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Abstract

Structural magnetic resonance imaging (MRI) of brain tissue loss and physiological imaging of 

regional cerebral blood flow (rCBF) can provide complimentary information for the 

characterization of brain disorders, such as Alzheimer’s disease (AD) but studies into gains in 

classification power for AD using these image modalities jointly have been limited. Our aim in 

this study was to determine the joint contribution of structural and perfusion-weighted imaging for 

the classification of AD in a cross-sectional study using an integrated multimodality MRI 

processing framework and a cortical surface-based analysis approach. We used logistic regression 

analysis to determine sequentially the value of cortical thickness, rCBF, and cortical thickness and 

rCBF jointly for classification for diagnosis of AD compared to controls. We further tested the 

extent to which cortical thinning and reduced rCBF explain individually or together variability in 

dementia severity. Separate analysis of structural MRI and perfusion-weighted MRI data yielded 

the well-established pattern of cortical thinning and rCBF reduction in AD, affecting 

predominantly temporo-parietal brain regions. Using structural MRI and perfusion-weighted MRI 

jointly indicated that cortical thinning dominated the classification of AD and controls without 

significant contributions from rCBF. However there was also a positive interaction between 

reduced rCBF and cortical thinning in the right superior temporal sulcus, implying that structural 

and physiological brain alterations in AD can be complementary. Compared to reduced rCBF, 

regional cortical thinning better explained the variability in dementia severity. In conclusion, 

structural brain alterations compared to physiological variations are the dominant features of MRI 

in AD.

Introduction

Most neurodegenerative disorders, such as Alzheimer’s disease (AD) and other types of 

dementia, are associated with characteristic patterns of regional brain alterations that can be 

visualized using neuroimaging. Moreover, the patterns of structural, functional, and 

physiological alterations can be regionally discordant, suggesting that each pattern may 
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provide complementary information (Hayasaka et al., 2006). In AD, for example, structural 

MRI studies consistently revealed a pattern of brain tissue loss that predominantly involves 

structures in the medial temporal cortex (i.e., hippocampus and the entorhinal cortex 

(deToledo-Morrell et al., 2004; Morra et al., 2008, 2009a,b; Schroeter et al., 2009; Stoub et 

al., 2005; Thompson et al., 2004)), consistent with the known distribution of early AD 

pathology from histopathological studies (Braak and Braak, 1991). As the severity of AD 

progresses, structural MRI also shows a gradual expansion of tissue loss into temporo-

parietal cortical areas (Chetelat and Baron, 2003; Desikan et al., 2008; Hua et al., 2008a; 

Whitwell et al., 2007, 2008). On the other hand, functional studies in AD using positron 

emission tomography (PET) for measurements of cerebral glucose consumption or single 

photon emission computed tomography (SPECT) and more recently arterial spin labeling 

magnetic resonance imaging (ASL-MRI) for measurements of regional cerebral blood flow 

(rCBF) generally found the most prominent alterations in the association cortices (Alsop et 

al., 2008; Callen et al., 2002; Nebu et al., 2001; Rodriguez et al., 2000), spatially separated 

from the main structural changes. The affected areas include the posterior temporal and 

parietal association cortices (Bradley et al., 2002; Keilp et al., 1996; Schroeter et al., 2009), 

as well as in the posterior cingulate, precuneus, and medial temporal cortices (Asllani et al., 

2008; Du et al., 2006; Ishii et al., 1996; Johnson et al., 2005; Kobayashi et al., 2008; 

Warkentin et al., 2004). However, functional alterations can also be seen in mesial temporal 

lobe structures and the hippocampus (Alsop et al., 2008; Mosconi et al., 2005), in overlap 

with early structural changes in these regions. The diversity of these patterns is of clinical 

interest as it may help separating AD from normal aging as well as staging of the disease, 

since the patterns generally correlate with the progression of clinical symptoms, especially 

with decline in memory function (Arbizu et al., 1997; Basso et al., 2006; Benoit et al., 1999; 

Bruen et al., 2008; Gilboa et al., 2005; Jagust et al., 1989; Keilp et al., 1996; Lampl et al., 

2003; Leube et al., 2008; Maestu et al., 2003; Mungas et al., 2005; Nobili et al., 2005, 2007; 

O’Brien et al., 1992; Reed et al., 1989; Rémy et al., 2005; Rodriguez et al., 1999, 2000; 

Sabbagh et al., 1997; Schwartz et al., 1991; Wolfe et al., 1995). However, most imaging 

studies have exploited structural or physiological alterations separately for the classification 

of AD patients and healthy subjects. Moreover, among studies that used structural and 

physiological changes together for classification (Jagust, 2006; Kawachi et al., 2006; 

Matsunari et al., 2007), many ignored potential interactions between structural and 

physiological changes and often limited the analysis to predetermined regions of interest, 

potentially under-utilizing information available with imaging.

Our overall goal in this study was to assess in full the value added by using jointly MRI 

measures of regional cortical thinning and rCBF, including their interaction, for the 

classification of AD patients and elderly controls. To avoid regional bias, we further aimed 

to determine the joint classification power of structural and perfusion MRI on a point-by- 

point basis. In addition to mere group classification, we also aimed to determine the joint 

value of cortical atrophy and rCBF measures in explaining the variance in the severity of 

cognitive impairment in AD.

Toward these study goals, we present an integrated multimodality image processing and 

analysis framework for an effective joint analysis of regional cortical thinning and rCBF 

variations on a point-by- point basis across the whole brain. Since we are mainly interested 
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in cortical alterations, pertaining cortical thinning and cortical rCBF, we pursued a cortical 

surface-based analysis approach, which provides better spatial normalization of cortical data 

across subjects compared to voxel-based approaches (Tosun and Prince, 2008). In addition, 

the dense analysis of cortical atrophy and rCBF on cortical surface representations benefits a 

data-driven approach that overcomes the restrictions of region-of-interest-based methods. 

Similar cortical surface-based approaches were reported recently for analysis of fMRI data 

(Anticevic et al., 2008; Hagler et al., 2006; Hashikawa et al., 1995). However, this is – to 

our knowledge – the first investigation aimed to evaluate structural and perfusion alterations 

in AD together by using an integrated multimodality MR image-processing framework 

coupled with 3D cortical surface-based data analysis. In the following sections, the technical 

challenges for an integrated multimodality MR image-processing framework are described, 

especially in the context of dementia, where extensive brain atrophy requires accurate spatial 

alignment of the intra-subject inter-modality MR images, including corrections for nonlinear 

geometric distortions and partial volume effects in the low-resolution perfusion images. We 

then present a logistic regression analysis to determine sequentially the value of cortical 

thickness, rCBF, and cortical thickness and rCBF jointly for the classification of AD patients 

and cognitively normal controls. We further test the extent to which cortical thinning and 

reduced rCBF explain individually or together severity of cognitive impairment in AD.

Subjects and methods

Subjects

The study included 38 healthy elderly subjects, aged 51–81 years with Mini-Mental State 

Examination (MMSE) scores between 26 and 30, and 24 patients diagnosed with 

Alzheimer’s disease, aged 51–85 years with MMSE scores between 8 and 29. All subjects 

were recruited from the Memory and Aging Center of the University of California, San 

Francisco and had extensive physical, neurological, and neurocognitive examinations at the 

center. The MR images were used to rule out other major neuropathologies such as tumors, 

strokes, or inflammation but not to diagnose dementia. AD patients were diagnosed 

according to the criteria of the National Institute of Neurological and Communicative 

Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association (NINCDS/

ADRDA). All subjects or their legal guardians gave written informed consent before 

participating in the study, which was approved by the Committees of Human Research at the 

University of California at San Francisco and the VA Medical Center. Detailed 

demographics statistics of each group are given in Table 1.

Data acquisition

All scans were performed on a 4 Tesla (Bruker/Siemens) MRI system with a birdcage 

transmit and 8 channel receive coil arranged in the same housing. The scans included T1-

weighted (T1w) and T2-weighted (T2w) structural MRI data for measurements of brain 

atrophy and perfusion-weighted MRI for measurements of rCBF. T1w images were obtained 

with a 3D volumetric magnetization prepared rapid gradient echo (MPRAGE) sequence, 

TR/TE/TI=2300/3/950 ms, timing; 7° flip angle; 1.0×1.0×1.0 mm3 resolution; 157 

continuous sagittal slices; acquisition time of 5 min. T2w images were acquired with a 
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variable flip (VFL) angle turbo spin-echo sequence with TR/TE=4000/30ms and with the 

same resolution matrix and field of view of MPRAGE.

Perfusion-weighted MR images were acquired using continuous arterial spin labeling 

(cASL-MRI) sequence with single-shot echoplanar imaging (EPI), yielding sixteen 5 mm 

thick slices with 1.2 mm gaps and with an in-plane resolution of 3.75×3.75 mm2. EPI timing 

was TR/TE=5200/9 ms (Detre et al., 1992). For cASL, a 1.2 s long pulse with a magnetic 

field strength of B1=3.5×10−6 T was applied in the presence of a constant magnetic field 

gradient of 2 mT/m, followed by 1590 ms post-labeling delay before the signal was mapped 

using EPI. Post-labeling delay of 1590 ms was heuristically chosen to compensate for the 

prolonged arterial transit times in this age group (Detre and Alsop, 1999; Hunter et al., 

1989). Note, since the acquisition of ALS is slice selective, the post-labeling delay increases 

linearly for each slice by about 45 ms. The labeling slice was fixed at 80 mm distance 

inferior to the central imaging slice and anatomically located slightly below the circle of 

Willis. Forty control and 40 label scans were averaged to boost the signal-to-noise ratio 

resulting in a total scan time for cASL of about 7 min.

Cognitive assessment

The MMSE was administered to each subject to obtain a summary measure of global 

cognitive status (Folstein et al., 1975). To achieve a linear discrimination across the entire 

cognitive range, the MMSE (30 items) scores were nonlinearly transformed to an ability 

range, as described in Mungas and Reed (2000) and Teresi et al. (1995).

Integrated multimodality MR image processing

Structural MR image processing

The following key processing steps were performed on each brain image volume for 

estimations of cortical thickness. First, an expectation maximization segmentation (EMS) 

algorithm including correction for intensity inhomogeneity (Van Leemput et al., 1999a,b) 

was applied to the T1w image with supplementary T2w image input, to separate skull, scalp, 

extra-cranial tissue, cerebellum, and brain stem (at the level of the diencephalon) from the 

rest of brain volume. The remaining brain volume was voxel-wise classified into fractions of 

cerebral white matter (WM), cortical gray matter (GM), and sulcal cerebrospinal fluid 

(CSF). The resulting probabilistic tissue density images were visually assessed for 

performance quality of skull-stripping, bias field correction, and segmentation. If needed, 

the tissue density images were further manually corrected for inaccurate skull-stripping and 

tissue probabilities were re-calculated. Based on the tissue density images, each individual’s 

cortical surface was extracted using a cortical reconstruction method using an implicit 

surface evolution (CRUISE) technique (Han et al., 2004), which was shown to yield an 

accurate and topologically correct representation that lies at the geometric center of the 

cortical GM tissue (Tosun et al., 2006). Each resulting cortical surface was represented as a 

triangle mesh comprising of approximately 300,000 mesh nodes. Typical results from the 

cortical surface reconstruction are shown in Fig. 1.
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Cortical GM thickness estimate

Cortical thickness at each point in the cortical GM tissue mantle was defined as the sum of 

the distances from this point to the GM/WM and GM/CSF tissue boundaries following a 

flow field, which guarantees a one-to-one, symmetric, and continuous correspondence 

between the two tissue boundaries as illustrated in Fig. 2. A flow field with these properties 

was computed that followed the gradient of the solution of the Laplace’s equation with the 

cortical GM tissue mantle as its domain (Tosun et al., 2006; Yezzi and Prince, 2003). 

Cortical thickness was estimated in millimeters at 3-D image voxels on the GM tissue 

mantle. Estimated cortical thickness values were mapped onto the corresponding central 

cortical surface using trilinear interpolation at each mesh vertex. Cortical mappings of GM 

tissue thickness for a representative healthy elderly control and a representative AD patient 

are shown in Fig. 3.

Perfusion-weighted MR image processing

The key processing steps for quantification of rCBF from cASL-MRI were as follows: for 

each subject, the labeled and unlabeled (reference) images were first rigidly re-aligned and 

then the resulting mean labeled and reference images were subtracted from each other, 

yielding raw perfusion-weighted images. This was followed by the normalization of the raw 

perfusion-weighted images by the overall mean cASL image (i.e., average of mean labeled 

and mean reference images) as an approximation for arterial water density (Wen-Chau et al., 

2009), and for elimination of spurious signal contributions of very high intensity from 

arterial vessels. The intensity normalization also reduced the intensity inhomogeneity in EPI. 

The perfusion-weighted signal was then scaled to obtain a measure equivalent to rCBF, 

according to

where PWI is the intensity normalized perfusion-weighted image, λ is the brain–blood 

partition coefficient for water (i.e., 0.95 ml/g), R1app=(R1b+λR1t) is the apparent relaxation 

rate of the cASL signal derived from the relaxation in blood R1b and brain tissue R1t, and Td 

is the post-labeling delay time for each image slice. The equation is based on a single 

compartment model of cASL perfusion in which water exchange between capillaries and 

brain is instantaneous and homogeneous. Note, rCBF is expressed in institutional rather than 

in absolute units of ml/100 mg/min, because the transit time of the cASL bolus as well as T1 

relaxation, which both impact the magnitude of the cASL signal, could not be determined 

experimentally due to prohibitively long scan times. Therefore, rCBF values may be biased 

to the extent that transit time and T1 relaxation differ between patients and controls.

We are interested in the blood flow of cerebral GM, which is bounded by CSF and WM 

tissues. To correct for variations in the cASL signal due to variable coverage of GM, WM 

and CSF at each voxel, the rCBF image was corrected for the tissue partial volume effects, 

which requires intra-subject inter-modality spatial alignment establishing a voxel-by-voxel 
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anatomical correspondence between rCBF image space and structural MR image space 

where tissue densities (i.e., GM, WM, and CSF) were defined.

One of the key challenges in inter-modality spatial alignment is achieving an accurate 

anatomical match between EPI-based perfusion images, which suffer from nonlinear 

geometric distortion due to magnetic susceptibility variations, and structural MR images, 

which are less susceptible to geometric distortions. We used a fluid-flow warping based 

distortion correction algorithm, minimizing an image dissimilarity metric between EPI and 

structural MR image volumes. Specifically, both mean reference image and rCBF image 

were first mapped onto the T2w structural image space using a multi-resolution affine 

registration algorithm based on normalized mutual information. The co-registered mean 

reference image was then fluid-flow warped to the T2w image (Lorenzen et al., 2005). The 

resulting nonlinear deformation vector field was applied to the affine registered rCBF image. 

Finally, the T2w image was rigidly aligned to the T1w image for domains with defined 

tissue densities, cortical geometry, and thickness measures. The T2w to T1w rigid alignment 

transformation was then applied to the nonlinear geometric distortion corrected rCBF image, 

yielding an aligned image rCBFCORR.

To correct rCBF at each voxel for partial volume variations, two assumptions were made: 

(1) rCBFCORR is a weighted linear combination of perfusion from GM and WM (i.e., 

rCBFGM and rCBFWM, respectively), with the weighting coefficients expressing perfusion 

in terms of the corresponding tissue densities (i.e., βi for i=GM, WM); (2) the relationship 

between GM and WM perfusion is spatially constant (i.e., CBFGM=κ×CBFWM where κ=2.5 

was used from literature values (Kanetaka et al., 2004)). Accordingly, partial volume 

correction of rCBFCORR is given by .

Finally, for integrated multimodality data analysis, we generated cortical surface map of 

rCBFPVE by integrating the rCBFPVE values over a curvilinear line bounded by the GM 

tissue thickness at every surface mesh node. The curvilinear line was locally defined by the 

Laplace’s equations flow field, which provided the continuous correspondence between the 

GM/WM and GM/CSF tissue boundaries, as used for local cortical thickness estimations 

and illustrated in Fig. 2. Representative cortical maps of rCBFPVE for a healthy elderly 

control and an AD patient are shown in Fig. 3. Note that, the most inferior temporal lobe 

was not covered with arterial spin labeling MRI, because of technical limitations. Therefore, 

rCBF values in this region are set to zero and not included in the statistical analysis 

described in the next section.

Finally, to account for global variations in cerebral blood flow between and within subjects, 

each subject’s average rCBFPVE of the sensorimotor cortex region was obtained (Yakushev 

et al., 2009) and used as covariate in statistical tests of rCBF effects. The sensorimotor 

cortex is one of the brain regions known to be largely spared in AD and therefore it is 

thought that rCBF of this region is unaffected by AD. The sensorimotor cortex was 

manually labeled in the reference cortical surface and the label was then automatically 

inherited by the subject cortical surfaces based on the anatomical correspondence 

established by the cortical spatial normalization between subject’s cortical surface and 

reference cortical surface [cf. Cortical Spatial Normalization].
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Surface-based cortical data analysis

Cortical spatial normalization

An image analysis technique known as cortical spatial normalization was used to match 

anatomically homologous cortical features across subjects before performing cross-subject 

comparisons. Specifically, the central cortical surface model of each subject was spatially 

normalized with respect to the geometry of a representative reference brain using an 

automated surface-based cortical warping method (Tosun and Prince, 2008). Structural brain 

MRI scan from a healthy female of age 65 years old was selected as the representative 

reference cortical surface model in this study.

Briefly, the central cortical surfaces were automatically unfolded to a spherical shape using 

surface partial flattening and conformal mapping with a minimal area distortion constraint 

(Tosun et al., 2004). Of note, this was done for left and right hemispheres separately, 

yielding a map of each cortical hemisphere onto its own unit sphere. Left and right cortical 

hemispheres were automatically identified by defining a surface cut around the corpus 

callosum using the knowledge of the locations of the anterior and posterior commissures. 

Anatomical correspondence between mesh nodes on the subject’s and the reference brain’s 

hemispheres were established by calculating a geometry-driven optical flow field, which 

provided a dense representation of the displacement that was required to warp one cortex so 

that it best matched the other in the spherical coordinate system.

In particular, the algorithm first analyzed the geometry of each central cortical surface in a 

multi-scale framework. In multi-scale framework, multiple partially flattened surface 

representations were generated by gradually smoothing the central cortical surface up to pre-

defined folding complexity scales, measured by a global shape measure (i.e., surface 

bending energy) (Tosun et al., 2004). Curvature characteristics representing the type and 

size of the surface folding (i.e., gross anatomical landmarks) for each partially flattened 

surface representation were computed. An optical flow warping was formulated to match the 

curvature characteristics from all scales of the subject to the ones of the reference cortical 

surface (Tosun and Prince, 2008). Therefore, each subject’s cortical surface was spatially 

normalized with respect to the geometry of the representative reference brain. As a result, 

individual cortical morphometry measures from homologous surface locations were mapped 

onto the reference surface, enabling statistical analyses vertex-by-vertex across subjects.

Integrated multimodality MR image analysis

To reduce local variations across subjects due to misregistrations and also to increase the 

signal-to-noise ratio, a surface-based intrinsic isotropic diffusion kernel was applied to blur 

the images before performing surface-based statistical tests. Specifically, the estimated value 

of a cortical feature map (i.e., cortical thickness and rCBFPVE) at each surface mesh node 

was replaced by the convolution of the feature map of interest with a Gaussian kernel 

centered at this mesh node. The Gaussian kernel domain was defined on each cortical 

surface over geodesic neighborhoods of radius 10 mm and 8 mm for cortical thickness and 

rCBFPVE measures, respectively. A 5-to-4 ratio between cortical thickness and rCBFPVE 

smoothing kernels was estimated on the surface as described in Hagler et al. (2006) to 
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achieve comparable degrees of smoothing. The size of the smoothing kernel matched the 

size of the effect we sought while accounting for residual errors in the surface warping. For 

each subject brain, smoothed measure values at each surface mesh node were transferred 

onto the anatomically homologous location on the reference brain surface according to the 

surface correspondence established by the spatial normalization.

Classification of AD and CN

We assessed the contribution of imaging measures to the classification of AD and CN 

subjects within the GLM framework, using the logit function as link between the linear 

predictor variables (i.e., cortical thickness and rCBF) and diagnosis as binomial outcome 

variable (AD=1 versus CN=0). The logistic linear regression analysis allowed to determine 

the classification power of rCBFPVE and cortical thickness individually as well as when they 

were used together. In particular, logistic linear regression analysis was used to determine 

separately the classification power of (a) rCBFPVE alone, (b) cortical thickness alone, as 

well as (c) rCBFPVE, cortical thickness, and their interaction together for a correct 

classification of AD and controls. In detail, the logistic regression functions to test either 

rCBFPVE or cortical thickness alone for group classification were a) 

 and b) , 

respectively. Similarly, the logistic regression function to test their joint power and 

interaction was c) . Here 

 represents the probability of a correct diagnostic classification (AD or 

controls) given all individuals i in the study populations. The α’s, β’s, γ’s are the 

corresponding regression coefficients, P and T respectively are rCBFPVE and cortical 

thickness measurements, and the ε’s indicate randomerrors associated with each image 

modality.

To determine the contribution of each measure to the correct classification of AD and CN 

given the other measure(s), nested logistic regression models with and without the target 

measure (i.e., rCBFPVE, cortical thickness, or their interaction) were constructed and 

compared using likelihood ratio tests with a Chi-squared statistic (Hosmer and Lemeshow, 

2000). Note, the logistic regression functions were executed point-by-point on the reference 

cortical surface and the statistic was adjusted for multiple comparisons as described below.

To correct for multiple comparisons, we used permutation testing to assess the overall 

significance of diagnosis-feature map association. A null distribution for the diagnosis-

feature map association at each surface mesh node was constructed using 10,000 random 

permutations of the data. For each test, the subjects’ diagnosis was randomly permuted and 

point-wise t-tests were conducted to identify surface mesh nodes where the null distribution 

was rejected at the p=0.05 level. Significance maps were computed for both the real 

experiment with original diagnosis labels and for the permutations. Finally, the number of 

times the supra-threshold surface area exceeded the original effects surface area in the 

permutations was counted to yield an overall p-value for the significance of the map.
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The predicted classification of CN and AD subjects based on logistic linear regression at 

each surface point were used to fit Receiver Operating Characteristic (ROC) curves point by 

point on the brain surface. The area under the ROC curves (AUC), and the classification 

sensitivity and specificity at the level of maximum accuracy at each surface point were 

calculated. Average AUC, maximum accuracy, sensitivity, and specificity measures were 

calculated for statistically significant region of interests (sROIs). For structural imaging, 

sROIs were defined based on surface mesh nodes with significant cortical atrophy (i.e., 

thinner cortex) at the level p<0.01. In particular, the significance map from logistic 

regression using structural MRI alone as predictor was thresholded at the level p=0.01 on the 

reference cortical surface. The thresholded surface area was then parcellated to single 

connected regions. Regions with surface area smaller than 100 mm2 were ignored and the 

remaining regions were identified as sROIs of structural imaging. Each structural sROI was 

then mapped back to each subject’s cortical surface using the anatomical correspondence 

established by the cortical spatial normalization. Similarly, perfusion sROIs were identified 

based on the significance map of logistic regression using rCBFPVE alone as predictor.

Accounting for variance in the severity of cognitive impairment of AD

Our last aim was to determine which brain regions and MRI measures (cortical thinning, 

rCBF or both together) account for the variability in cognitive impairment, as measured by 

remapped MMSE scores, termed ability metrics. For this test, average cortical thickness in 

each structural sROI and average rCBFPVE in each perfusion sROI were computed for each 

subject. We then linearly regressed the ability metrics against the average cortical thickness 

and rCBFPVE measurements from each sROI.

In all regression analyses (i.e., logistic and generalized) described above, sex was included 

as a covariate to account for a potential bias toward different ratios of males and females 

within each diagnostic group. Age was included as a second covariate to account for age-

related variations in rCBFPVE and cortical thickness. Furthermore, in regression analyses 

with rCBFPVE as a predictor, sensorimotor cortex average rCBFPVE was included as an 

additional covariate. Group average values of the sensorimotor cortex mean rCBFPVE was 

7559.1± 1907.9 ml/100 mg/min in the CN group and 6449.4±1788.4 ml/100 mg/min in the 

AD group. The sensorimotor cortex mean rCBFPVE was significantly smaller in AD patients 

than in healthy elderly controls (Student’s t-test, p=0.01). All statistical computations were 

carried out using the statistical package R (http://www.r-project.org/).

Results

Cortical thinning

Maps of logistic regression coefficients using cortical thickness alone for the correct 

classification of CN and AD are shown in Fig. 4a. Widespread cortical thinning in the 

temporo-parietal, middle frontal, superior frontal, posterior cingulate, anterior cingulate, 

precuneus, cuneus, and entorhinal cortices bilaterally had the best classification power, as 

indicated in the corresponding significance map corrected at p=0.05 in Fig. 4b.
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Hypoperfusion

Maps of logistic regression coefficients using rCBFPVE alone for the correct classification of 

AD and CN are shown in Fig. 5. rCBFPVE reduction in the inferior parietal lobule, superior 

parietal lobule, superior temporal, middle frontal, precuneus, posterior cingulate, 

hippocampal gyrus bilaterally had the highest classification power, as indicated in the 

corresponding significance map illustrated in Fig. 5b. Qualitatively, spatial spread and 

diagnosis classification power of rCBFPVE reduction was more pronounced in the left than 

right cortical hemisphere.

Joint contribution of reduced rCBF and cortical thinning

Using cortical thinning and rCBF together for the correct classification of AD and CN 

showed that rCBF contributions were no longer significant compared to contributions from 

cortical thinning throughout the brain (Figs. 5a and 6a). The statistical significance of the 

dominance of cortical thinning over rCBF for the classification was tested by 60-fold boots 

trapping. As shown in Fig. 7, the dominance of cortical thinning over rCBF for the 

classification was significant in the right inferior parietal lobule, right superior temporal, 

right middle frontal, right precuneus, right posterior cingulate, left inferior parietal lobule, 

left superior parietal, left superior temporal, left precuneus, and left posterior cingulate 

cortices. rCBF, by contrast, never reached dominance over cortical thinning for the 

classification in any brain region. Results are shown in Figs. 4a and 6b.

Interaction between reduced rCBF and cortical thinning

The map of logistic regression coefficients using the interaction between regional rCBF and 

cortical thinning for the correct classification of AD and CN is depicted in Fig. 8, together 

with the corresponding significance map. A positive interaction (i.e., more rCBFPVE 

reduction and cortical thinning) was observed in the right superior temporal and right middle 

temporal cortices and a negative interaction (i.e., less rCBFPVE reduction and cortical 

thinning) in the left inferior parietal lobule were observed. However, only the positive 

interaction in the right superior temporal sulcus region reached statistical significance.

Classification accuracy

For each significant structural sROI and perfusion sROI, the average AUC, maximum 

accuracy and the corresponding sensitivity and specificity values from a classification using 

either cortical thickness and rCBFPVE alone or both together as predictors are reported in the 

Supplementary Table 1. For structural sROIs, the classification based on cortical thickness 

alone increased on average only marginally by less than 1% when rCBF and the interaction 

between rCBF and cortical thickness were added as predictor variables. For perfusion 

sROIs, by contrast, accuracy and specificity of the classification based on rCBF alone 

improved substantially by 9.4% and 15.2% respectively, when cortical thickness and the 

interaction between rCBF and cortical thickness were added as predictor variables, whereas 

sensitivity decreased marginally by 1.6%.
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Relationship between reduced rCBF, cortical thinning, and severity of cognitive 
impairment in AD

We further tested the extent to which cortical thinning and cortical rCBF explain separately 

or together severity of cognitive impairment in AD, as measured using MMSE scores. The 

R2 values of the linear regressions with the MRI measures as predictors and the “linearized” 

MMSE scores as outcome are listed in Table 2 by sROI. Also shown in Table 2 are the 

corresponding regression coefficients β and standard errors as well as the significance of the 

regressions. Average cortical thickness from each structural sROI explained between 17 and 

54% of the variability in severity of cognitive impairment in AD. Average cortical thickness 

of left temporal brain regions was the best predictor for MMSE variability. Taking all 

structural sROIs with significant contributions together as predictor explained 72% of the 

variability in MMSE.

In contrast to cortical thinning, average rCBFPVE from sROIs explained alone only between 

4 and 26% of the variability in MMSE. Taking all perfusion sROIs with significant 

contributions together explained 47% of the variability in MMSE. Reduced rCBF in left 

precuneus cortex was the best predictor for MMSE variability.

Taking cortical thickness of each structural sROI and rCBF of each perfusion sROI together 

in a cumulative regression model explained 75% of the variability in MMSE in AD with 

statistical significance of p<10−4. Based on pair-wise maximum likelihood tests between 

cumulative models with and without individual sROIs, we found the average cortical 

thickness of left entorhinal (likelihood ratio=12.0), right cuneus (likelihood ratio=7.1), and 

right precuneus (likelihood ratio=6.3) cortices were the best predictors for variability in 

MMSE in AD.

Discussion

The major findings are: (1) separate analyses of structural MRI and cASL-MRI data yielded 

the well-established pattern of cortical thinning and rCBF reduction in AD, consistent with 

previous neuroimaging studies, including PET and SPECT. (2) Using measurements from 

structural MRI and cASL-MRI jointly indicated that cortical thinning dominated the 

classification of AD and controls without significant diagnostic contributions from rCBF 

measurements. (3) Considering furthermore the relationship between reduced rCBF and 

cortical thinning revealed a positive interaction between the two measures in the right 

superior temporal sulcus. (4) Regional cortical thinning explained variability in MMSE in 

AD better than reduced rCBF.

We demonstrated that changes in cortical thickness in the temporal, parietal, frontal, 

cingulate, precuneus, cuneus, and entorhinal cortices are predictive for correct classifications 

of CN and AD, irrespective of rCBF variations. The pattern is congruent with the well-

established literature on structural changes in AD using voxel-based and surface-based 

cortical morphometry (Apostolova and Thompson, 2008; Calvini et al., 2009; Desikan et al., 

2008; Ezekiel et al., 2004; Frisoni et al., 2007; Hua et al., 2008a,b; Jack et al., 2004; Scahill 

et al., 2002; Thompson et al., 2003). Our first finding of substantial rCBF reduction in the 

parietal and temporal cortices in AD based on cASL-MRI is consistent with many PET and 
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SPECT neuroimaging studies reporting reduced cortical glucose metabolism and reduced 

rCBF, respectively in these regions (Callen et al., 2002; El Fakhri et al., 2003; Hanyu et al., 

1997; Herholz et al., 2002; Jagust et al., 1995; Messa et al., 1994). These findings support 

the effectiveness of the presented surface-based mapping for analysis of rCBF image data. 

Since the presented method of surface-based rCBF mapping offers technical advantages 

(Kubota et al., 2006), such as improved anatomical localization of the rCBF signal and 

intrinsic smoothing of local signal variations, compared to conventional voxel-based 

methods, the approach holds promise for improved assessment of cASL-MRI data in 

particular and other image modalities, including PET and SPECT, in general.

Our observation of rCBF deficits in frontal lobe regions in AD is noteworthy, because most 

functional imaging studies suggest deficits in temporo-parietal regions are more 

characteristic for AD (Devous, 2002). However, findings of frontal lobe involvement in AD 

are not uncommon (Bradley et al., 2002) and some SPECT studies even reported diminished 

rCBF in frontal lobe regions as a prominent feature of AD (Trollor et al., 2005). Because the 

pathological burden in frontal lobe regions in AD appears to be generally low across the 

spectrum of disease severity (Claus et al., 1994), it has been argued that the reductions in 

rCBF in frontal lobe regions represent a “disconnection” of these regions from their rich 

afferent inputs from parietal limbic regions. Additional studies will be necessary to 

determine the anatomical relationship between our rCBF finding in the frontal lobe and 

those in limbic regions. Another explanation for reduced rCBF in frontal lobe regions in AD 

is comorbidity of psychiatric conditions, especially depression (Hirono et al., 1998; Levy-

Cooperman et al., 2008). Four AD patients had a clinical depression diagnosis and 1 AD 

patient self-reported a history of depression; the number of subjects with depression in our 

study was too small to determine reliably whether rCBF reduction in the frontal lobe was 

primarily driven by the AD patients with depression.

Our second finding from a joint analysis of cortical thickness and rCBF implies that 

measures of cortical thinning largely govern the correct classification of AD and CN while 

contributions of rCBF measurement to the classification are no longer relevant once cortical 

thickness is taken into account. One interpretation of this result is that rCBF is diminished 

proportionately to brain tissue loss and therefore provides little additional information to 

structural alterations.

Although the current results do not show any significant added value of rCBF to 

measurements of cortical thinning for the classification of AD from controls, this should not 

be interpreted that rCBF measurements have no value in the study of AD. For example, 

rCBF measurements may demonstrate different correlations with various measures of 

cognitive, behavioral, or emotional functions in AD patients. rCBF may provide additional 

information concerning change in the brain in early stages of AD, such as MCI, or the 

effects of ApoE ε4, or in completely normal subjects who are at high risk for AD. For 

example, a pattern classification study based on joint evaluation of PET and structural 

imaging in MCI patients reported 98% diagnostic classification, an almost complete match 

with clinical accuracy, while 87% accuracy was achieved with MRI data alone and only a 

50% classification accuracy was obtained with PET data alone without the joint evaluation 

(Fan et al., 2008). Studies by Reiman et al. (2005) suggest that FDG PET detects changes in 
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the brains of ApoE ε4 subjects with little or minimal structural change. rCBF may detect 

similar changes to those detected by FDG PET. Furthermore, ASL-MRI studies recently 

reported elevated rCBF in presence of atrophy in MCI (Dai et al., 2009) and even in mild 

AD (Alsop et al., 2008).

Our third finding of a positive interaction between reduced rCBF and cortical thinning 

involved the right superior temporal sulcus, a major anatomical substrate for selective 

attention (Cabeza and Nyberg, 2000). Although the biological underpinning of a detrimental 

interaction between cortical thinning and rCBF reduction remains unclear, there are several 

possible interpretations for this finding. First, reduced rCBF could be the consequence of 

dendritic arborizations that further leads to massive cortical neurodegeneration and gray 

matter loss. A second possibility is that AD pathology includes a vascular component, 

possibly causing an rCBF reduction because of limited blood supply, which leads 

secondarily to cortical atrophy (Bidzan, 2005; Cacabelos et al., 2003; Claassen and Jansen, 

2006). Our study is the first, to our knowledge, to investigate synergistic effects of reduced 

rCBF and cortical thinning point-by-point from a joint analysis of structural and cASL-MRI 

data. However, the sequence of events that leads to reduced rCBF and cortical thinning and 

the implications for a better understanding of concurrent structural and physiological 

alterations in AD remains to be determined. Finally, we showed that compared to reduced 

rCBF, regional cortical thinning better explained the variability in dementia severity, as 

measured using MMSE. Average cortical thickness of left temporal brain region was the 

best predictor for MMSE variability in AD. However, the current analysis did not examine 

specific cognitive functions, only the global measure of MMSE. Nonetheless, the left 

temporal cortex plays a major role in speech, language, and communication skills (Cabeza 

and Nyberg, 2000) and impaired communicative functions in AD, partially related to poor 

memory functions, is well documented (Bayles, 1991). In contrast to cortical thinning, 

reduced rCBF of the left precuneus cortex was the best explanatory measure among all 

rCBF-sROIs for MMSE scores in AD. The precuneus is implicated in the recollection of 

past episodes (Cabeza and Nyberg, 2000) and cognitive decline in episodic memory is one 

of the earliest clinical syndromes of AD. Reduced rCBF in the left precuneus could therefore 

be an early marker of AD. From all sROIs of prominent cortical thinning and rCBF 

reductions that explained variability in MMSE in AD, the left entorhinal, right cuneus, and 

right precuneus cortices were the best predictors. These regions play a major role in 

procedural, working, and episodic memory as well as attention. The findings are consistent 

with the concept that cortical thinning in temporal and parietal regions represents AD 

pathology and therefore might be an imaging marker for prediction and progression of AD. 

However, additional analyses are warranted to elucidate the relationships between specific 

cognitive domains and cortical thinning or reduced rCBF.

Our joint analysis of structural and cASL-MRI data was based on general linear models 

(GLM). For GLM, it is well known that collinearity among the predictor variables can 

inflate the variance of parameter estimations. Minimizing the collinearity is not 

straightforward, especially in the context of multimodal imaging when relationships between 

variables can vary from region to region. In another study of joint structural and cASL-MRI 

analysis in AD (Hayasaka et al., 2006), which used non-parametric correlation tests, we 

showed that structural and rCBF alterations can be intrinsically concordant with each other 
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in some brain regions while they can be largely discordant in other regions. Hence, it is 

possible that the accuracy of parameter estimations in our study based on GLM could be 

regionally biased as a function of regionally variable collinearity between structural and 

rCBF measures. Several approaches of joint multimodal image analysis are emerging that 

are not based on GLM. For example, joint independent components analysis (jICA), which 

tries to combine all heterogeneous information from multimodal imaging in a huge input 

space, has recently been proposed for the identification of principle interactions across 

multimodal measurements (Calhoun et al., 2006). At the other end of the spectrum are naïve 

Bayesian methods, which aim breaking the multimodality problem into subclasses with 

posterior probabilities for each image modality and using the rules of probability to 

systematically combine the classes (Daunizeau et al., 2007). Additional studies are 

warranted to elucidate the effectiveness of the different concepts to jointly analyze 

multimodal imaging data.

Several other limitations of the study should be mentioned. First, it has been shown that 

rCBF measurements with cASL-MRI are sensitive to the setting of acquisition parameters 

due to age-related variations in physiological conditions. In particular, age was associated 

with changes in relaxation times of blood water (Cho et al., 1997) and prolonged arterial 

transit time was observed in AD patients (Hunter et al., 1989). Therefore, we cannot rule out 

that some variations in rCBF could simply be measurement artifacts that are unrelated to 

differences in brain function between AD patients and controls. In integrated multimodality 

MR image processing, the accuracy of the intra-subject inter-modality co-registration is 

limited since cASL-MRI is more prone to geometric distortion and imaging artifacts 

compared to structural MRI. The partial volume correction and anatomical localization in 

rCBF measure is also limited by the differences in point spread function of structural and 

cASL MRIs. In addition, cortical spatial normalization accuracy and consequently accurate 

partial volume correction might be compromised in AD as a result of averaging across 

dissimilar structures. Thus, changes in gyralmorphology may have biased rCBF 

measurements. Taken together, errors in image registration and localization may have 

diminished power to detect intrinsic relationships between structural and physiological 

alterations in AD at a local level. Another study limitation that should be mentioned is the 

cross-sectional design of the statistical analyses reported, which does not permit establishing 

causality between structural and perfusion alterations. Longitudinal studies will be necessary 

to further understand the synergistic effects of anatomical and perfusion changes in AD. A 

conceptual limitation relates to the selection of a surface-based analysis to study the cortical 

thickness and rCBF jointly. Although, surface-based registration provides generally better 

spatial normalization of cortical data, the price one pays is the restriction of the analysis to 

cortical regions. In contrast, a voxel-based approach provides insight into subcortical 

atrophy and blood flow, but generally at the expense of less accurate cortical registrations. 

Another conceptual limitation relates to the dense analysis of cortical data, which requires 

correction for multiple comparisons. Compared to a region-of-interest- based analysis, a 

point-by-point analysis followed by multiple comparison correction suffers greater loss of 

statistical power. From a clinical research point of view, another limitation is that all the 

analysis presented in this study relies on the clinical diagnosis of probable AD without 

confirmation by autopsy. A clinical diagnosis of AD, even at specialized centers has 
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typically an accuracy rate of about 90% or lower using the established consensus criteria for 

probable AD. Therefore, our classification results remain inconclusive to the extent that 

about 10% of the patients may have been misclassified. Finally, MMSE scores provide a 

global assessment of cognitive function but no detailed information about deficits in specific 

cognitive domains. Additional analyses involving comprehensive neurocognitive and 

neurobehavioral test data are necessary to better understand the extent to which joint brain 

structural and rCBF alterations explain the variability in cognitive disabilities in AD.

In summary, we presented an integrated multimodality image processing and analysis 

framework for joint assessments of regional variations in cortical thinning and rCBF that 

included a point-by-point cortical surface-based analysis and non-parametric tests by 

permutations. We found that cortical thinning largely dominated the classification of AD 

and controls and also better explained the variability in dementia severity than rCBF. 

However, we also found synergistic interactions between cortical thinning and rCBF 

reductions in some brain regions, supporting the value of joint analysis of structural and 

perfusion imaging data in AD and normal aging.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Geometric modeling of cerebral cortex: axial cross-section of (a) T1w MR image, (b) 

resulting cerebral volume, (c) resulting gray matter tissue segmentation, and (d) central 

cortical surface representation.
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Fig. 2. 
Schematic illustration of cortical thickness and rCBF computation. The Laplace’s equation 

was solved in the GM mantle to estimate the flow field lines, uniquely connecting GM/WM 

and GM/CSF tissue boundaries. Local cortical thickness was estimated as the length of the 

Laplace’s equation flow field lines and rCBF was integrated over the flow field lines to 

estimate rCBF.
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Fig. 3. 
Representative cortical thickness and rCBF maps of a 51 year old healthy elderly male with 

a MMSE score of 30 (top row) and a 52 year old male AD patient with a MMSE score of 27 

(bottom row). rCBF is corrected for tissue partial volume effects and also adjusted to mean 

rCBF of the sensory and motor cortex (SMC) to account for global variations in cerebral 

blood flow. Note further, the most inferior temporal lobe was not covered with arterial spin 

labeling MRI, because of technical limitations. Therefore, rCBF values in this region are set 

to zero.
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Fig. 4. 
Classification power of cortical thinning for the binomial classification of CN and AD 

patients; (a) logistic regression coefficients and (b) significance map corrected at p=0.05.
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Fig. 5. 
Classification power of reduced rCBFPVE for the classification of CN subjects and AD 

patients; (a) logistic regression coefficients and (b) significance map corrected at p=0.05.
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Fig. 6. 
(a) rCBFPVE and (b) cortical thickness coefficients from a logistic regression analysis using 

rCBFPVE, cortical thickness, and their interaction together for a correct classification of AD 

and control subjects.
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Fig. 7. 
Cortical regions where cortical thinning significantly dominated rCBF in power for a correct 

classification of AD and CN.
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Fig. 8. 
Maps of logistic regression coefficients (γ3) using the interaction between reduced rCBF and 

cortical thinning for a correct classification between AD and CN and the corresponding 

significance map.
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Table 1

Demographic features of study groups.

Healthy elderly controls Alzheimer’s disease patients

Age (mean±std years) 65.70±8.25 66.29±9.99

Sex (F/M) 21/17 9/15

MMSEa (mean±std) 29.44±0.86 21.76±5.80

a
Average MMSE of AD patients was significantly smaller than average MMSE of healthy elderly controls (Student’s t-test, p<10−9). There was 

no significant group difference in distribution of age (Student’s t-test, p=0.8) or gender (Fisher’s exact test, p=0.2).
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Table 2

Explanatory power of regional cortical thinning or rCBFPVE for variability in MMSE in AD. Only regions of 

interest (sROI) with significant contributions are listed.

R2 β Std error p-value

Structural sROI

Left temporal 0.542 1.793 0.24 <10−6

Left parietal 0.481 1.627 0.25 <10−6

Left cingulate 0.467 1.982 0.31 <10−6

Right parietal 0.453 1.472 0.23 <10−6

Right temporal 0.452 1.361 0.22 <10−6

Left precuneus 0.449 1.413 0.23 <10−6

Right precuneus 0.442 1.290 0.22 <10−6

Right cingulate 0.395 1.782 0.32 <10−5

Right frontal 0.372 2.390 0.46 <10−4

Left frontal 0.365 2.847 0.55 <10−4

Left entorhinal 0.296 0.643 0.15 <10−4

Right entorhinal 0.286 0.959 0.23 <10−4

Left cuneus 0.260 1.097 0.28 <10−3

Right cuneus 0.174 0.771 0.26 0.005

All structural sROIs 0.718 <10−5

Perfusion sROI

Left precuneus 0.259 3.415 0.87 <10−3

Right precuneus 0.234 3.162 0.87 <10−3

Right parietal 0.196 2.411 0.75 0.002

Right temporal 0.185 3.812 1.24 0.003

Left parietal 0.176 1.902 0.64 0.005

Left temporal 0.170 3.318 1.15 0.006

Left posterior cingulate 0.096 1.683 0.91 0.068

Right posterior cingulate 0.071 1.222 0.86 0.162

Left parahippocampal gyrus 0.062 0.733 0.60 0.225

Right frontal 0.045 0.368 0.50 0.463

Right parahippocampal gyrus 0.042 0.331 0.53 0.535

Left frontal 0.040 0.237 0.43 0.580

All perfusion sROIs 0.468 0.011

Cumulative 0.752 <10−4
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