with
similar characteristics, the method of volumetric measurement will seriously influence the
findings of any analyses attempting to relate volume measures to other relevant covariates, and
that FreeSurfer and IBASPM are not equivalent substitutes for AAM segmentation in such
studies.

The significance of the correlations described above is influenced by factors that will be unique
to each data set, and thus our conclusions may not be generalizable to other studies. For this
purpose it is more instructive to consider the degree to which correlations given by the three
methods in each comparison differ from one another. For this analysis, we define a method to
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be similar to another in a given comparison if the correlations yielded by both methods were
not significantly different at the 0.05 level in a pair-wise analysis, with the assumption that
similar correlations may both achieve significance depending on the sample, presence/
exclusion of outliers, etc. When examining comparisons in which AAM-obtained volumes
were significantly correlated with a clinical covariate, both FreeSurfer and IBASPM performed
equally, yielding similar correlations in three of four cases. However, in the comparisons when
the data from either automated method yielded uniquely significant correlations, AAM-
obtained data was similarly correlated in both FreeSurfer cases and none of the four IBASPM
cases. Moreover, FreeSurfer correlations were significantly different from AAM in five
additional cases - and IBASPM in four - where significance was not achieved by any of the
three methods. These cases are equally important, as at least one method may disagree under
conditions of greater statistical power.

The discrepancies between default FreeSurfer and IBASPM output applied to clinical
covariates are noteworthy, as this a common application of automated volumetry in diseased
patient cohorts. The presence of significant correlations in such analyses is often taken as de
facto proof of their validity, leading to potentially erroneous conclusions. However, there is
potential that these discrepancies may be overcome through optimization of the automated
processing pipeline. The vast majority of significant differences between FreeSurfer/IBASPM
and AAM correlations occurred in the amygdala and hippocampus, which were shown to be
the most difficult structures for the automated tools to accurately segment. It has been suggested
that the accuracy and reliability of automated segmentation in these structures could be
enhanced through refinements such as more accurate sub-cortical registration (Tae et al.
2009). If such modifications could reduce the variability of measurement error alone, the ability
of an automated tool to accurately characterize relationships with clinical covariates could be
vastly improved. Regardless, these findings highlight the importance of visually inspecting
automated segmentation output, even when volumetric data is not being directly assessed or
reported.

Concordance with previous publications
Previous studies comparing FreeSurfer output with manual tracing have focused primarily on
the hippocampus, with one group addressing the amygdala as well; moreover, no study has yet
been performed using an HIV-infected cohort, not to mention multi-site data in this disease
context. However, our findings generally agree with those of previous publications (Table 4).
The two notable exceptions are the measures of absolute volume difference reported in Morey
et al. (2009) in both the amygdala and hippocampus, which they found to be much smaller
than those reported here. One contributing factor is the formula used to calculate this metric;
while Morey et al. used the average of FreeSurfer and manual volumes as their denominator,
we chose to divide by the AAM traced volume alone in order to yield descriptives that were
easily interpreted as the percentage of the AAM traced structure that was over- or under-
estimated; using our formula, the numbers reported by Morey et al. would have been larger.
Additional factors include scan resolution (3T in Morey et al. versus 1.5T here) and disease
specific factors affecting structure volumes in our patient population, as Morey et al. examined
healthy patients.

Relatively fewer studies have examined IBASPM performance in subcortical structures. Tae
et al. (2008) investigated both FreeSurfer and IBASPM hippocampal measurements in chronic
Major Depressive Disorder patients. Similar to our results, they found IBASPM errors in
hippocampal measurements to be smaller on average than those of FreeSurfer but more widely
distributed. The FreeSurfer volumetric errors reported were similar in magnitude to those
presented here (Table 4). The authors cite a high frequency of registration errors in the
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hippocampus as a potential source of the errors in IBASPM output, which based on our own
visual inspection may likely pertain to the discrepancies observed in the present study as well.

Previous studies have also utilized shape-based analyses to precisely characterize the
localization of discrepancies between automated methods and manual tracing, though these
have only addressed FreeSurfer. Morey et al. (2009) found that the majority of FreeSurfer
hippocampal overestimation in their results was localized to the anterior-medial surface, with
additional overestimation occurring to a lesser degree along the tail region. This latter finding
is supported by Shen et al. (2009), who found that FreeSurfer-segmented hippocampi had larger
tails with more erratic surfaces. In the amygdala, Morey et al. found that FreeSurfer expanded
the anterior and posterio-lateral surfaces, which accounted for the majority of overestimation.
The results of both studies agree with the error localization we observed when inspecting
FreeSurfer output as described above.

Optimization of automated volumetry
In spite of significant discrepancies in performance, FreeSurfer and IBASPM both hold great
promise. For this study, both packages were implemented using the default settings
recommended by their developers. However, a number of options are available to customize
and optimize these techniques. Through active email forums and online wikis (FreeSurfer:
http://surfer.nmr.mgh.harvard.edu/fswiki; IBASPM:
https://www.jiscmail.ac.uk/cgi-bin/discuss.cgi?LMGT1=SPM), users can seek the advice of
other users, as well as the program creators, and alert the community to potential pitfalls of
each program. Additionally, the creators of both packages can be contacted directly for
assistance in optimizing each routine for the needs of an individual study. For instance, in order
to create the starting point for the semi-automated segmentations used in this study, we utilized
a pipeline specifically modified by FreeSurfer’s creators to be more robust at detecting the
putamen given the characteristics of our data. Other authors have suggested that improvement
of the registration methods employed by both programs to be more accurate in sub-cortical
regions may drastically improve automated segmentations (Tae et al. 2008, Tae et al. 2009).
Other optimizations may address the reference atlas underlying automated segmentation
decisions; as a follow-up to the present study, we are currently pursuing approaches to create
patient- and population-specific atlases for prospective studies using FreeSurfer.

The results presented here underscore the importance of optimization when using FreeSurfer
or IBASPM in volumetric studies. With careful modification, higher levels of accuracy can be
achieved with automated volumetric packages (Han and Fischl 2007, Yeo et al. 2008). In spite
of these improvements, users are still responsible for manually inspecting the output of either
package to ensure that accurate and reliable results are being obtained and correcting mistakes
in automated segmentations as necessary. Such intervention is particularly critical in studies
attempting to correlate volumetric data with clinical measures, as the present results have
demonstrated the potential for unique trends to appear when using unedited volumetric data
from either software package. Recently, Beutner et al. described a Markov Chain Monte Carlo
approach for estimating uncertainty in brain region segmentation obtained from fully
automated methods. In synthetic and real data sets, their method reported higher uncertainty
for images with lower quality or pathology, both of which negatively affect automated
segmentation performance (Beutner et al. 2009). This method may provide an additional tool
for researchers to identify inaccurate segmentations and streamline the process of manual data
inspection in large cohorts.

The procedure used for AAM segmentation in the present study is one example of how the
power of automated volumetry can be harnessed while still ensuring accuracy via post-
processing manual intervention. While we demonstrated high reliability relative to manual
traces from raw, unsegmented data, we were able to arrive at these segmentations in a fraction
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of the time. For instance, while manual segmentation from scratch can require up to two hours
per structure per hemisphere, tracing times in our study averaged twenty to thirty minutes, due
in large part to processing optimizations such as customized atlases that we will be reporting
in an upcoming publication.

Limitations
A potential shortcoming of the present study is the dependence on accurate AAM tracings.
Variance is naturally introduced when a patient group of this magnitude is manually corrected,
especially in structures with poorly defined borders, such as the hippocampus and amygdala.
To control this variance to the greatest possible extent, the tracing of each structure was
overseen by a trained expert (caudate - JD, putamen - JP, amygdala/hippocampus - TR) who
had demonstrated reliability when re-tracing a subset of patient scans (Cronbach’s α > 0.92).
The anatomical boundaries used for tracing were based on previously described protocols
(Westmoreland and Cretsinger (a, b), Pantel et al. 2000, Pulsipher et al. 2007), and the level
of intra-rater reliability achieved was equal to or greater than that described in prior publications
(Mori et al. 2008, Tae et al. 2008, Wu et al. 2006). Moreover, our AAM-obtained volumes
agree well with those described in previous publications. For instance, Cherbuin et al.
(2009) reported average manual measurements of 2992 mm3 (± 335) and 3068 mm3 (± 340)
in the left and right hippocampus, respectively, as compared to 3006 mm3 (± 420) and 3079
mm3 (± 459) in our data. We attribute the increased variability in our measurements to a number
of potential factors due to HIV neuropathology and/or multisite acquisition, including a greater
range of structure volumes and blurring of grey/white matter boundaries.

Additionally, the conversion of AAM and FreeSurfer segmentation from coronal to axial space
resulted in slight alteration of the segmentations due to the resampling procedure for computing
spatial overlap. However, this is currently the only way to make spatial comparisons between
the output of these two programs. The conversion tools used for this step replicate previously
published methods (Klauschen et al. 2009, Morey et al. 2009) and were recommended by the
FreeSurfer developers in public FreeSurfer forums.

Conclusion
The goal of this study was to characterize the performance of two widely used automated brain
MRI-based volumetry packages in a manner that would significantly augment the existing
literature by expanding the scope of the analyses to include additional structures within a unique
patient cohort. To our knowledge, this is the first paper addressing reliability and validity of
automated subcortical volumetry in the context of HIV. Although one previous publication has
addressed automated volumetry in HIV patients, these investigators focused exclusively on the
ventricles and did not utilize FreeSurfer of SPM (Carmichael et al 2007). Our data set is among
the largest to date when comparing these automated methods, second only to that of Cherbuin
et al. (2009), though we broaden their findings by including a wider range of structures.
Moreover, the fact that our data were acquired at multiple sites across the United States suggests
factors affecting inter-site variance (i.e., small differences in scan parameters, scanner
upgrades, etc) inherent in large cohort studies (i.e., Alzheimer’s Disease Neuroimaging
Initiative, drug studies) may impact the performance of automated volumetric methods.
Finally, we expanded our analyses from those of other studies to include four important
subcortical structures and used a wide range of metrics to fully capture the accuracy and
reliability of the automated packages examined.

Our results demonstrate that default (i.e. unoptimized) subcortical volumetry with FreeSurfer
or SPM may be prone to significant errors when presented with data collected from multiple
sites or a diseased patient population. In order to ensure accurate analyses, it is imperative that
researchers employing either of these tools manually inspect the output and pursue
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opportunities to optimize the routines as necessary for their particular research context.
Furthermore, as suggested by the developers of these tools, the full range of parameters
implemented must be specifically reported to ensure credibility and reproducibility of results
and to guide further development of the segmentation package being used.

Future Directions
Though FreeSurfer and IBASPM are intended to yield similar segmentations and volumetric
results, the underlying algorithms are different in many respects. A detailed analysis of the
differences in processing pipelines, such as tracing protocols used for atlas creation, atlas
patient composition, registration algorithms, and statistical application of the prior probabilities
represented in the reference atlases, would help to elucidate the source of the discrepancies
reported here and in prior publications. These investigations may also open new avenues to
the development of optimizations for these packages. As both tools are continually improved
and techniques in the field of atlas-based segmentation progress, additional studies examining
the reliability and validity of these methods will no doubt be needed until a truly robust,
accurate, and efficient method emerges.
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Figure 1.
FreeSurfer achieved significantly higher spatial overlap with AAM segmentation in every
structure. Error bars indicate one standard deviation.
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Figure 2.
FreeSurfer achieved significantly higher mean sensitivity (i.e., fraction of structure voxels
correctly identified) in all structures except the right caudate, in which IBASPM sensitivity
was significantly higher. Error bars indicate one standard deviation.
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Figure 3.
FreeSurfer achieved significantly lower mean absolute volume difference relative to AAM
segmentation in five of eight structures, while IBASPM differences were significantly lower
in the right amygdala and left/right hippocampus. Error bars indicate one standard deviation.
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Figure 4.
Correlations between FreeSurfer and AAM obtained volumes were significantly higher in all
eight structures.
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Figure 5.
Distributions of volumetric error (v(AAM)-v(automated)) reveal that FreeSurfer
systematically overestimated the volumes of the hippocampus and, to a lesser extent, the
putamen and amygdala. IBASPM volumetric error was more variable in all structures except
the amygdala, and only in the left putamen and left hippocampus can a trend toward systematic
error be seen.
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Figure 6.
Segmentation screenshots from a randomly selected subject.
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Figure 7.
3D models of segmentations from a randomly selected subject. The segmentations produced
by both automated methods exhibit rough edges, projections, and even holes in structures that
were not present in the AAM segmentation. These errors were particularly prevalent in the
hippocampus and putamen. Caudate - light blue/grey; putamen - green/blue; amygdala -
yellow/pink; hippocampus - deep blue/orange. Models are in radiological orientation.
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Table 1

Common clinical measures of HIV progression.

Nadir CD4 Lowest CD4 count since HIV diagnosis (cells/ml)

Age Patient age in years

HIV duration Years since HIV diagnosis

CD4 count CD4 count at time of scan acquisition (cells/ml)

ADC stage AIDS Dementia Complex state (0: normal; 0.5:
subclinical; 1–4: mild to end stage)

Plasma viral
load

Level of HIV RNA present in plasma (copies/ml)
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Table 3

Survey of agreement between AAM and automated segmentation when correlated with clinical measures of HIV
severity, defined by (a) both correlations achieving significance in a given comparison, e.g. AAM and IBASPM
when correlating ADC stage with right putamen volumes; or (b) the magnitude of the two correlations being
similar to one another (i.e. not statistically different) when at least one method achieved significance, e.g. AAM
and FreeSurfer in the above comparison.

(a)

AAM FS IBASPM

AAM 4 2 1

FS 2 4 0

IBASPM 1 0 5

(b)

AAM FS IBASPM

AAM 4 4 1

FS 3 4 1

IBASPM 3 2 5
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