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Skill acquisition
The acquisition and generation of action sequences constitute essential elements of purposeful human
behavior. However, there is still considerable debate on how experience-driven changes related to skill
learning are expressed at the neural systems level. The current functional magnetic resonance imaging
(fMRI) study focused on changes in the neural representation of continuous movement sequences as
learning evolved. Behavioral and neural manifestations of nonvisual motor practice were studied both within
the time frame of a single scanning session, as well as after several days of extended practice. Based on
detailed behavioral recordings which enabled the continuous characterization of the ongoing learning
process at the single subject level, sequence-specific decreases in activation throughout a learning-related
network of cortical areas were identified. Furthermore, the spatial layout of this cortical network remained
largely unchanged after extensive practice, although further decreases in activation levels could be observed
as learning progressed. In contrast, the posterior part of the left putamen showed increased activation levels
when an extensively trained sequence needed to be recalled. Overall, these findings imply that continuous
motor sequence learning is mainly associated with more efficient processing in a network of consistently
recruited cortical areas, together with co-occurring activation pattern changes at the subcortical level.
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Introduction

The ability to generate intentional action sequences enables us to
freely interact with the world that surrounds us and is therefore
crucial with respect to many aspects of our daily lives (Tanji, 2001).
Neuroimaging techniques have been successfully applied to localize
brain regions involved in the production of willed actions, and
have uncovered highly distributed networks of cortical and subcor-
tical areas that conjointly underlie the emergence of purposeful
behavior (e.g., Culham et al., 2006). In addition, it has become
increasingly clear over the last decades that these underlying neural
representations are not static constructs, but inherently hold the
potential to dynamically adapt to new situations and altered
requirements throughout life (Pascual-Leone et al., 2005). As this
neural plasticity can not only be observed during the recovery from
injury, but can also be induced by behavioral training, additional
efforts have been directed towards exploring the dynamics within the
identified neural networks associated with learning (Poldrack, 2000).
However, experiments on learning-related plasticity in the motor
domain have frequently led to inconsistent results, both with respect
to the implicated regions and the direction of the observed changes
(Toni et al., 1998; van Mier, 2000), rendering the consistent
classification of resulting changes in brain activation patterns a
challenging enterprise (Kelly and Garavan, 2005). In order to gain
more insights into practice-related plasticity at the neural systems
level, the present fMRI study focused on continuous movement
patterns resembling the smooth succession of coherent motion
elements in handwriting. Subjects were instructed to learn a set of
2-dimensional continuous movement sequences by tracing along
predefined maze trajectories, while keeping their eyes closed
throughout the entire experiment (van Mier et al., 1993). Since no
visual information on the desired trajectory was provided, subjects
had to solely rely on somatosensory and proprioceptive feedback
while performing the required movements. While excluding any
effects of visual guidance and therefore concentrating on the motor
aspects of the task at hand, the performed tracing task is also
complementary to the commonly studied Serial Reaction Time (SRT)-
like paradigms (Nissen and Bullemer, 1987) in two respects.
Foremost, each response is specifically coupled to a presented sensory
event in such SRT type of sequence learning tasks. This inherent
‘associative’ component potentially blurs what is actually being
learned (Keele et al., 2003; but see Bischoff-Grethe et al., 2004). In
addition, there is a strong bias in the motor sequence literature
towards the use of discrete button-press tasks (Sanes, 2003; Clegg et
al., 1998), which raises the question whether the observed effects also
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generalize to situations in which a different type of movement
sequencing is required.

Furthermore, only a limited number of studies has investigated
extended practice conditions (Doyon et al., 2003). Therefore, we
aimed to track the behavioral and neural manifestations of learning by
including two scanning sessions, separated by 3 days of additional
practice. The main goal was to investigate how increases in
proficiency are reflected at the neural systems level during skill
acquisition. And more specifically, whether the observed changes in
brain activation patterns in the chosen time window would be more
strongly characterized by increases in local processing efficiency (i.e.,
probably reflected by decreases in the extent or level of activation) or
dynamic functional reorganizations (i.e., changes in the spatial layout
of the involved network; see Poldrack, 2000; Kelly and Garavan,
2005). In order to answer these questions, the different learning
phases were individually defined based on the gathered detailed
behavioral recordings to form a continuous representation of the
ongoing learning process. Whereas a subset of the acquired data was
already briefly discussed in a different context elsewhere (Reithler et
al., 2007), the dedicated report presented here focuses on the studied
practice-induced neuroplasticity, and provides a detailed account on
the revealed changes in behavioral performance and the associated
activation patterns due to learning.

The current findings will be discussed in the light of recent
models describing the dynamic cerebral changes that are thought
to occur during the different stages of skill acquisition (Doyon and
Ungerleider, 2002; Doyon and Benali, 2005; Ashe et al., 2006; Doyon
et al., 2009).

Materials and methods

Participants

Twelve healthy subjects (6 males; mean age=25 years, standard
deviation=1.4 years) participated in the current study. All subjects
were right-handed as determined by the Edinburgh Handedness
Inventory (Oldfield, 1971; mean score=94, standard deviation=9)
and gave written informed consent according to a protocol approved
by the local research ethics committee.

Experimental paradigm

Motor learning task
Subjects were asked to learn a set of new movement sequences by

continuously tracing along different predefined maze trajectories.
Although each maze had a unique geometry, all mazes shared certain
characteristics: the groove towhich the penmovementswere restricted
was 6 mm wide and 3 mm deep, consisted of eight straight segments
that were connected by right-angled corners and formed a path with a
total length of 260 mm. At each corner, a so-called ‘dead-end’ was
included to enforce a choice with regard to the direction in which to
proceed. Additionally, the maze path always constituted a closed loop
and could therefore be traced continuously during a given period of
time. The different maze trajectories are depicted in Fig. 1 as part of an
overview on the study's design described in more detail below.

Subjects were instructed to trace the maze path as fast and as
accurately as possible, while keeping their eyes closed throughout the
whole experiment. Only the dominant right hand was used and the
tracing movements had to be performed in a clockwise fashion. The
instructions also stressed that subjects should make an effort to learn
the executed movement patterns, in order to be able to reproduce the
established motor routines later on without having to rely on the
maze's groove to guide them.

Since becoming more proficient at executing the required
movement sequences inherently led to an increase in motor output
(i.e., velocity) over time, two additional control conditions were
included to distinguish purely performance-related changes in brain
activity from true learning-related effects (van Mier et al., 1998). Both
control conditions consisted of tracing a square trajectory, which all
subjects were familiar with because it was shortly traced during the
adjustment of the setup prior to scanning (see below). In the control
conditions, the square trajectory should either be traced as fast as
possible (‘SQfast’), or at a velocity matching the slow tracing at the
early stages of learning (‘SQslow’), assuming that no additional
sequence-specific learning would occur.

Both the subjects' head and arms were stabilized by foam padding
to minimize task-related motion. The necessary tracing movements
were mainly performed using the joint of the wrist. The mazes were
fixated in a specifically designed holder, which was placed on a
custom-built table that covered the subject's abdomen. Before starting
the experiment, the position of the table was adjusted in such a way
that the required movements could be performed rather effortlessly.
A resistance-based MR-compatible recording method was used to
register the pen tracing movements while scanning (Reithler et al.,
2006).

Order and structure of experiments
All twelve subjects participated in a series of experiments. During

the first scanning session (scheduled on Monday), they had to learn
two new movement sequences by continuously tracing one of two
mazes in trials of 30 s. The active tracing trials were alternated with
rest periods (lasting for 20 s) in which the pen should be kept at a
fixed starting position, to which the subject's hand was re-positioned
at the end of each tracing trial by the experimenter. The start and end
of each tracing trial were indicated by a short high (1000 Hz) and low
(500 Hz) tone, respectively. The same maze was traced for twelve
consecutive trials, leading to an effective overall training duration of
6 min. In addition, the two square control conditions were presented
in an interleaved fashion with respect to the two learning conditions
(see Fig. 1a). Both control conditions consisted of six 30 s trials. In
between the different tracing conditions, a 30 s ‘switch’ period was
introduced in which the experimenter interchanged the mazes/
squares according to the experimental protocol. The condition order
was counterbalanced across subjects.

On each following day, subjects repeatedly practiced one of the
two mazes of the first scanning session more extensively during an
additional set of twelve 30 s trials (Fig. 1b). These additional practice
sessions were performed in a mock scanner, to ensure that the
subjects would perform the required movements while lying in the
same position as during the real scanning sessions. The specific maze
which was extensively trained was varied across subjects, so that the
sequence which was repeatedly practiced by six subjects functioned
as the non-overlearned reference sequence for the other six subjects
and vice versa. This approach ensured that any effects of extended
practice cannot be attributed to a particular maze geometry per se, as
not all subjects continued practicing the same sequence.

During the second scanning session (scheduled on Friday), there
were three mazes which had to be traced following a similar scheme
as in scanning session one (Fig. 1c). Themazes differedwith respect to
the amount of practice that had been invested in executing the
corresponding movement sequence so far. With one maze, subjects
were familiar because they had traced it in the first scanning session.
However, no additional efforts were made to practice this particular
sequence afterwards (‘OLD’). Another maze was the one they had
been practicing on a daily basis, in a total of 48 practice trials across
4 days, and which therefore was considered as overlearned (‘OVER’).
The final maze involved a trajectory which was completely new to the
subjects (‘NEW’). The six possible orders in which the three
conditions could be presented were counterbalanced across subjects.

To exclude the possibility that subjects merely traced along the
mazes' borders without actively learning the new movement
patterns, they were asked to reproduce the learned movement



Fig. 1. Overview of the experimental design. a) The maze trajectories depicted here represent the new movement sequences that subjects had to learn during the first scanning
session. The square trajectories were included as control conditions (see Materials and methods for details). Tracing was continuously performed for 30 s during 12 (mazes) or 6
(squares) consecutive trials, alternated with resting periods (lasting 20 s). Note that the small white arrows at the bottom indicate the starting position for each trajectory. b) On the
3 days between both fMRI measurements, additional training sessions were scheduled during which one of the previously performed sequences was extensively practiced. c) During
the second scanning session, three different mazes had to be traced: the two mazes from session 1 (of which one was extensively trained in the meantime (‘OVER’), whereas the
other was not (‘OLD’)), and a completely novel maze (‘NEW’). Note that which maze was overlearned was varied across subjects, and the order in which the different conditions
were presented was counterbalanced for both sessions. Color coding of experimental conditions included in fMRI sessions: green indicates that subjects did not have any prior
experience performing a given sequence; blue colors represent an overlearned status; red denotes that the corresponding sequence was performed before, but was not extensively
trained.
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sequence by drawing the mazes by heart after each scanning- and
practice-session (3 repetitions per maze). This ‘free drawing’ was
performed using paper and pencil, while subjects still lay in the
scanner and kept their eyes closed.

Image acquisition

Imaging data were collected on a 3 T Siemens Magnetom Allegra
head-scanner (Siemens Medical Systems, Erlangen, Germany) via a
regular volume coil. Both scanning sessions started with the
acquisition of an anatomical 3D dataset consisting of 176 slices
(MDEFT sequence (Deichmann et al., 2004); Repetition Time (TR)=
7.92 ms; Echo Time (TE)=2.4 ms; Flip Angle=15°, voxel dimen-
sions=1×1×1 mm3; Field of View (FoV)=256×224 mm2). Subse-
quently, 1576 functional volumes comprising 21 transversal slices
were recorded using a gradient-echo echo-planar imaging sequence
(TR=1250 ms; TE=28 ms; Flip Angle=67°; voxel dimensions=
3.5×3.5×5 mm3; gap=1 mm; FoV=224×224 mm2), resulting in
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complete coverage of the cerebrum while including the superior 2/3
of the cerebellum. Functional data were collected in a single
continuous run in order to minimize scanner-related changes in the
overall signal level across conditions.

Data analysis

The acquired behavioral data were analyzed using in-house
software written in MATLAB (v6.5 R13; The Mathworks, Natick,
USA). Because of the high sampling rate at which the behavioral data
were collected (∼666 Hz; for details see Reithler et al., 2006), a TR-
based binning could be used while extracting the most relevant
performancemeasures: themean velocity achieved, the percentage of
samples being part of a stop, and finally the percentage of samples
constituting a retrace. A stop was assigned whenever the tracing
velocity was lower than 10 mm/s during 100 ms or more. A retrace
consisted of at least 150 consecutive sampleswhichwere traced in the
wrong (i.e., counterclockwise) direction. Separate repeated measures
Analyses of Variance (ANOVAs) were computed for all three
performance measures to reveal how learning evolved within and
across tracing conditions.

All imaging data were analyzed using BrainVoyager QX (v1.8;
Brain Innovation, Maastricht, The Netherlands). The different analysis
steps are described in detail below.

Anatomical data
The acquired anatomical datasets from bothMR sessions were first

corrected for spatial intensity inhomogeneities by estimating a bias
field based on a preliminary white matter segmentation (Vaughan et
al., 2001). For each subject, the dataset from the first scanning session
was subsequently brought into ACPC space. Next, the datasets from
both sessions were aligned using the ACPC version of the first dataset
as the target volume and were separately transformed into standard
Talairach space (Talairach and Tournoux, 1988). All performed
transformations were then re-applied in a single step using sinc
interpolation (Goebel et al., 2006) and both datasets were averaged.
To optimize the 2D–3D alignment, the surrounding head tissue was
removed using an automatic ‘brain peeling’ tool.

An additional processing step involved the semi-automatic
segmentation of the grey and white matter boundary (Kriegeskorte
and Goebel, 2001), followed by an inflation of the cortical surface.
Finally, a cortex-based inter-subject alignment was separately
performed for each hemisphere based on the individual brains'
curvature information and using a moving target group averaging
approach (Goebel et al., 2006). After the inter-subject alignment, a
folded average cortex representation was constructed for both
hemispheres, on which the statistical maps on the group level will
be projected.

Functional data
Preprocessing of the individual datasets followed standard

procedures optimized for the current application, and included the
following steps: first, a slice scan time correctionwas performed using
sinc interpolation to correct for the sequentially executed interleaved
slice acquisition. Next, detection (trilinear interpolation) and correc-
tion (sinc interpolation) of 3D motion was performed to spatially
align all functional volumes (of both sessions) to a single volume in
the middle of the first scanning session using rigid-body transforma-
tions. Headmotion of less than 3.5 mm (translation) or 3.5° (rotation)
relative to the target volume was deemed acceptable. Although the
four initial volumes were excluded from further statistical analyses
due to their stronger T1 saturation, the first volume was nevertheless
coregistered to the middle volume in order to function as a reference
with high anatomical detail during the intensity-driven fine tuning of
the 2D–3D alignment later on. Following linear trend removal, high-
pass filtering was performed to remove low frequency drifts. Initially,
a stringent cut-off of 12 cycles per time course (0.0061 Hz) was
applied. Subsequently, the obtained results were confirmed using a
more lenient high-pass filter setting (cut-off=0,001 Hz) to safeguard
against false negatives. Except for the subcortical effects (for which
stable baselines could only be obtained with more stringent filtering),
all reported results are based on the 0.001 Hz high-pass filtered data.
No spatial smoothing was applied.

The functional data were interpolated to a 3×3×3 mm3 voxel
target resolution. In the context of the cortex-based inter-subject
alignment procedure described in the previous section, sampling of
the functional data was restricted to grey matter voxels based on the
anatomical information from the individual cortex segmentations.
The statistical analyses were carried out using a voxel-wise General
Linear Model (GLM) at the single subject level, based on design
matrices which included the estimated 3D motion parameters
obtained during preprocessing as well as predictors for all relevant
task conditions. An additional predictor was included to model the
repositioning of the hand at the end of each tracing trial. For all trials
within a condition, responses were separately modeled using a boxcar
function which was convolved with a theoretical Two Gamma
hemodynamic response function (Friston et al., 1998). These
estimates of the trial responses relative to baseline were subsequently
combined to provide an estimate of the condition effects, which could
then be used to contrast the different experimental conditions. The
reported group analyses were conducted following a random effects
model. Unless stated otherwise, statistical group maps represent
significant results at the pb0.05 level, corrected for multiple
comparisons using cluster-size thresholding (based on an initial
voxel level threshold set at t≥3). More detailed analyses were
additionally performed for functionally defined Regions-of-Interest
(ROIs) by running separate random effects ROI-GLMs. More specif-
ically, the neural activation changes associated with learning were
characterized in two ways. First, we divided the maze tracing
conditions into an early and a late phase (similar to e.g. Floyer-Lea
and Matthews, 2004). This categorization was based on the min–max
normalized learning curve of the achieved mean velocity, extracted
from the individual subject's behavioral data. Trials in which less than
25% of the maximum performance level was reached were classified
as belonging to the early learning phase. The trials at the end of the
maze tracing conditions in which a performance of 75–100% was
achieved, were included in the late phase. Moreover, for each subject
at least two trials were included in either phase to ensure a stable
estimation of the individual activation levels. The second approach
attempted to go beyond this early vs. late dichotomy by running
analyses in which the individual subject's improvements in perfor-
mance (as reflected by the increases in the z-transformed mean
velocity achieved across trials) were included as separate predictors
in the GLM (one for each maze tracing condition). By incorporating
these behavioral performance predictors, the dynamic aspects of the
ongoing learning process could be monitored more continuously, as
they could reveal changes in neural activation levels on top of the
involvement of a given area in the execution of the tracing
movements per se (as captured by the more general binary on/off
predictors for these conditions).
Results

Scanning session 1 (day 1)

Behavioral data
The registered pen tracing data were summarized and analyzed

across subjects at the level of single trials. To identify potential effects
of learning within a given condition, the first and last trial of that
condition were contrasted as they constituted the two extremes with
respect to the amount of preceding practice.
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First, a two-way repeated measures ANOVA with Maze (2 levels)
and Trial (2 levels: 1 vs. 12) as within-subject factors was performed
for all three performance measures. Significant ‘Maze×Trial’ interac-
tions were found for velocity (F(1,11)=5.66; p=0.037) and stops
(F(1,11)=9.56; p=0.010), whereas only significant main effects of
Maze (F(1,11)=10.03; p=0.009) and Trial (F(1,11)=11.565; p=0.006)
were observed for retraces. As can be seen in Fig. 2 (which shows
the performance on the group level for all 3 behavioral measures),
there was a significant increase in velocity accompanied by a decrease
in the percentage of stops and retraces. For the first maze, the mean
velocity increased from 17 to 45 mm/s (F(1,11)=34,16; p=0.000), and
the stop and retrace percentages dropped from 53 to 26% and from 13
to 3%, respectively (stops: F(1,11)=29.79; p=0.000; retraces: F(1,11)=
7.38; p=0.020). A similar pattern of results was obtained for the
second maze, although the level of the initial performance was higher
compared to the first maze: the mean velocity increased from 30 to
51 mm/s when comparing the first to the last trial (F(1,11)=22.73;
p=0.001), while a decrease from 35 to 23% was found for the stop
percentages (F(1,11)=8.58; p=0.014). There was only a trend with
respect to a decrease in the retrace percentages (from 4 to 2%; F(1,11)=
4.74; p=0.052). Finally, the mean velocity achieved during the square
tracing was 28 mm/s (standard error (se)=1.5) for the slow, and
68 mm/s (se=2.4) for the fast tracing condition, indicating that
subjects followed the instructions for these control conditions
correctly.

Imaging data
In order to identify brain areas which were activated in all four

tracing conditions of the first scanning session (i.e., irrespective of
which movement sequence was performed), a contrast involving a
conjunction across conditions versus baseline was calculated. As
shown in Fig. 3 (indicated by white contours), the largest activation
cluster was located within the left central sulcus, corresponding to the
hand/wrist position within the somatotopic map of the primary
motor (M1) and sensory (S1) cortices (Lotze et al., 2000; Alkadhi et
al., 2002). The extent of this activation cluster further encompassed
Fig. 2. Summary of the behavioral data obtained in scanning session 1. Panel a) shows the in
accompanied by a decrease in the stop and retrace percentages (depicted in part b and c
conditions is shown. The shaded regions indicate the standard errors for the obtained trial m
itself and the traced mazes were completely new to the subjects (note that the label ‘NEW’ i
both the anterior bank of the precentral gyrus and part of the
postcentral sulcus. Additionally, activations were observed in the left
supplementary motor area (SMA) and the inferior postcentral sulcus.
At the subcortical level, only unilateral activations emerged in the left
putamen and thalamus, and the right cerebellum (not shown).
Together these activations represent the basic network of areas
associated with the execution of the required movements per se,
irrespective of the specific trajectory or the level of proficiency. When
performing the same contrast without including the square control
conditions, the extent of the previously identified cortical network
increased to encompass additional (bilaterally emerging) regions
showing enhanced activation during the tracing of both mazes
compared to baseline (see activation map in Fig. 3).

Because the movements in the current task were not externally
paced, the possibility that learning-related changes in activity were
confounded by corresponding changes in movement velocity needed
to be ruled out. An additional contrast between the SQfast and SQslow
conditions revealed that the previously mentioned left M1/S1 (see
insert Fig. 3) and the ipsilateral right cerebellar foci were the only
regions to show strict velocity-dependent responses as indicated by
their significantly stronger response during the fast tracing condition.
There were no regions which responded more strongly to the SQslow
condition.

Based on the assumption that learning-related areas should be
maximally engaged during the acquisition of the new movement
sequences, a contrast between the two maze tracing and the two
square conditions was computed (Fig. 4a). This contrast could be seen
as an equivalent of a functional localizer, identifying possible
candidate regions for further analyses, and resulted in the identifica-
tion of a putative ‘learning’ network consisting of the following
regions: the bilateral superior precentral sulcus at the level of the
most caudal part of the superior frontal sulcus (dorsal premotor
cortex, PMd), the bilateral anterior bank of the inferior precentral
gyrus (ventral premotor cortex, PMv), the bilateral inferior post-
central sulcus (InfPCS), the bilateral anterior intraparietal sulcus
(aIPS), the bilateral posterior superior parietal lobule (SPL), and a
crease in tracing velocity achieved across the 12 trials of both maze conditions, which is
, respectively). In addition, the performance during the fast and slow square tracing
eans across subjects. The classification ‘NAIVE’ is used here to indicate that both the task
s only used in the context of the second fMRI session later on). Color coding as in Fig. 1.



Fig. 3. Tracing-related brain activation maps for session 1, projected on the average group cortex mesh. Regions that were activated during all tracing conditions, irrespective of
which trajectory was traced or the velocity at which the tracing was performed are marked by white contours, overlaid on top of the activation map generated by contrasting the
activation during the tracing of themazes vs. the resting baseline. The insert depicts theM1/S1 region (marked by blue contour and superimposed on an inflated version of the group
cortex mesh) which showed significant velocity-dependent activation changes as revealed by contrasting the fast and slow square tracing conditions. The color scale represents the
significance level of the identified activations (varying from t=3.15 to t=8.00), based on False Discovery Rate (FDR) thresholding. Abbreviations: RH, right hemisphere; LH, left
hemisphere.
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region in the left medial IPS/posterior SPL (the corresponding
Talairach coordinates are listed in Table 1). Besides showingmarkedly
stronger responses in both learning conditions, most of these regions
did not discriminate between the fast and the slow execution of the
control sequences, suggesting their responses are not velocity-
dependent (Fig. 4b; for an overview of the responses in all identified
ROIs see supplementary Fig. S1).

To further characterize the involvement of the aforementioned
areas throughout the course of learning, both maze tracing conditions
were divided into an early and a late phase as described in the
Materials and methods section. Note that the numerals which are
used to describe themazes refer to the order of their presentation. The
data from two subjects were excluded because their behavioral
learning curves did not allow a clear distinction between learning
phases. When using the previously designated ‘learning-related’ areas
as ROIs, the following pattern of results was obtained when
contrasting the learning phases for both mazes (see Table 1): while
tracing maze 1, moderate (i.e., only approaching corrected p-values)
decreases in activation over time could be observed in the left PMd
and bilateral aIPS, whereas more pronounced decreases were found
for the right PMd, PMv, and the bilateral inferior postcentral sulcus.
Clear activation decreases were present for all ROIs when comparing
the two learning stages for the second maze. Furthermore, the
learning-related decreases for maze 2 were confirmed by negative
beta weights for the behavioral performance predictor, indicating
decreases in activation with increases in performance over time
(Table 1). As illustrated in Fig. 4b, similar responses for the twomazes
were obtained when grouping the data according to their future
classification instead of their current presentation order.

Finally, a contrast between the two control conditions was re-
computed at the ROI-level (see last column Table 1), confirming that
there was no significant difference between the fast and slow square
tracing conditions in 6 out of 11 ROIs. The only ROI for which a
corrected p-value was reached was the left InfPCS. However, the
previously shown decreases in activation with increases in perfor-
mance ensure that merely velocity-dependent activity modulations
can be ruled out as a confounding factor.

To ensure that no interesting activation changes were missed by
applying a ROI-based approach, the early and late phase of both maze
tracing conditions were contrasted at the whole-brain level. The
resultingmaps supported the earlier observation that the decreases in
activation in the identified ROIsweremore pronounced for the second
maze. Additionally, similar decreases in activation were observed in
the right pre-SMA (Talairach coordinates [x,y,z; in mm]: 8,15,47) and
bilateral anterior insula (29,23,2 [right]; −28,24,1 [left]) for Maze 1,
and right (pre-)SMA (6,−1,51), anterior insula (29,20,3) and pos-
terior IPS (25,−67,37) for Maze 2.

Training sessions (days 2–4)

A two-way repeated measures ANOVA of the behavioral data
gathered on the days in between the two scanning sessions with
Session (Tuesday, Wednesday and Thursday) and Trial (trial numbers
1 and 12) as within-subject factors, revealed the following results: a
significant interaction between Session and Trial emerged for the
achieved velocity (F(2,22)=3.97; p=0.034), and significant main
effects for both factors were found for the stop percentages (Session:
F(2,22)=5.21; p=0.014; Trial: F(2,22)=12.80; p=0.004). The retrace
percentages did not show such effects. When comparing the first and
last trial of each training session separately, a significant increase in
velocity from 53 to 71 mm/s (F(1,11)=19.91; p=0.001) and a
decrease in the stop percentage from 21 to 16% (F(1,11)=5.20;
p=0.043)were only found for the first training session (Tuesday). For
the other two training sessions, no additional changes were detected
for any of the behavioral measures, suggesting that a stable
performance level was reached. After completing the three training
sessions, the mean velocity achieved was 76 mm/s (se=7.4), while
the stop and retrace percentages were 13% (se=3.1) and 0.2%
(se=0.1), respectively.

The free drawings that were produced after each training session
furthermore suggested that all subjects could now reproduce the
trained sequence correctly (when taking into account the number of
drawn straight segments and their interrelated orientations).

Scanning session 2 (day 5)

Behavioral data
Three different maze tracing conditions were included in the

second scanning session, allowing us to contrast the performance at
different levels of proficiency. A two-way repeated measures ANOVA
with Condition (overlearned, old and new) and Trial (1 vs. 12) as
within-subjects factors revealed significant ‘Condition by Trial’
interactions for velocity (F(2,22)=6.55; p=0.006), as well as stops
(F(2,22)=16.62; p=0.000), whereas for the retrace percentage, only a
significant main effect for Trial was found (F(1,11)=7.244; p=0.021).
Next, the first and last trials of the three tracing conditions were
contrasted separately. Because performance on the overlearned
sequence reached an asymptotic level during the previous training



Fig. 4. Learning-related brain activations (session 1). a) The bilateral network of areas showing specific learning-related activations, viewed from the lateral sides as well as from the
top (cluster-size threshold [cortical patch]: 58 mm2 [LH] / 42 mm2 [RH]). b) Event-related averages of the responses to the different tracing conditions in session 1 (averaged across
subjects), extracted from the left aIPS and right PMd ROIs which function as illustrative examples. The shaded regions indicate the standard error of the mean across subjects. Note
that the response to both maze tracing conditions is stronger than the response to either of the control conditions. c) Responses during the early and late stage of maze 2 extracted
from the same ROIs, reflecting the decrease in activation as found across the identified network associated with an increase in proficiency. The vertical dashed lines indicate the start
and end of the active tracing period. Abbreviations: PMd, dorsal premotor cortex; PMv, ventral premotor cortex; InfPCS, inferior postcentral sulcus; aIPS, anterior intraparietal sulcus;
mIPS, medial intraparietal sulcus; SPL, superior parietal lobule; RH, right hemisphere; LH, left hemisphere.
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sessions, no additional changes were expected to occur while subjects
traced the extensively trained sequence again in the second scanning
session (‘OVER’). This was indeed the case for both the stop (F(1,11)=
4.34; p=0.061) and retrace (F(1,11)=0.17; p=0.686) percentages.
However, the velocity on the first trial did significantly differ from the
twelfth trial (F(1,11)=6.72; p=0.025). As is visible in Fig. 5, this was
due to a slower performance on the first trial (instead of a faster
performance on the last trial) of the overlearned sequence compared
to the previous sessions and therefore probably does not represent a
genuine learning effect (see Discussion). In contrast, stronger changes
in performance were expected for the sequence which was encoun-
tered in the first scanning session, but was not trained extensively
afterwards (‘OLD’). This expectation was confirmed for both the
achieved velocity (increasing from 51 to 65 mm/s; F(1,11)=12.26;
p=0.005) and the percentage of stops (decreasing from 39 to 18%;
F(1,11)=40.89; p=0.000). Finally, being confronted with a complete-
ly novel maze (‘NEW’) should also lead to changes in behavior across
the presented repetitions. Such improvements in performance were
indeed found for all behavioral measures: the velocity increased from
47 to 70 mm/s (F(1,11)=61.63; p=0.000), while the stop and retrace
percentages decreased from 32 to 16% (F(1,11)=34.91; p=0.000) and
from 4 to 0% (F(1,11)=5.34; p=0.041), respectively.



Table 1
Results of the ROI analyses on the changes in activation level depending on the stage of (intra-session) learning and as reflected by the included behavioral performance predictor, for
the learning-related ROIs as defined in scanning session 1. Note that the numerals in the condition names reflect the order of presentation (i.e., not the fact whether a givenmaze was
extensively trained afterwards or not).

Region of
interest

Hemisphere Talairach coordinates
[mm]

Significance of activation changes: t-values and probabilities for contrasts (RFX ROI-GLM; n=10)

Maze 1 EarlyN
Maze 1 Late

Maze 2 EarlyN
Maze 2 Late

Maze 2 Behav
Perform Pred

Square FastN
Square Slow

x y z t (p) t (p) t (p) t (p)

PMd
LH −24 −10 53 3.10 (0.013)⁎ 4.11 (0.003)⁎⁎ −3.79 (0.004)⁎⁎ 3.01 (0.015)⁎

RH 25 −8 52 4.14 (0.003)⁎⁎ 5.60 (0.000)⁎⁎ −6.60 (0.000)⁎⁎ 2.48 (0.035)⁎

PMv
LH −54 1 29 1.74 (0.115) 8.74 (0.000)⁎⁎ −9.29 (0.000)⁎⁎ 0.79 (0.449)
RH 52 3 33 4.30 (0.002)⁎⁎ 6.72 (0.000)⁎⁎ −8.98 (0.000)⁎⁎ −0.10 (0.926)

InfPCS
LH −53 −23 36 7.10 (0.000)⁎⁎ 8.99 (0.000)⁎⁎ −7.41 (0.000)⁎⁎ 3.91 (0.004)⁎⁎

RH 50 −24 37 4.99 (0.001)⁎⁎ 5.21 (0.001)⁎⁎ −5.06 (0.001)⁎⁎ 2.21 (0.054)
aIPS

LH −39 −34 42 2.42 (0.039)⁎ 8.15 (0.000)⁎⁎ −6.37 (0.000)⁎⁎ 2.42 (0.039)⁎

RH 36 −35 42 3.38 (0.008)⁎ 5.59 (0.000)⁎⁎ −5.61 (0.000)⁎⁎ 0.56 (0.588)
mIPS

LH −28 −52 53 0.42 (0.684) 4.22 (0.002)⁎⁎ −5.18 (0.001)⁎⁎ 0.90 (0.394)
RH – – – – – – – – – – –

SPL
LH −16 −65 50 −0.04 (0.967) 3.69 (0.004)⁎⁎ −4.01 (0.003)⁎⁎ −2.15 (0.060)
RH 14 −63 54 0.85 (0.415) 4.81 (0.001)⁎⁎ −5.97 (0.000)⁎⁎ −3.55 (0.006)⁎

Abbreviations: PMd, dorsal premotor cortex; PMv, ventral premotor cortex; InfPCS, inferior postcentral sulcus; aIPS, anterior intraparietal sulcus; mIPS, medial intraparietal sulcus;
SPL, superior parietal lobule; LH, left hemisphere; RH, right hemisphere.
⁎ pb0.05 (uncorrected).
⁎⁎ pb0.0045 (Bonferroni-corrected for the number of included ROIs).
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Imaging data
A first observation regarding the imaging data of the second fMRI

session was that a highly similar network of areas was active across
the different tracing conditions, i.e. irrespective of the amount of
preceding practice. In close correspondence to the general maze
tracing network as identified in the first scanning session (Fig. 3),
separate contrasts for each condition against baseline resulted in
remarkably overlapping activation patterns (Fig. 6). This implies that
the amount of practice does not strongly affect the spatial layout of
the engaged brain network: except for some right hemispheric nodes
Fig. 5. Behavioral results from the additional training sessions and scanning session 2 for all t
conditions. The shaded regions indicate the standard errors for the calculated trial means.
that seem to drop out, the same cortical areas stay involved
throughout learning.

To assess the continuing involvement of areas that were previously
designated to show learning-related activation changes, separate
random effects contrasts were computed for the ROIs defined in the
first session. However, due to the rapid changes in activation levels
that can occur during learning (as was demonstrated above for
scanning session 1), the effects of training were not examined by
contrasting all trials of the different tracing conditions integrally.
Instead, the behavioral data were again used to separate early from
hree performance measures. Note that the strongest changes occur in the NEW and OLD
Color coding as in Fig. 1.



Fig. 6. Group activation maps from session 2 for all three tracing conditions (pooled across 12 trials; cluster-size threshold [cortical patch]: 180 mm2 [LH]/154 mm2 [RH]).
a) Activation pattern found when contrasting the tracing of the completely novel maze with the resting baseline. b) Areas involved in tracing the maze which was encountered in
session 1 but was not trained afterwards. c) Areas that respond while performing the overlearned movement sequence. Note how similar the identified networks are, and that the
regions showing learning-specific responses in session 1 still seem to be involved in all conditions (except for the right parietal and dorsal premotor areas in the overlearned
condition). Abbreviations: RH, right hemisphere; LH, left hemisphere.
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late stages of (within-session) learning and to define the previously
mentioned continuous performance predictors. One of the main
findings was that all ROIs showed a significant decrease in activation
during the tracing of the novel sequence as learning progressed. This
effect was clearly present both when contrasting the early vs. late
phase of the NEW condition (Table 2), as well as in the highly
significant negative betas for the performance predictor indicating
activation decreases with performance increases across all included
ROIs (p≤0.0003; see also Fig. 7).

Moreover, a similar learning-related decrease was observed
throughout the entire network for the sequence whichwas previously
encountered in session 1, but was not practiced any further
afterwards (Table 2; Fig. 7). As expected if this previous experience
would still have an effect, the overall difference between the early and
late stage of learning was somewhat less pronounced compared to the
completely novel case. Finally, the learning-related ROIs generally did
not show a significant change in activation level for the overlearned
sequence, presumably because no additional learning took place
(Table 2; Fig. 7).

Because both the neural and behavioral probes of learning
suggested that the novel sequence was learned relatively fast, the
strongest divergence in activation levels between the novel and
overlearned sequence would consequently be expected in the early
stages of task execution. As shown in Table 2, the large majority of
ROIs (≥ 90%) indeed responded more strongly during the initial stage
of learning the newmovement sequence than during the first trials of
executing the overlearned sequence. Moreover, comparable results
were obtained by directly contrasting the obtained beta weights for
the NEW and OVER performance predictor (last column in Table 2).
Stronger decreases over time were identified for the novel compared
to the overlearned sequence as indicated by the (strong tendency
[max. p=0.006] towards) more negative beta weights. Similar to
what was found for the first scanning session, additional ‘whole
brain’-contrasts revealed that the amplitude of the right (pre-)SMA
(Talairach coordinates: 6,9,46) and bilateral posterior IPS (−26,
−66,30 [left]; 26,−66,36 [right]) response decreased when compar-
ing early versus late performance on the ‘NEW’ sequence. Likewise,
activation decreases with increases in performancewere found for the
‘OLD’ sequence in bilateral (pre-)SMA (−8,9,47 [left]; 6,9,46 [right]),
posterior IPS (−24,−66,31 [left]; 22,−69,38 [right]) and anterior
insula (−30,16,2 [left]; 30,19,5 [right]). No further decrease was
observed for the overlearned movement pattern, consistent with the
general response profile of the other areas as described above.

In contrast, the only regionwhich did show an increased activation
level during the early phase of executing the overlearned compared to
the completely novel sequence was located in the left posterior
putamen (Talairach coordinates: −26, −11, 13). Only the perfor-
mance predictor for the overlearned sequence reached significance in



Table 2
ROI-GLM results for scanning session 2. The table shows that learning-related decreases occurred for both the NEW and the previously encountered (OLD) sequence in all implicated
regions, whereas no additional decreases were observed for the extensively trained sequence (OVER; except in the right InfPCS and aIPS [uncorrected]). Directly comparing the early
stages of the novel and overlearned sequence conditions revealed a significantly higher activation for the novel sequence in almost all ROIs. Furthermore, contrasting the obtained
beta weights for the behavioral performance predictor of the NEW and OVER conditions revealed (a trend towards) significantly stronger decreases in activation over time while
learning the novel sequence in all identified ROIs (see also Fig. 7).

Region of
interest

Hemisphere Significance of activation changes: t-values and probabilities for contrasts (RFX ROI-GLM; n=12)

NEW EarlyNNEW Late OLD EarlyNOLD Late OVER EarlyN
OVER Late

NEW EarlyN
OVER Early

NEWNOVER Behav
Perform Pred

t (p) t (p) t (p) t (p) t (p)

PMd
LH 5.12 (0.000)⁎⁎ 2.60 (0.025)⁎ 0.13 (0.901) 3.38 (0.006)⁎ −4.08 (0.002)⁎⁎

RH 5.59 (0.000)⁎⁎ 3.45 (0.005)⁎ 0.37 (0.718) 3.82 (0.003)⁎⁎ −3.69 (0.004)⁎⁎

PMv
LH 5.39 (0.000)⁎⁎ 7.81 (0.000)⁎⁎ 0.40 (0.697) 3.63 (0.004)⁎⁎ −7.03 (0.000)⁎⁎

RH 13.36 (0.000)⁎⁎ 6.18 (0.000)⁎⁎ 1.32 (0.314) 7.39 (0.000)⁎⁎ −5.31 (0.000)⁎⁎

InfPCS
LH 5.98 (0.000)⁎⁎ 3.87 (0.003)⁎⁎ 1.94 (0.079) 3.84 (0.003)⁎⁎ −5.04 (0.000)⁎⁎

RH 9.66 (0.000)⁎⁎ 4.36 (0.001)⁎⁎ 2.30 (0.042)⁎ 6.52 (0.000)⁎⁎ −4.99 (0.000)⁎⁎

aIPS
LH 6.52 (0.000)⁎⁎ 3.11 (0.010)⁎ 0.12 (0.906) 5.94 (0.000)⁎⁎ −4.33 (0.001)⁎⁎

RH 10.37 (0.000)⁎⁎ 4.59 (0.001)⁎⁎ 2.47 (0.031)⁎ 3.88 (0.003)⁎⁎ −3.47 (0.005)⁎

mIPS
LH 4.79 (0.001)⁎⁎ 5.61 (0.000)⁎⁎ 0.62 (0.546) 5.19 (0.000)⁎⁎ −3.43 (0.006)⁎

RH – – – – – – – – – –

SPL
LH 4.70 (0.001)⁎⁎ 3.96 (0.002)⁎⁎ 0.61 (0.556) 6.19 (0.000)⁎⁎ −3.90 (0.002)⁎⁎

RH 5.18 (0.000)⁎⁎ 5.44 (0.000)⁎⁎ 0.67 (0.517) 5.14 (0.000)⁎⁎ −4.49 (0.001)⁎⁎

Abbreviations as in Table 1.
⁎ pb0.05 (uncorrected).
⁎⁎ pb0.0045 (Bonferroni-corrected for the number of included ROIs).
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this region (t(11)=−2.49; pb0.030) and differed significantly from
the predictor for the new movement sequence (t(11)=−2.48; pb
0.031). As depicted in Fig. 8, the observed dynamic changes in striatal
involvement throughout learning reflected functional reorganizations
linked to the subjects' proficiency level: during the initial scanning
session, only the anterior portion if the left striatum (shown in green)
was activated (without differentiating between the learning and con-
trol conditions). Later on, an intermediate zone (depicted in tur-
quoise) was recruited which partially included the previously
activated anterior portion during any of the phases for both the
novel and overlearned maze in the second scanning session. And
although the activation levels in this intermediate zone already
tended towards stronger responses for the overlearned sequence, a
truly significant preference for the extensively trained sequence was
only found in the posterior putamen (shown in blue).

Discussion

The current study aimed to provide insights into the neural
dynamics associated with the nonvisual motor learning of 2-
dimensional continuous movement sequences. Learning-related
changes in brain activity were examined both within the time frame
of a single scanning session and after several days of extended practice
by including a second scanning session.

Identified learning-related activations

Executing the required pen tracing movements was accompanied
by activations in a distributed network of regions, of which only the
contralateral M1/S1 and ipsilateral cerebellar foci displayed clear
velocity-dependent responses, in accordance with previous studies
(e.g., Turner et al., 1998; Riecker et al., 2003). Several regions showed
enhanced activation levels during the tracing of the mazes compared
to either of the control conditions, and did not differentiate between
the fast and slow square tracing conditions per se. This suggests that
the observed responses were likely to reflect the ongoing learning
process and were free from confounds related to concomitant
increases in movement velocity. Even though the included control
conditions did not explicitly control for changes in other movement
parameters such as arm stiffness, they at least successfully controlled
for the most influential of the three included behavioral measures, as
the achieved velocity continued to show gradual increases over time
when stops and retraces already reached asymptotic levels. The
regions potentially involved in learning as identified by the ‘mazes vs,
squares’ localizer were generally activated bilaterally, showing a high
degree of symmetry across both hemispheres. Frontal differential
activity was restricted to the dorsal and ventral premotor cortices,
known to be involved in the preparation and execution of voluntary
actions (Wise et al., 1997; Rizzolatti and Luppino, 2001), as well as the
production and learning of specific movement sequences (e.g.,
Jueptner et al., 1997; Harrington et al., 2000). The remaining
activations were all located in the parietal lobe, comprising areas
which constitute the main sources of input to the premotor areas
described above (Rizzolatti and Luppino, 2001). The most laterally
located activation site was found in the bilateral inferior postcentral
sulcus, which in humans has recently been classified as the most
rostral part of the inferior parietal lobule based on cytoarchitectonic
data (Caspers et al., 2006) and which is primarily connected to nearby
somatosensory and parietal areas as shown in monkeys (Rozzi et al.,
2006). Another lateral region was identified bilaterally in the anterior
IPS, corresponding to the human homologue of the macaque AIP
(anterior intraparietal) sulcus (Culham and Valyear, 2006), which is
directly connected to the PMv (Rizzolatti et al., 1998) and is involved
in visually-guided grasping (Castiello, 2005) and visuo-tactile
integration (Grefkes et al., 2002). The more posterior activation in
the left medial IPS/middle SPL constitutes another putative human
homologue to a well-known area in the monkey, namely medial
intraparietal area MIP (Grefkes and Fink, 2005). Medial IPS activity
was previously reported in humans during goal-directed joystick
movements towards visually presented targets, even in the absence of
direct visual feedback (Grefkes et al., 2004) and mIPS has dense
connections to the PMd in monkeys (Rizzolatti et al., 1998). The final



Fig. 7. Overview of the changes in brain activation levels for the different tracing conditions in scan session 2, as reflected by the beta weights for the included behavioral
performance predictors for all identified ROIs. Note that a clear pattern is visible in which the NEW condition is consistently associated with the largest negative beta weights. This
shows that learning the novel movement sequence elicits the strongest decreases in activation levels over time while the subjects' performance improves. Such learning-related
decreases are less pronounced for the OLD sequence, and still weaker or even absent for the overlearned sequence (see also Table 2). Abbreviations as in Fig. 4, color coding as in
Fig. 1c.
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activation site showing possible learning-related responses based on
the functional localizer in the first scanning session was located in the
posterior part of the SPL, adjacent to the medial IPS activity. Together
these regions form the so-called parietal reach region (PRR) in the
macaque, which has been associated with the control of reaching
movements (e.g., Snyder et al., 1998) and the coding of so-called
‘motor intentions’, relatively abstract movement plans specifying both
the goal of amovement and the type of movement required to achieve
this goal (Andersen and Buneo, 2002; Quian Quiroga et al., 2006).
However, similar posterior parietal activations have also been
reported in the context of (both spatial and non-spatial) attention
switches (Behrmann et al., 2004). In sum, a connected fronto-parietal
network of regions predominantly implicated in the organization of
sequential behavior and visuomotor transformations in the context of
goal-directed movements, was shown here to also constitute a
network of candidate regions involved in the learning of novel
continuous movement sequences based on somatosensory and
proprioceptive input alone. The involvement of the identified regions
in learning was further substantiated based on the data from the
second scanning session (see below).

Interestingly, no tracing- or learning-related activations were
found in the dorso-lateral prefrontal cortex (DLPFC). Recruitment of
the DLPFC might have been expected based on earlier SRT studies
(Ashe et al., 2006) and reports on sequence-specific activation
patterns identified using single-cell recordings (Averbeck et al.,
2002, 2006). However, by varying the correspondence between
behavioral goals and the movements required to achieve them,
Mushiake et al. (2006) recently showed that the DLPFC does not



Fig. 8. Illustration of the involvement of the different portions of the left striatum
throughout the course of learning. Whereas only the anterior striatum (in green) was
indiscriminately activated initially, the second scanning session revealed an interme-
diate zone (in turquoise) that was active in all tracing conditions, yet showed a
tendency towards stronger activations for the overlearned sequence. Finally, the
posterior putamen (in blue) significantly showed a stronger response when directly
comparing the early phase of the OVER and NEW condition.
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necessarily code specific movement sequences, but rather their more
abstract consequences in terms of behaviorally relevant subgoals (see
also Saito et al., 2005). The lack of DLPFC involvement in the present
experiment suggests that the task requirements were met at the
motor system level, underlining the paradigm's focus on motor
aspects of learning instead of its more cognitive and strategy-
dependent characteristics. This is also in line with evidence provided
by Robertson et al. (2001) suggesting that the DLPFC's role in SRT
tasks is restricted to the processing of visuo-spatial cues, rather than
the task's motor components.
Brain activation changes over the course of learning

Already within the first scanning session, the contributions of the
areas listed above started to change while learning progressed. The
more modest (or even absent) changes in activation level during the
acquisition of the first sequence might be related to a familiarization
process which masked the learning-related effects, as subjects still
needed to become accustomed to the general task requirements and
the experimental setting. This was also reflected by an apparent cross-
over effect in the behavioral data (better performance for maze 2 than
maze 1 when comparing the first trials). However, one should keep in
mind that such an order effect could not have negatively affected the
present study's overall outcomes due to the counter balancing of
conditions across subjects. This was also apparent from the similar
responses that were obtained for both mazes when grouping the data
according to their future classification (‘to-be-OLD’ and ‘to-be-OVER’)
instead of their current presentation order.

Whereas the early practice-induced decreases in activation levels
for the premotor and parietal areas are in accordance with earlier PET
results based on the same paradigm, we found a similar decrease for
the (pre-)SMA which was not reported previously (van Mier et al.,
1998). Although the reason for this discrepancy is not entirely clear, it
might be due to differences in design and general methodology (e.g.,
10 to 20 min elapsed between the experimental and rest conditions in
the PET experiment, instead of repeatedly being consecutively
alternated). The finding that the (pre-)SMA is involved in all tracing
conditions, but tends to become less active over time, points to a
function in organizingmultiple, separately performedmovements in a
correct temporal order (Tanji, 2001). With practice, these distinctly
performed movements start to constitute a unified single movement
pattern, thereby reducing the need to separately initiate and switch
between its individual elements.

Interestingly, the experience-dependent decreases in brain acti-
vation observed in the first part of the current experiment were
replicated 4 days later, in the second scanning session. Here, decreases
were found both when a completely novel sequence was presented,
and when learning continued on the maze which was traced
previously in session 1 but was not extensively trained afterwards.
Conversely, no such additional intra-session learning was found for
the overlearned sequence. The slight dip (compared to the previous
training sessions) which was present in the performance data for the
overlearned condition in the second scanning session was probably
related to the fact that subjects did not know in which order the
conditions would be presented, and the possibility that subjects were
initially more cautious compared to the situation in the dummy
scanner (e.g., trying harder to prevent excessive head motion). As
each subject had practiced this particular movement sequence several
hundred times across 4 days (leaving ample time for offline skill
consolidation) and performance reached (yet did not surpass) the
previously achieved asymptotic level, the extensively trained se-
quence could safely be labeled as overlearned (at the very least in
comparison to the other encountered sequences). Note that these
results further substantiate the role of the identified cortical network
in continuous sequence learning, as more general effects of task
familiarity or differences in low-level features of the traced trajecto-
ries across conditions (which could still have played a role in session
1) cannot account for the obtained practice-dependent responses in
session 2. In addition, contributions by other non-specific factors such
as fatigue, overall motivation or the mere passage of time can be ruled
out due to the counterbalancing of the tracing conditions. Similarly,
the observed effects are not restrictively attributable to the specific
features of any one particular trajectory, as the sequence which was
overlearned differed across subjects. Finally, the changes in neural
activation levels parametrically varied across three different levels of
behavioral proficiency, thereby extending earlier work in which only
two levels of expertise were probed by introducing a new control
sequence at each scanning session (e.g., Lehericy et al., 2005). These
findings stress the specificity of the observed learning-related
activations, and provide a clear illustration of practice-induced
changes in neural processing. It should be noted though that these
observations pertain to the chosen time window. More prolonged
training over periods of weeks or even months might reveal increases
in the extent of activation or specific fine-grained changes in response
patterns in particular circumscribed brain areas (such as M1, as
suggested by the work of e.g., Karni et al. (1995) or Matsuzaka et al.
(2007), respectively) that could not be captured here. Additionally, in
future studies it might be interesting to focus more on potential
changes in resting baseline activity and/or task-related deactivations
over time that might be linked to the ongoing learning process
(Kincses et al., 2008; Albert et al., 2009; Xiong et al., 2009).

Another aspect of the obtained results was that even though the
activation levels of the identified regions markedly decreased with
practice, there was a substantial overlap in the spatial layout of
activation patterns across sessions and levels of proficiency. This
consistency indicates that a similar network of regions is engaged
throughout the course of skill acquisition, although the required
processing is performedmore efficiently as learning evolves. Increases
in neural efficiency refer to optimizations (in computation or
representation) leading to stable or improved processing while
minimizing concomitant costs in terms of attentional or metabolic
resources. Both within the skill acquisition literature (e.g., Aizawa et
al., 1991) and other domains (e.g., Mukai et al., 2007), learning-
related decreases in activation are commonly thought to indicate
increases in neural efficiency (even though it is not evident whether
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reduced BOLD signals represent changes in the number or the gain of
recruited neurons within a given region; Poldrack, 2000). Such an
interpretation is in line with recent results from studies investigating
extendedmotor learning acrossmultiple scanning sessions (deWeerd
et al., 2003; Wu et al., 2004; Poldrack et al., 2005), as well as studies
contrasting the neural correlates of learning in novices versus experts
(Haslinger et al., 2004; Meister et al., 2005).

On the other hand, models on motor sequence learning have
proposed dynamic shifts in activation patterns, leading to increased or
more focused involvement of subcortical structures in later learning
stages (Doyon and Benali, 2005; Ashe et al., 2006; Doyon et al., 2009).
Although the subcortical activations identified in the first session of
the current study were neither specifically involved in learning nor
restricted to a particular time window, differential responses were
found for the posterior putamen in the second scanning session. This
structure wasmore strongly engaged during the early phase of tracing
the overlearned compared to the novel maze, pointing to a function in
the re-instatement of a previously learned movement set (Miyachi et
al., 1997, 2002; Lehericy et al., 2005; and in partial agreement with
Jankowski et al., 2009). Such a shift is in line with the framework
presented by Doyon and Benali (2005), in which they revise their
previous notion of the cortico-striatal system believed to be
specifically involved in sequence learning (as opposed to the
cortico-cerebellar system mainly involved in adaptation learning),
by allowing activation shifts within each of these specialized systems.
In addition, by showing that the posterior putamen is mainly engaged
in later stages of skill acquisition in the current task, the presented
data corroborate the work by Lehericy et al. (2005), on which the
revision of the framework by Doyon and Benali (2005) was partially
based, in two ways. First, our results indicate that a similar shift also
occurs when continuous (instead of discrete) movement sequences
are learned. Second, we show that the observed shift within the
cortico-striatal network is also apparent in conditions were the task
execution is self-paced (instead of externally paced). This distinction
is important because employing external pacing necessarily implies
restricting the subjects' motor output to a level which lies below their
potential maximum (an effect which becomes more pronounced in
later learning stages). Observing a similar shift in the absence of such a
refrainment imposed by external pacing indicates that the activation
pattern of the posterior putamen is not related to more prominently
emerging inhibition processes.

In sum, the current results suggest that continuous motor
sequence learning is characterized by practice-induced activation
decreases throughout a cortical network of learning-related regions
consistently engaged at different levels of proficiency. Concomitantly,
a specific and circumscribed spatiotemporal activation gradient
(along an anterior-to-posterior axis as learning progressed) was
identified in the left putamen, in line with recent models on skill
acquisition.

Acknowledgments

We thank Bettina Sorger for providing helpful suggestions and
Judith Peters for her invaluable contributions during several stages of
this project.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2010.03.073.

References

Aizawa, H., Inase, M., Mushiake, H., Shima, K., Tanji, J., 1991. Reorganization of activity
in the supplementary motor area associated with motor learning and functional
recovery. Exp. Brain Res. 84, 668–671.
Albert, N.B., Robertson, E.M., Miall, R.C., 2009. The resting human brain and motor
learning. Curr. Biol. 19, 1023–1027.

Alkadhi, H., Crelier, G.R., Boendermaker, S.H., Golay, X., Hepp-Reymond, M.-C., Kollias, S.S.,
2002. Reproducibility of primary motor cortex somatotopy under controlled
conditions. Am. J. Neuroradiol. 23, 1524–1532.

Andersen, R.A., Buneo, C.A., 2002. Intentional maps in posterior parietal cortex. Annu.
Rev. Neurosci. 25, 189–220.

Ashe, J., Lungu, O.V., Basford, A.T., Lu, X., 2006. Cortical control of motor sequences. Curr.
Opin. Neurobiol. 16, 213–221.

Averbeck, B.B., Chafee, M.V., Crowe, D.A., Georgopoulos, A.P., 2002. Parallel processing
of serial movements in prefrontal cortex. Proc. Natl Acad. Sci. USA 99,
13172–13177.

Averbeck, B.B., Sohn, J.W., Lee, D., 2006. Activity in prefrontal cortex during dynamic
selection of action sequences. Nat. Neurosci. 9, 276–282.

Behrmann, M., Geng, J.J., Shomstein, S., 2004. Parietal cortex and attention. Curr. Opin.
Neurobiol. 14, 212–217.

Bischoff-Grethe, A., Goedert, K.M., Willingham, D.T., Grafton, S.T., 2004. Neural substrates
of response-based sequence learning using fMRI. J. Cogn. Neurosci. 16, 127–138.

Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K., Zilles, K., 2006. The
human inferior parietal cortex: cytoarchitectonic parcellation and interindividual
variability. Neuroimage 33, 430–448.

Castiello, U., 2005. The neuroscience of grasping. Nat. Rev. Neurosci. 6, 726–736.
Clegg, B.A., DiGirolamo, G.J., Keele, S.W., 1998. Sequence learning. Trends Cogn. Sci. 2,

275–281.
Culham, J.C., Valyear, K.F., 2006. Human parietal cortex in action. Curr. Opin. Neurobiol.

16, 205–212.
Culham, J.C., Cavina-Pratesi, C., Singhal, A., 2006. The role of parietal cortex in

visuomotor control: what have we learned from neuroimaging? Neuropsychologia
44, 2668–2684.

de Weerd, P., Reinke, K., Ryan, L., McIsaac, T., Perschler, P., Schnyer, D., Trouard, T.,
Gmitro, A., 2003. Cortical mechanisms for acquisition and performance of bimanual
motor sequences. Neuroimage 19, 1405–1416.

Deichmann, R., Schwarzbauer, C., Turner, R., 2004. Optimisation of the 3D MDEFT
sequence for anatomical brain imaging: technical implications at 1.5 and 3 T.
Neuroimage 21, 757–767.

Doyon, J., Benali, H., 2005. Reorganization and plasticity in the adult brain during
learning of motor skills. Curr. Opin. Neurobiol. 15, 161–167.

Doyon, J., Ungerleider, L.G., 2002. Functional anatomy of motor skill learning. In: Squire,
L.R., Schacter, D.L. (Eds.), Neuropsychology of Memory. Guilford Press, New York
(NY), pp. 225–238.

Doyon, J., Penhune, V., Ungerleider, L.G., 2003. Distinct contribution of the cortico-
striatal and the cortico-cerebellar systems to motor skill learning. Neuropsycho-
logia 41, 252–262.

Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., Lehericy, S., Benali, H.,
2009. Contributions of the basal ganglia and functionally related brain structures to
motor learning. Behav. Brain Res. 199, 61–75.

Floyer-Lea, A., Matthews, P.M., 2004. Changing brain networks for visuomotor control
with increased movement automaticity. J. Neurophysiol. 92, 2405–2412.

Friston, K.J., Fletcher, P., Josephs, O., Homes, A., Rugg, M.D., Turner, R., 1998. Event-
related fMRI: characterizing differential responses. Neuroimage 7, 30–40.

Goebel, R., Esposito, F., Formisano, E., 2006. Analysis of functional image analysis
contest (FIAC) data with BrainVoyager QX: from single-subject to cortically aligned
group General Linear Model Analysis and self-organizing group Independent
Component Analysis. Hum. Brain Mapp. 27, 392–401.

Grefkes, C., Fink, G.R., 2005. The functional organization of the intraparietal sulcus in
humans and monkeys. J. Anat. 207, 3–17.

Grefkes, C., Weiss, P.H., Zilles, K., Fink, G.R., 2002. Crossmodal processing of object
features in human anterior intraparietal cortex: an fMRI study implies equivalen-
cies between humans and monkeys. Neuron 35, 173–184.

Grefkes, C., Ritzl, A., Zilles, K., Fink, G.R., 2004. Human medial intraparietal cortex
subserves visuomotor coordinate transformation. Neuroimage 23, 1494–1506.

Harrington, D.L., Rao, S.M., Haaland, K.Y., Bobholz, J.A., Mayer, A.R., Binder, J.R., Cox, R.W.,
2000. Specialized neural systems underlying representations of sequential move-
ments. J. Cogn. Neurosci. 12, 56–77.

Haslinger, B., Erhard, P., Altenmueller, E., Hennenlotter, A., Schwaiger, M., Graefin von
Einsiedel, H., Rummeny, E., Conrad, B., Ceballos-Baumann, A., 2004. Reduced
recruitment of motor association areas during bimanual coordination in concert
pianists. Hum. Brain Mapp. 22, 206–215.

Jankowski, J., Scheef, L., Huppe, C., Boecker, H., 2009. Distinct striatal regions for
planning and executing novel and automated movement sequences. Neuroimage
44, 1369–1379.

Jueptner, M., Stephan, K.M., Frith, C.D., Brooks, D.J., Frackowiak, R.S.J., Passingham, R.E.,
1997. Anatomy of motor learning. I. Frontal cortex and attention to action. J.
Neurophysiol. 77, 1313–1324.

Karni, A., Meyer, G., Jezzard, P., Adams, M.M., Turner, R., Ungerleider, L.G., 1995.
Functional MRI evidence for adult motor cortex plasticity during motor skill
learning. Nature 377, 155–158.

Keele, S.W., Ivry, R., Mayr, U., Hazeltine, E., Heuer, H., 2003. The cognitive and neural
architecture of sequence representation. Psychol. Rev. 110, 316–339.

Kelly, A.M.C., Garavan, H., 2005. Human functional neuroimaging of brain changes
associated with practice. Cereb. Cortex 15, 1089–1102.

Kincses, Z.T., Johansen-Berg, H., Tomassini, V., Bosnell, R., Matthews, P.M., Beckmann, C.F.,
2008. Model-free characterization of brain functional networks for motor sequence
learning using fMRI. Neuroimage 39, 1950–1958.

Kriegeskorte, N., Goebel, R., 2001. An efficient algorithm for topologically correct
segmentation of the cortical sheet in anatomicalMR volumes. Neuroimage 14, 329–346.

http://dx.doi.org/10.1016/j.neuroimage.2010.03.073


276 J. Reithler et al. / NeuroImage 52 (2010) 263–276
Lehericy, S., Benali, H., van de Moortele, P.-F., Pelegrini-Issac, M., Waechter, T., Ugurbil,
K., Doyon, J., 2005. Distinct basal ganglia territories are engaged in early and
advanced motor sequence learning. Proc. Natl Acad. Sci. USA 102, 12566–12571.

Lotze, M., Erb, M., Flor, H., Huelsmann, E., Godde, B., Grodd,W., 2000. fMRI evaluation of
somatotopic representation in human primary cortex. Neuroimage 11, 473–481.

Matsuzaka, Y., Picard, N., Strick, P.L., 2007. Skill representation in the primary motor
cortex after long-term practice. J. Neurophys. 97, 1819–1832.

Meister, I., Krings, T., Foltys, H., Boroojerdi, B., Mueller, M., Toepper, R., Thron, A., 2005.
Effects of long-term practice and task complexity in musicians and nonmusicians
performing simple and complex motor tasks: implications for cortical motor
organization. Hum. Brain Mapp. 25, 345–352.

Miyachi, S., Hikosaka, O., Miyashita, K., Karadi, Z., Rand, M., 1997. Differential roles of
monkey striatum in learning of sequential hand movement. Exp. Brain Res. 115, 1–5.

Miyachi, S., Hikosaka, O., Lu, X., 2002. Differential activation of monkey striatal neurons
in the early and late stages of procedural learning. Exp. Brain Res. 146, 122–126.

Mukai, I., Kim, D., Fukunaga, M., Japee, S., Marrett, S., Ungerleider, L.G., 2007. Activations
in visual and attention-related areas predict and correlate with the degree of
perceptual learning. J. Neurosci. 27, 11401–11411.

Mushiake, H., Saito, N., Sakamoto, K., Itoyama, Y., Tanji, J., 2006. Activity in the lateral
prefrontal cortex reflects multiple steps of future events in action plans. Neuron 50,
631–641.

Nissen, M.J., Bullemer, P., 1987. Attentional requirements of learning: evidence from
performance measures. Cogn. Psychol. 19, 1–32.

Oldfield, R.C., 1971. The assessment and analysis of handedness: the Edinburgh
Inventory. Neuropsychologia 9, 97–113.

Pascual-Leone, A., Amedi, A., Fregni, F., Merabet, L.B., 2005. The plastic human brain
cortex. Ann. Rev. Neurosci. 28, 377–401.

Poldrack, R.A., 2000. Imaging brain plasticity: conceptual andmethodological issues— a
theoretical review. Neuroimage 12, 1–13.

Poldrack, R.A., Sabb, F.W., Foerde, K., Tom, S.M., Asarnow, R.F., Bookheimer, S.Y., Knowlton,
B.J., 2005. The neural correlates ofmotor skill automaticity. J. Neurosci. 25, 5356–5364.

Quian Quiroga, R., Snyder, L.H., Batista, A.P., Cui, H., Andersen, R.A., 2006. Movement
intention is better predicted than attention in the posterior parietal cortex.
J. Neurosci. 26, 3615–3620.

Reithler, J., Reithler, H., van den Boogert, E., Goebel, R., van Mier, H., 2006. Resistance-
based high resolution recording of predefined 2-dimensional pen trajectories in an
fMRI setting. J. Neurosci. Meth. 152, 10–17.

Reithler, J., van Mier, H.I., Peters, J.C., Goebel, R., 2007. Nonvisual motor learning
influences abstract action observation. Curr. Biol. 17, 1201–1207.

Riecker, A., Wildgruber, D., Mathiak, K., Grodd, W., Ackermann, H., 2003. Parametric
analysis of rate-dependent hemodynamic response functions of cortical and
subcortical brain structures during auditorily cued finger tapping: a fMRI study.
Neuroimage 18, 731–739.

Rizzolatti, G., Luppino, G., 2001. The cortical motor system. Neuron 31, 889–901.
Rizzolatti, G., Luppino, G., Matelli, M., 1998. The organization of the cortical motor
system: new concepts. Electroencephalogr. Clin. Neurophysiol. 106, 283–296.

Robertson, E.M., Tormos, J.M., Maeda, F., Pascual-Leone, A., 2001. The role of the
dorsolateral prefrontal cortex during sequence learning is specific for spatial
information. Cereb. Cortex 11, 628–635.

Rozzi, S., Calzavara, R., Belmalih, A., Borra, E., Gregoriou, G.G., Matelli, M., Luppino, G.,
2006. Cortical connections of the inferior parietal cortical convexity of the macaque
monkey. Cereb. Cortex 16, 1389–1417.

Saito, N., Mushiake, H., Sakamoto, K., Itoyama, Y., Tanji, J., 2005. Representation of
immediate and final behavioral goals in the monkey prefrontal cortex during an
instructed delay period. Cereb. Cortex 15, 1535–1546.

Sanes, J.N., 2003. Neocortical mechanisms in motor learning. Curr. Opin. Neurobiol. 13,
225–231.

Snyder, L.H., Batista, A.P., Andersen, R.A., 1998. Change in motor plan, without a change
in the spatial locus of attention, modulates activity in posterior parietal cortex.
J. Neurophysiol. 79, 2814–2819.

Talairach, J., Tournoux, P., 1988. Co-planar Stereotaxic Atlas of the Human Brain. G.
Thieme, Stuttgart.

Tanji, J., 2001. Sequential organization of multiple movements: involvement of cortical
motor areas. Annu. Rev. Neurosci. 24, 631–651.

Toni, I., Krams, M., Turner, R., Passingham, R.E., 1998. The time course of changes during
motor sequence learning: a whole-brain fMRI study. Neuroimage 8, 50–61.

Turner, R.S., Grafton, S.T., Votaw, J.R., Delong, M.R., Hoffman, J.M., 1998. Motor subcircuits
mediating the control of movement velocity: a PET study. J. Neurophysiol. 80,
2162–2176.

van Mier, H., 2000. Human learning. In: Toga, A.W., Mazziotta, J.C. (Eds.), Brain
Mapping: the Systems. Academic Press, San Diego, pp. 605–617.

van Mier, H., Hulstijn, W., Petersen, S.E., 1993. Changes in motor planning during the
acquisition of movement patterns in a continuous task. Acta Psychol. 82, 291–312.

vanMier, H., Tempel, L.W., Perlmutter, J.S., Raichle, M.E., Petersen, S.E., 1998. Changes in
brain activity during motor learning measured with PET: effects of hand of
performance and practice. J. Neurophysiol. 80, 2177–2199.

Vaughan, J.T., Garwood, M., Collins, C.M., Liu, W., DelaBarre, L., Adrainy, G., Andersen, P.,
Merkle, H., Goebel, R., Smith, M.B., Ugurbil, K., 2001. 7 T vs. 4 T: RF power,
homogeneity, and signal-to-noise comparison in head images. Magn. Reson. Med.
46, 24–30.

Wise, S.P., Boussaoud, D., Johnson, P.B., Caminiti, R., 1997. Premotor and parietal cortex:
corticocortical connectivity and combinatorial computations. Annu. Rev. Neurosci.
20, 25–42.

Wu, T., Kansaku, K., Hallett, M., 2004. How self-initiated memorized movements
become automatic: a functional MRI study. J. Neurophysiol. 91, 1690–1698.

Xiong, J., Liangsuo, M., Wang, B., Narayana, S., Duff, E.P., Egan, G.F., Fox, P.T., 2009. Long-
term motor training induced changes in regional cerebral blood flow in both task
and resting states. Neuroimage 45, 75–82.


	Continuous motor sequence learning: Cortical efficiency gains accompanied by striatal functiona.....
	Introduction
	Materials and methods
	Participants
	Experimental paradigm
	Motor learning task
	Order and structure of experiments

	Image acquisition
	Data analysis
	Anatomical data
	Functional data


	Results
	Scanning session 1 (day 1)
	Behavioral data
	Imaging data

	Training sessions (days 2–4)
	Scanning session 2 (day 5)
	Behavioral data
	Imaging data


	Discussion
	Identified learning-related activations
	Brain activation changes over the course of learning

	Acknowledgments
	Supplementary data
	References




