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Abstract
Analyzing distributed patterns of brain activation using multivariate pattern analysis (MVPA) has
become a popular approach for using functional magnetic resonance imaging (fMRI) data to
predict mental states. While the majority of studies currently build separate classifiers for each
participant in the sample, in principle a single classifier can be derived from and tested on data
from all participants. These two approaches, within- and cross-participant classification, rely on
potentially different sources of variability and thus may provide distinct information about brain
function. Here, we used both approaches to identify brain regions that contain information about
passively-received monetary rewards (i.e., images of currency that influenced participant
payment) and social rewards (i.e., images of human faces). Our within-participant analyses
implicated regions in the ventral visual processing stream – including fusiform gyrus and primary
visual cortex – and ventromedial prefrontal cortex (VMPFC). Two key results indicate these
regions may contain statistically discriminable patterns that contain different informational
representations. First, cross-participant analyses implicated additional brain regions, including
striatum and anterior insula. The cross-participant analyses also revealed systematic changes in
predictive power across brain regions, with the pattern of change consistent with the functional
properties of regions. Second, individual differences in classifier performance in VMPFC were
related to individual differences in preferences between our two reward modalities. We interpret
these results as reflecting a distinction between patterns reflecting participant-specific functional
organization and those indicating aspects of brain organization that generalize across individuals.
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Introduction
Humans can rapidly identify, categorize, and evaluate environmental stimuli. Identifying the
neural mechanisms that underlie stimulus evaluation is a fundamental goal of cognitive
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neuroscience. Part of that research agenda includes the identification of functional changes
in the brain that predict the characteristics of perceived stimuli. An important recent
approach involves analyzing functional magnetic resonance imaging (fMRI) data for task-
related patterns of information (Kriegeskorte and Bandettini, 2007), often through the
application of techniques from machine learning, called multivariate pattern analysis
(MVPA). Although still less popular than more standard univariate techniques, MVPA
continues to grow in scope, as evidenced by recent overviews (Haynes and Rees, 2006;
Mitchell et al., 2004; Norman et al., 2006; O’Toole et al., 2007), tutorials (Etzel et al., 2009;
Mur et al., 2009; Pereira et al., 2009), and consideration of potential applications (deCharms,
2007; Friston, 2009; Haynes, 2009; Spiers and Maguire, 2007).

Studies employing MVPA now cover a diverse set of topics. The earliest and most-common
targets were feature representations and topographies in the visual cortex (Carlson et al.,
2003; Cox and Savoy, 2003; Haynes and Rees, 2005; Kamitani and Tong, 2005). More
recent studies have broadened the application of MVPA to many other types of information:
hidden intentions (Haynes et al., 2007), free will (Soon et al., 2008), odor processing
(Howard et al., 2009), scene categorization (Peelen et al., 2009), components of working
memory (Harrison and Tong, 2009), individual differences in perception (Raizada et al.,
2009), basic choices (Hampton and O’Doherty, 2007), purchasing decisions (Grosenick et
al., 2008), and economic value (Clithero et al., 2009; Krajbich et al., 2009). In striking
examples, feature spaces determined using MVPA have been extended to decode the content
of complex brain states, such as identifying specific pictures (Kay et al., 2008) and
reconstructing the contents of visual experience (Miyawaki et al., 2008; Naselaris et al.,
2009).

Nearly all MVPA studies that employ classifiers build an independent classification model
for each participant, based on the trial-to-trial variability in the fMRI signal. This approach
is well-suited to identify brain regions that play a consistent functional role within-
participants, but it cannot make claims about common cross-participant representation.
While relatively few studies have adopted the latter approach, some early applications have
targeted deception (Davatzikos et al., 2005), different object categories (Shinkareva et al.,
2008), mental states that are consistent across a wide variety of tasks (Poldrack et al., 2009),
attention (Mourao-Miranda et al., 2005), biomarkers for psychosis (Sun et al., 2009), and
Alzheimer’s disease (Vemuri et al., 2008). To date, however, no study has systematically
evaluated whether within- and cross-participant analyses provide distinct information about
brain function.

There may be important functional differences between the results of within- and cross-
participant MVPA. The popularity and promise of MVPA stems from the notion that its
analyses go beyond demonstrating the involvement of a region in a particular task; they
provide important information about the representational content of brain regions (Mur et
al., 2009). Accordingly, joint examination of within- and cross-participants patterns may
clarify how information is represented within a region. Regions that contribute to the same
task may do so for different reasons. One may be consistently recruited but represent
participant-specific information, while another’s functional organization may reflect both
common recruitment and common information across individuals. The objective of the
current study was to provide such comparisons in brain regions whose functional
contributions to a task might reflect general or idiosyncratic effects, across individuals.

Here, we employed the “searchlight” method (Kriegeskorte et al., 2006) to extract local
spatial information from small spheres of brain voxels while measuring fMRI activation in
participants who passively received monetary and social rewards (Hayden et al., 2007;
Smith et al., 2010). We then employed a popular machine-learning implementation, support
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vector machines (SVM), to generate and evaluate classifiers for searchlights throughout the
brain. Our goals were to identify the brain regions that contain information that can
distinguish the reward modality of each trial, and then to identify potential functional
organization within those regions based on the relative classification power and information
content of within- and cross-participant analyses.

Materials and Methods
Participants

Twenty healthy participants (mean age: 23 y, range: 18 y to 30 y) completed a session
involving both behavioral and fMRI data collection. All participants were male and
indicated a heterosexual orientation, via self-report. Four of these participants were dropped
from the sample prior to data analyses: three for excessive head motion and one because of
equipment failure, leaving a final sample of sixteen participants. Prescreening excluded
individuals with prior psychiatric or neurological illness. Participants gave written informed
consent as part of a protocol approved by the Institutional Review Board of Duke University
Medical Center.

Tasks
While in the scanner, participants performed a simple incentive-compatible reward task
(Smith et al., 2010). Each trial involved the presentation of one of two equally frequent
reward modalities: monetary or social (Figure 1). Monetary rewards involved four different
values of real gains and losses: +$5, +$1, − $1, or −$5. Social rewards were images of
female faces that had been previously rated, by an independent group of participants, into
four categories of attractiveness: 1 to 4 stars (see Supplementary Materials). To ensure that
the participants maintained vigilance throughout the scanner task, a target yellow border
infrequently appeared around the stimuli (<5% trials). Accurate detection of these targets
(via button press) could earn the participant a bonus of $5. Trials on which the target was
presented were excluded from subsequent analyses.

We presented these stimuli in both uncued and cued trials. Uncued trials involved
presentation of each reward stimulus for 2 s, followed by a jittered intertrial interval (ITI) of
4 s to 8 s. Cued trials added an initial 1 s cue (in the form of a blue or yellow square) that
indicated the upcoming reward modality, followed by a 1 s to 5 s interstimulus interval (ISI),
a 2 s reward stimulus, and a 4 s to 8 s ITI. To minimize participant confusion, we separated
these trial types into distinct runs: three uncued runs of 468 s each and two cued runs of 596
s each. In the present analyses, we found no systematic differences in reward-related
activation between the uncued and cued trials, and thus we collapse over both trial types
hereafter (see Supplementary Materials).

Following completion of the fMRI session, participants rated the attractiveness of the
viewed faces on an eight-point scale (1 = “low attractiveness” to 8 “high attractiveness”).
Second, participants completed an economic exchange task in which they repeatedly chose
whether to spend more money to view a novel high attractiveness face or less money to view
a novel low attractiveness face (Figure S1, Supplementary Materials).

All tasks were presented using the Psychophysics Toolbox 2.54 (Brainard, 1997) in
MATLAB (The MathWorks, Inc.). Cash payment was based on a randomly-chosen run from
the scanner session. Participants rolled dice to determine the run whose cumulative total
would be added to the base payment of $50. Participants received an average of $16 for their
bonus reward, and spent an average of $2 to view new faces in the post-fMRI economic
exchange task, resulting in a total mean payment of $66 (range $53 to $92). Participants
were provided full information about the payment procedure prior to the scanning session.
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Image acquisition
We acquired fMRI data on a General Electric 3.0 Tesla MRI Scanner with a multi-channel
(eight-coil) parallel imaging system. Initial localizer images identified each participant’s
head position within the scanner. Whole-brain high-resolution T1-weighted coplanar FSPGR
structural scans with voxel size 1*1*2 mm were acquired for normalizing and coregistering
the fMRI data. Images sensitive to blood-oxygenation-level-dependent (BOLD) contrast
were acquired using a gradient-echo echo-planar imaging (EPI) sequence [repetition time
(TR) = 2000 ms; echo time (TE) = 27 ms; matrix = 64 × 64; field of view (FOV) = 240 mm;
voxel size = 3.75*3.75*3.8 mm; 34 axial slices] parallel to the axial plane connecting the
anterior and posterior commissures. We used an initial saturation buffer of seven volumes.

Preprocessing
Functional images were first reoriented and then skull stripped using the FSL Brain
Extraction Tool (BET) (Smith, 2002). All images were then corrected for intervolume head
motion using FMRIB’s Linear Image Registration Tool (MCFLIRT) (Jenkinson et al.,
2002), slice-time corrected, subjected to a high-pass temporal filter of 100 s, and normalized
into a standard stereotaxic space (Montreal Neurological Institute, MNI) using FSL 4.1.4
(Smith et al., 2004). We maintained the original voxel size and left the data unsmoothed to
preserve local voxel information. Importantly, we transformed the data into standard space
for both within-participant and cross-participant analyses, so that the same voxels and
features were used in both classifications. We constructed a whole-brain mask (n = 27102
voxels) from all individual participant functional fMRI runs to ensure that the voxels
included in MVPA contained BOLD signal across all participants and all runs.

Multivariate pattern analysis
For each voxel in each trial, we estimated the change in BOLD signal intensity associated
with each reward by taking the mean signal across two consecutive volumes lagged by 5 s
following stimulus onset (to account for hemodynamic delay). These values were then
detrended using a constant term and transformed into z-scores in PyMVPA 0.4.3 (Hanke et
al., 2009a; Hanke et al., 2009b). We used the temporally compressed signal in specific
voxels to construct pattern classifiers from searchlights (Clithero et al., 2009; Kriegeskorte
et al., 2006). For every voxel in the whole-brain mask, we constructed a searchlight
corresponding to a spherical cluster of 12 mm radius (i.e., up to 123 voxels).

We then used PyMVPA to implement a linear SVM with a fixed regularization parameter of
C = 1 (Haynes et al., 2007; Soon et al., 2008). Classification within PyMVPA was
performed using the LIBSVM software (http://www.csie.ntu.edu.tw/~cjlin/libsvm). For
cross-participant analyses, we used custom scripts in MATLAB and Python to construct the
feature spaces (searchlights) before implementing LIBSVM. Importantly, the same features
were used for within- and cross-participant analyses. To account for run-to-run differences
in mean BOLD signal, we scaled each voxel’s BOLD signal so that it had the same average
signal on each run. Moreover, we also ensured that any differences between within-
participant and cross-participant models were not an artifact of PyMVPA, through a
replication of the core analyses using a within-participant approach previously reported by
our laboratory (Clithero et al., 2009). The results of this analysis did not differ significantly
from that implemented within PyMVPA, and thus we hereafter describe the within-
participant results from PyMVPA.

Classifier performance
Performance was judged based on n-fold cross-validation (CV), which provides evidence for
how well a SVM will be able to accurately classify new data drawn from the sample’s
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underlying population. For the within-participant model, the training set combined all trials
from all but one of the n runs, leaving the trials from the unselected run as the testing set.
This process was repeated five times for each participant, with the average performance
across the five tests providing the SVM’s CV percentage. One benefit of using a linear SVM
implementation for within-participant analyses is that it provides weights for each feature
(i.e., voxel) in the classifier. Here, we reported individual voxel weights based on the
average weighting across all folds of the classifier. For the cross-participant model, we
employed a similar approach for the n = 16 participants (i.e., we used sixteen-fold, rather
than five-fold, cross-validation). Importantly, both types of analyses were compared on a
common metric: the CV for trial-to-trial predictions of reward modality.

Statistical testing
For evaluation of the significance of individual searchlights, we calculated the average CV
across participants and then implemented a one-tailed binomial test for each searchlight
(Pereira et al., 2009), comparing CV performance to chance (50%). Comparisons of
performance between within-participant and cross-participant classifiers used a two-tailed
binomial test for each searchlight. All claims of significance refer to p < 0.05, corrected for
multiple comparisons across all searchlights in the brain mask, by taking brain mask size
and dividing by the average searchlight size, an approximation to a Bonferroni correction
based on the number of resels in the whole-brain mask. Brain images of CV performance
and significance were generated using MRIcron (Rorden et al., 2007). All coordinates in the
manuscript are reported in MNI space.

We note that our results were robust to two other thresholding approaches (see
Supplementary Materials): a full Bonferroni correction over all voxels in the whole-brain
mask, and false discovery rate (FDR) correction (q = 0.05) using FSL (Genovese et al.,
2002).

Results
Behavior

Participants performed well on the background target-detection task (average hit rate of
84.2%). The post-scanning ratings of face attractiveness were highly correlated with those
from an independent sample (mean r = 0.71, range 0.50 to 0.85; see Supplementary
Materials), supporting our a priori division of stimuli into attractiveness categories.
Moreover, on a large fraction of trials during the exchange task, participants were willing to
sacrifice money to see a face with a higher attractiveness rating (average fraction of willing-
to-pay trials was 0.42), with significant interparticipant variability (range 0.10 to 0.80).
Participants spent an average of 4.5¢ per trial (45 trials, minimum participant average =
3.8¢, maximum average = 6.0¢) to view more attractive faces. Data from one functional run
in one participant were not recorded because of a collection error; all remaining participants
had the full complement of five runs.

Within-participant classification: reward modality
We first classified trials according to reward modality using within-participant classifiers.
The average searchlight classifier performance across the entire brain was 56.7% (standard
deviation 5.7%), with significant searchlights (n = 4131 out of 27102) primarily constrained
to regions associated with visual perception and reward evaluation (Figure 2A). There were
four maxima (Table 1): visual cortex centered around the calcarine sulcus (VC, global max
83.6%), left fusiform face area (LFFA, local max 77.6%), right fusiform face area (RFFA,
local max 79.7%) and ventromedial prefrontal cortex (VMPFC, local max 61.6%). We also
note – consistent with previous findings (McCarthy et al., 1997) – that for most participants
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RFFA was more predictive than LFFA (one-tailed paired difference test, t(15) = 1.98, p <
0.03). For simplicity, we targeted key analyses to these three regions of interest (ROIs; VC,
RFFA, VMPFC), all of which were also local maxima identified through univariate analyses
(see Supplementary Materials). In general, VC and RFFA both outperformed VMPFC for
each participant (Figure 2B). There was considerable interparticipant variability in global
maximum values (95.50% to 75.32%) and average searchlight performance (68.21% to
51.15%) (Figure S2, Supplementary Materials). As a check on our multiple-comparisons
correction, we also performed a correction using FDR (Figure S3A, Supplementary
Materials), and a full Bonferroni (Figure S3B, Supplementary Materials). All of our regions
of interest survived the FDR correction, whereas VMPFC did not survive the more stringent
Bonferroni correction.

Although equal category sizes (monetary and social rewards) justify the use of a binomial
test, we confirmed these results using a permutation test. For each participant, we performed
permutation tests on each of the three targeted searchlight ROIs. We generated 10000
permutations of the feature labels and repeated the SVM construction and cross-validation
processes, for each. For both RFFA and VC, all participants’ searchlight performance was
significant at p < 0.01, meaning fewer than 1% of the permutation iterations yielded a CV
higher than the observed CV for the correct labels. For the peak VMPFC searchlight, 11 out
of 16 participants’ permutation tests yielded p < 0.05 (2 of the remaining 5 were p < 0.10).

Within-participant classification: relation to choice preferences
Observed differences among ROIs with respect to average performance can correspond to
behavioral differences (Raizada et al., 2009; Williams et al., 2007). As a measure of reward
preference, we used the relative value between the two reward modalities; i.e., the fraction
of willing-to-pay choices each participant made during the exchange task (Smith et al.,
2010). Strikingly, this individual measure was significantly correlated with the difference in
VMPFC performance (r(14) = 0.59, p < 0.02) but was not a function of overall individual
decoding performance throughout the brain (r(14) = 0.06, p > 0.83; Figure 3). In contrast, no
such correlation was observed for VC (r(14) = 0.37, p > 0.16) or for RFFA (r(14) = −0.14, p
> 0.61).

Within-participant analyses: similarity of ROI information
One of the primary advantages of MVPA is that it gives access to fine spatial information
normally unavailable within univariate analyses (e.g., general linear models). To determine
whether local spatial patterns within our ROIs were specific to or common across
participants, we extracted voxelwise SVM weights (LaConte et al., 2005) from the peak
searchlights in VC, RFFA, and VMPFC. The top ten voxels in terms of mean absolute
weight were used to construct similarity matrices (Aguirre, 2007; Kriegeskorte et al., 2008).
Although larger weights indicated important voxels, we recognize that other voxels
contributed to the classifier, and thus correlated voxels will necessarily have smaller weights
(Pereira et al., 2009). We computed first-order similarity matrices according to the Pearson
correlation between the weight values of each participant and those of the other participants
(Figure S4, Supplementary Materials). The second-order similarity between the first-order
matrices for two regions provided an index of whether those regions encoded similar sorts of
information, across individuals (Kriegeskorte et al., 2008). As the matrix is symmetric, we
excluded the lower triangle and diagonal cells from similarity calculations. All three pairs of
regions revealed non-zero second-order similarity (Figure 4 and Table S1, Supplementary
Materials): RFFA-VC = −0.18, RFFA – VMPFC = 0.26, and VMPFC – VC = −0.11.

We used permutation analyses to evaluate the robustness of these between-region
similarities. We ran 10000 permutations that each selected ten different voxel weights from
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the same ROI (Figure 4). Comparing the measured similarity values to the permutation
distribution, we found that there was a significant negative correspondence between RFFA
and VC (p < 0.002), and non-significant trends for the other pairs (RFFA – VMPFC: p <
0.091, VMPFC – VC: p < 0.0918). We repeated these tests for sets of five voxels, which
yielded convergent results (RFFA-VC: p < 0.017, RFFA – VMPFC: p < 0.061, VMPFC –
VC: p < 0.006). This result provides evidence not only that each of these regions provides
high decoding accuracy for reward modality, but also that the optimal classifiers for each
region use different information to distinguish reward modalities (e.g., VC may be tracking
different information, across individuals, compared to the other two regions).

Cross-participant analyses: reward modality
We repeated the analyses from the previous sections using cross-participant classifiers
derived from models trained on n−1 participants and tested on the remaining participant.
Importantly, our significance thresholding takes into account the increases in training and
test set size, allowing direct comparison to the within-participant classification results.
Significant classification power was observed in multiple regions (Figure 5 and Table 2),
including RFFA (global max 62.1%), VMPFC (local max 54.5%), anterior insula (AINS,
local max 55.8%), and ventral striatum (VSTR, local max 54.7%). Average performance
was 51.7% (standard deviation 2.06%). However, given the nature of our searchlights
(approximately 110 voxels, on average, with a radius of 12 mm), we qualify the structural
specificity of some of these local maxima (e.g., some basal ganglia searchlight voxels
overlap with some VMPFC searchlight voxels). The presence of separate local maxima,
though, suggests that both regions are implicated in distinguishing reward modality. As we
did on the within-participant models, we performed checks on our multiple-comparisons
correction, using FDR (Figure S5A, Supplementary Materials), and a full Bonferroni (Figure
S5B, Supplementary Materials). All of our cross-participant results were robust to both of
these additional statistical tests.

Comparing within-participant and cross-participant models
We conducted searchlight-by-searchlight comparisons of relative performance of the within-
and cross-participant models. If moving from the within-participant to the cross-participant
models introduces similar sorts of variability throughout the brain, then the two models
should exhibit similar global maxima, and those maxima should exhibit a similar
proportional decrease in prediction accuracy. Conversely, differences in the regions that
exhibit maximal predictive power in each analysis type would argue that within- and cross-
participant analyses encode distinct patterns of information.

Our results argue strongly for the latter conclusion. We first compared the global maxima
for the two analyses. The maxima were non-overlapping and located in distinct portions of
the distribution of results (Figure 6). In other words, the searchlights that MVPA found to be
most informative about reward modality were in different brain regions for the different
model types. For the within-participant models, the most informative searchlights were
within VC, with RFFA searchlights being less predictive overall. Strikingly different results
were observed for the cross-participant model: The most informative searchlights were all
within RFFA, while the searchlights in VC had much lower predictive power (e.g., many
were less than the whole-brain average).

Next, we computed a map of the CV difference between the two models. Consistent with
other studies (Shinkareva et al., 2008), moving from a within- to cross-participant model led
to an average decrease in CV across all searchlights in the whole-brain mask (average
decrease: 4.0%; maximal decrease: 25.3%; maximal increase: 3.3%). We masked the
difference map using the significant searchlights from the within-participant models (Figure
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7A), which revealed that the searchlights that exhibited the greatest within- to cross-
participant CV decreases were located within VC (−22.8% for the local maximum; Figure
7B). A smaller decrease was found for the RFFA maximum (−11.8%), and only a minimal
change was observed in VMPFC (−2.85%, less than the mean for the entire brain). So, while
there was a negative trend across the entire brain in terms of predictive performance, the
lower tail of the distribution of changes in predictive power was contained within early
visual cortex.

Discussion
Our results support a novel conclusion: within-participant and cross-participant MVPA
classification implicate distinct sets of brain regions. When classifying social and non-social
rewards, both models identified key regions for the perception and valuation of social
information. Regions showing maximal classification performance (e.g., VC, FFA, and
VMPFC) have been implicated in previous studies of face and object recognition (Grill-
Spector and Malach, 2004; Tsao and Livingstone, 2008), as well as studies of reward
valuation (Montague et al., 2006). In our study, though, the relative predictive power of
brain regions changed according to the mode of classification. Depending on the goals of an
experiment – potentially, whether to identify features that represent common or
idiosyncratic information – different modeling approaches may be more or less effective.
Hereafter, we consider the implications of our results in the context of the different patterns
observed in each of our key regions of interest.

Invariant discrimination of reward modalities: fusiform gyrus
Our within-participant classification of reward modality identified a distributed set of brain
regions, most of which were contained within the ventral visual processing stream (Haxby et
al., 2004). This result is consistent with the literature on face processing (Haxby et al., 1994;
Kanwisher et al., 1997; Puce et al., 1995; Tsao et al., 2006), including the observed right-
lateralization in FFA (McCarthy et al., 1997). While a within-participant model can state
that the general representation of faces in fusiform gyrus was stable within a participant, a
cross-participant model can make the additional argument that the representation was stable
on a trial-to-trial basis with respect to the participant sample, analogous to the difference
between fixed- and mixed-effects analyses (Friston et al., 2005). However, in the case of
MVPA, this distinction allows us to identify differences in local computations. Significant
prediction in a cross-participant model provides evidence that the stimulus-related
information provided by a voxel remains fairly invariant over time and participants (Kay et
al., 2008). Given the limited number of cross-participant, trial-to-trial MVPA studies, this
result provides an important proof-of-concept for the stability of local functional patterns.

Importantly, we are not arguing that FFA coded information specific to the representation of
monetary rewards, given that variability in FFA performance across participants was not
correlated with their post-scanner exchanges between the reward types. More plausibly, the
monetary rewards and their early, object-based recognition lead to distributed processing
throughout the ventral visual cortex (Haxby et al., 2004; Op de Beeck et al., 2008), in
contrast to the more focal representation of the social rewards in FFA. One provocative
interpretation of our two analyses is that the cross-participant model captures only the
common representations in FFA, whereas the within-participant models captures both the
common and idiosyncratic representations of faces (Hasson et al., 2004). We cannot
distinguish the two latter components within the current study. Dissociation could be
possible, however, through a paradigm that incorporated an additional set of stimuli with
well-known neural responses, such as perception of natural scenes (Epstein and Kanwisher,
1998) or reward-related stimuli that motivate learning and updating (O’Doherty et al.,
2003b).
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Idiosyncratic discrimination of reward modalities: visual cortex
Our within-participant MVPA models revealed high decoding accuracy in large portions of
VC (over 90% for many participants), consistent with numerous prior studies (Cox and
Savoy, 2003; Haynes and Rees, 2005; Kamitani and Tong, 2005). Our cross-participant
model, in contrast, was not robust to testing sets from new participants; i.e., performance
was only slightly above chance. These results are analogous to a previous study that looked
at both within-participant and cross-participant results when distinguishing tools versus
dwellings (Shinkareva et al., 2008), finding that information contained in within-participant
models may be idiosyncratic to individual participants, yet located within similar regions
across participants. Cross-participant MVPA classifier models, by their very nature, face
additional sources of variability in their features: differences in participant anatomy or
functional organization, session-to-session variation in scanner stability, differences in
preprocessing success, and state and trait differences among participants. The observation
that cross-participant models can provide not only robust predictive power, but also perhaps
greater functional specificity, emphasizes the real power of MVPA techniques.

One speculation is that participant-specific information might reflect effects associated with
unique stages in processing. Neural activity relating to the representation of faces and
objects does not occur within only a single short-latency interval, but is distributed over
several distinct time periods with identifiable functional contributions (Allison et al., 1999).
Earlier and later processing of facial and monetary stimuli may occur in different regions
(Liu et al., 2002; Thorpe et al., 1996) or with different spatial distributions based on the time
period of activation (Haxby et al., 2004). Under this conception, the extensive involvement
of ventral visual stream in the within-participant models may be a reflection of idiosyncratic
interactions between ongoing neural activity and the associated hemodynamic responses.

Our similarity analyses also support the notion that fMRI activation in VC reflects largely
idiosyncratic representations (Figure 4 and Figure S2, Supplementary Materials). Some
supporting evidence comes from a study of shape representations in lateral occipital cortex
(LOC) that employed similarity analyses (Drucker and Aguirre, 2009), which found
evidence for sparse spatial coding in lateral LOC and more specific tuning in ventral LOC.
Additionally, given the recent finding that reward history can modulate activity in visual
cortex (Serences, 2008), individual variability in reward sensitivity could easily contribute to
downstream idiosyncratic differences in the within-participant classifiers.

Individual reward preferences: ventromedial prefrontal cortex
Although human face stimuli have been a frequent target of MVPA, prior studies have not
embedded those stimuli in a reward context. Recent work using standard fMRI analysis
techniques (i.e., general linear modeling) has identified neural correlates of social rewards,
including faces, both in isolation (Cloutier et al., 2008; O’Doherty et al., 2003a), and in
comparison to monetary rewards (Behrens et al., 2008; Izuma et al., 2008; Smith et al.,
2010). The fact that VMPFC exhibited different patterns for these two types of rewards
supports the conception that this region evaluates a range of rewarding stimuli (Rangel et al.,
2008). Further corroboration comes from two more specific results: that the relative value
between the two modalities was strongly correlated with individual differences in VMPFC
predictive power (Figure 3) and that this VMPFC region was not identified by univariate
analyses (see Supplementary Materials).

The significance of VMPFC for reward-based decision making has been borne out in a
growing number of recent studies (Behrens et al., 2008; Hare et al., 2008; Lebreton et al.,
2009). Considerable prior neuroimaging and electrophysiological work has implicated
VMPFC in the assignment of value to environmental stimuli (Kringelbach and Rolls, 2004;
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Rushworth and Behrens, 2008). In our paradigm, even though participants were passively
receiving the rewards on each trial, it is possible that valuation was occurring (Lebreton et
al., 2009). As others have worked to tie predictive fMRI patterns to behavior (Raizada et al.,
2009; Williams et al., 2007), we believe it is reasonable to intuit that individual differences
in preferences – and hence computations taking place in VMPFC – could subsequently
influence a classifier’s ability to decode BOLD signal corresponding to rewards. Our
mapping between individual preferences and the statistical discriminability of neural
patterns (Figure 3) is a step beyond those previous studies – which were concerned with
participant perceptual ability – and demonstrates that fine-grained neural patterns can be
informative about complex phenomena such as choice behavior.

Alternative explanations and future considerations
Although the patterns of significant classification performance are quite distinct between
within- and cross-participant models (Figure 2 and Figure 5), one might argue that the
difference in prediction performance (i.e, cross-validation) reflects a difference in
thresholding. Direct comparison of each searchlight’s performance in the two models
(Figure 6) eliminates this possibility. Another contributor, at least in principle, could be
differential sensitivity to classifier parameters. The training set for the cross-participant
model is much larger than that for any single within-participant model, and thus it may be
the case that different kernels, or even different classifiers, might be more appropriate in one
case. To our knowledge, this question of classification parameters and fMRI data has not
been extensively explored.

Another possibility is that our stimuli – and not the sensitivity of MVPA – may have
contributed to our results in VMPFC. It is reasonable to suppose that the comparison of
faces and monetary amounts could have broad neural effects. Accordingly, if the stimuli had
been presented in blocks or mini-blocks, the relative differences between categories might
not have been represented in VMPFC (Padoa-Schioppa and Assad, 2008), consistent with
other context effects (Cloutier et al., 2008; Seymour and McClure, 2008). Given that our
cross-participant model also implicated VMPFC and that other studies tie individual
differences to classifier differences (Raizada et al., 2009), we believe this result would be
robust to other reward environments.

Feature space is also an important consideration. For example, our choice of searchlight size
(a radius of three voxels) may have influenced the within- and cross-participant differences
in decoding performance. The searchlight approach serves as a spatial filter, because the
classifier’s decoding results are attributed to the center voxel. Thus, a larger radius for cross-
participant testing could boost classifier performance by providing a larger number of
dimensions to fit the larger system. Such a conclusion would be analogous to the matched
filter theorem: the optimal amount of information for cross-participant models is likely at a
different resolution (i.e., searchlight size) than for within-participant models (Rosenfeld and
Kak, 1982). Increasing searchlight size might also alleviate registration heterogeneities
across participants (Brett et al., 2002). Importantly, the size of the searchlight implemented
should coincide with the size of the anatomical region(s) of interest (Kriegeskorte et al.,
2006), as spatial specificity is clearly sacrificed if a searchlight encompasses voxels from
neighboring anatomical regions. Indeed, different information is likely to be uncovered at
different spatial scales (Kamitani and Sawahata, 2010; Swisher et al., 2010).

Our results point to several directions for future work. A first extension comes from the use
of a searchlight method for feature selection. Although classification performance tends to
asymptote as a function of voxel number (Cox and Savoy, 2003; Haynes and Rees, 2005),
combining searchlights – or voxels from multiple searchlights – across ROIs (Clithero et al.,
2009; Hampton and O’Doherty, 2007) might compensate for reduced performance of cross-
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participant classification. A related topic – as alluded to in the previous paragraph – would
be a full exploration of appropriate searchlight size (Kriegeskorte et al., 2006). Another
possible avenue for exploration would be the discrimination of individual reward stimuli.
Outside of the reward context, there has already been successful within-category
identification of simple man-made objects (teapots and chairs) accomplished using signal
from the lateral occipital cortex (Eger et al., 2008), as well as single image identification in
early visual cortex (Kay et al., 2008). So, pruning from large reward classes (e.g., money or
faces) is a natural progression from the current study. Additionally, cross-participant models
make it possible to test group differences (e.g., depressed individuals) in reward
representation. Many rewards share similar features (e.g., magnitude, valence), yet the
relative sensitivity to those features may differ across participant groups.

Conclusion
Using machine-learning techniques and multivariate pattern analysis of fMRI data, we
demonstrated that classifier performance differs between within-participant and cross-
participant training. We emphasize that we are not concerned with the level changes in
classifier performance; there are obvious additional sources of variability for cross-
participants classification. Instead, our results indicate that relative classifier sensitivity may
reflect the contributions of different brain regions to different computational purposes. As a
key example, the statistical discriminability of neural patterns in ventromedial prefrontal
cortex for reward modalities was predictive of participants’ willingness to trade one of those
reward modalities for the other (i.e., money for social rewards). Given the increasing
popularity of both correlational and decoding multivariate analyses in cognitive
neuroscience, we believe researchers should explore models aimed at trial-to-trial prediction
that use both within-participant and cross-participant neural patterns.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental task
Participants passively viewed a randomized sequence of images of faces and of monetary
rewards (2 s event duration; variable fixation interval). The face images varied in valence
from very attractive to very unattractive, based on ratings from an independent group of
participants. The monetary rewards were drawn from four different values (+$5,+$1,−$1,
and −$5) and influenced the participant’s overall payout from the experiment. To ensure
task engagement, participants responded to infrequent visual targets that appeared as small
yellow borders around the image. Shown is the uncued-trial condition; the cued-trial
condition had similar structure, but also included a preceding square cue that indicated
whether a face or monetary amount was upcoming.
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Figure 2. Cross–validation (CV) performance for within-participant models
(A) Using classifiers that were built on individual participants, we identified four local
maxima, in three regions of interest (early visual cortex, VC; the left and right fusiform face
area, LFFA and RFFA; and ventromedial prefrontal cortex, VMPFC). The searchlight with
the highest average CV, the global maximum, was located in VC. (B) The CV percentage
for each individual participant is plotted for the three regions of interest (VC, RFFA, and
VMPFC), with participants arranged in descending order based on performance in the VC.
Average CV percentages across participants are also plotted for reference.
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Figure 3. Relative valuation coding in VMPFC
The normalized searchlight CV performance in each participant’s VMPFC, defined by
subtracting the whole-brain mean performance from the local searchlight performance, was
a significant predictor of each participant’s willingness to trade money for social rewards
(r(14) = 0.59, p < 0.02). Each participant’s point’s color indicates the mean CV across the
entire brain, which was not itself predictive of exchange proportion.
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Figure 4. Regions of interest have distinct local patterns of information
At left, histograms indicate the similarity values (across participants) for model weights for
each ROI: (visual cortex (VC, blue), right fusiform face area (RFFA, green), and
ventromedial prefrontal cortex (VMPFC, red). Mean values of similarity for model weights
across ROIs are shown between each pair of compared ROIs: RFFA-VMPFC (cyan), RFFA-
VC (magenta), and VMPFC-VC (yellow). At right, histograms show the distribution of
cross-ROI similarity comparisons obtained by permutation testing, with mean values
indicated using the same color scheme. Each cross-ROI comparison shows significant
differences between regions in the pattern of underlying voxel weights across participants.
This provides evidence that the high decoding accuracies for different reward modalities
reflect different information in the three regions.
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Figure 5. Cross-validation (CV) performance for cross-participant model
Local maxima in CV performance were found in early visual cortex (VC), right and left
fusiform face area (RFFA, LFFA), ventromedial prefrontal cortex (VMPFC), and anterior
insular cortex (AINS). In this analysis, the global maximum was located in RFFA.
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Figure 6. Predictive power differs based on the form of classification
To compare the two sets of results, the within- and cross-participant performance of all
27102 searchlights were plotted, with the searchlights in and adjacent to the three ROIs
indicated in color. RFFA and VC searchlights are highlighted based on searchlights
constrained to the global maximum. Note that there is complete separation between these
ROIs: the searchlights with maximal performance in one model have much reduced relative
performance in another model, and no searchlights from other regions had similar
performance to the ROI maxima. VMPFC searchlights that were significant are highlighted.
Horizontal and vertical dotted lines represent the minimum CV for significant searchlights
in each case (53% in cyan for cross-participant model and 61% in magenta for within-
participants models, respectively).
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Figure 7. Regions differ in the relative information carried by within- and cross-participant
models
(A) Shown is the relative decrease in performance when moving from a model based on
within-participant information to a model that builds a classifier across the participant set
(masked for searchlights that showed a significant effect in the within-participant models).
All significant drops in CV were constrained to medial parts of visual cortex, shown in these
slices for illustration. (B) A histogram of all searchlights with significant within-participant
classification power, plotted according to the relative drop when moving to the cross-
participant model. The difference values for the peak searchlights in the ROIs from Figure 2
are shown (VC-blue oval, RFFA-green oval, VMPFC-red oval). Of those three, only VC
was more than two standard deviations away from the average drop. The dotted line
represents average decrease in CV across all searchlights (−4.0%).
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