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Abstract
Information mapping using pattern classifiers has become increasingly popular in recent years,
although without a clear consensus on which classifier(s) ought to be used or how results should
be tested. This paper addresses each of these questions, both analytically and through comparative
analyses on five empirical datasets. We also describe how information maps in multiple class
situations can provide information concerning the content of neural representations. Finally, we
introduce a publically available software toolbox designed specifically for information mapping.

1 Introduction
The traditional analysis of fMRI data using a General Linear Model [8] (GLM) approach
aims to find voxels whose activation time series is well reconstructed by the combination of
several regressor time series. These time series reflect alternations between conditions of
interest – periods when a task is being performed versus rest periods, for instance – or more
complicated contrasts between those conditions, as well as nuisance factors such as volume
registration parameters. This analysis is generally performed on a dataset that has undergone
both spatial normalization to a reference brain and spatial smoothing. Although the analysis
is performed for each voxel separately, the result is usually a set of clusters of voxels with
similar time series that reflect a contrast of interest (and are deemed to be active with respect
to that contrast). The reference brain is used to reduce that set of clusters to a list of cluster
centroids and their anatomical location, together with a measure of statistical significance of
their activation.

Over the last few years, an alternative approach to neuroimaging analysis has emerged,
which uses machine learning classifiers (see [23] [16] [28] for reviews of a large part of this
work). The analysis of fMRI data with classifiers differs from the traditional GLM-based
analysis by reversing the question asked. Instead of finding voxels whose time series is
explained by a contrast of interest, it asks whether it is possible to predict the value of a
regressor based on the pattern of activation over a set of voxels. Although it is possible to
consider the question of which anatomical locations are used by a classifier, the type of
conclusion usually drawn is about whether information about the variable of interest is
present within the overall volume.

The GLM approach is justified by two key assumptions. The first is that the information
present in the data is described by the regressors provided, in isolation or combined. Beyond
that, it is assumed that the voxels in a cluster become active as a whole and carry the same
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signal; spatial smoothing will thus not destroy information. In [19] the authors question
these assumptions, in particular the notions that information is only present in voxels that
strongly reflect a regressor or that adjacent voxels affected by the task necessarily have
similar time courses. They introduce the idea of information mapping using a “searchlight”
statistic; this combines signal from all voxels in a small spatial region without averaging
them, by considering their covariance structure. Intuitively, this means shifting from asking
the question of whether a voxel does something different in two conditions – by being active
in one and inactive in the other, say – to asking whether the pattern of activity in each region
carries enough information to distinguish between the two conditions the subject is in. The
statistic introduced would still detect voxels with very clear alternations between conditions,
but also detect weaker alternations occurring together in several voxels in the region. The
authors argue that their use of this statistic is a way of boosting sensitivity relative to
traditional univariate testing.

The idea of combining information mapping and decoding by training classifiers in small
voxel neighbourhoods is natural and has been used in several papers for two main purposes
(see [25] for a recent overview). The first is information mapping, by producing an image
where each voxel is assigned the accuracy of a classifier trained using it and its searchlight
neighbours. The second is voxel selection, using those accuracy values as scores with which
to rank voxels; we will not be concerned with this purpose, but see [30] for an overview of
this and other approaches to selecting voxels.

One should note that there are other ways to localize information through the use of
classifiers. This generally entails dissecting a trained classifier using a large number of
voxels to identify those that contribute the most to its classification performance, an
approach known as sensitivity analysis or importance mapping (see [13] or [17] for
examples of use). A different way of localizing information is representational similarity
analysis [20], which considers the similarity relationships between the activation patterns for
different stimuli (or stimulus classes), and how these relationships change across the brain.
This is related to nearest-neighbour classifiers, which also resort to similarity relationships
or distance measures between stimuli and whose performance can be examined by
considering those relationships and seeing which stimuli are distinguishable.

Regardless of purpose, there are two important methodological questions in the production
of information maps with classifiers: which classifier to use and how to test whether
information is present in a given searchlight. This paper seeks to address both of these
questions, analytically if possible or resorting to empirical evidence obtained by using many
different classifiers in five datasets with varying numbers of classes.

In choosing among classifiers, an important consideration is the fact that different classifiers
have different inductive biases, i.e. when learning from a training set each classifier assumes
a particular relationship between voxels and the variable being predicted, which is then
taken to hold for future predictions. If a classifier cannot decode information from a
particular neighbourhood it is not necessarily the case that that information is not present; it
could also mean that the relationship between the voxels is not one the classifier can capture,
given its inductive bias. We will make these notions more precise in Section 4, by giving
examples of relationships various types of classifier can capture.

To give one example of why this choice matters, though, consider the two-class problem
accuracy maps produced with two different classifiers (each voxel shows the accuracy of a
classifier trained and tested on the searchlight centered at that voxel) in Figure 1.

Listed with each slice is the number of voxels where accuracy is deemed to be significantly
different from chance, after testing each map in the same way and thresholding for the same
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false discovery rate. Even though the maps are similar in some locations, the numbers of
such voxels are rather different between the two classifiers; the less successful classifier
happens to be one of the most popular choices (when default parameters are used, as is often
the case in the literature).

Turning to the question of how to test for statistical significance, there are two different
approaches to testing: analytical p-values, where the null hypothesis is that a searchlight
classifier performs at chance, and permutation test p-values, where the null hypothesis is that
examples in various classes came from the same distribution. We will describe the rationales
for using one or the other approach in Section 2.3 and compare them empirically in Section
3.3.

Beyond addressing the questions above, we will introduce various approaches for
identifying different types of information present in a dataset with more than two classes.
This is necessary because the more classes there are the easier it is for a voxel to be deemed
significant, even if it only distinguishes a few of those classes from others, as we will show
happens in Section 4.3.

Finally we introduce a publically available MATLAB toolbox for information mapping,
which implements efficient versions of all the classifiers used and evaluation procedures
described in the text.

2 Methods
2.1 Terminology

For the datasets used in this paper and described in Section 3.2, an example is a vector of
feature values, which correspond to the voxels in some part of a 3D image, e.g. those
containing cortex, and which can be assigned a class label, such as which of two classes,
tools or buildings, a subject was seeing at the time (Figure 2, left). In these datasets that
image is generally the average of several images around the peak of the haemodynamic
response in a trial or most of the images in a block. There are as many examples as trials or
blocks and they divide naturally into groups, which can be the various runs or epochs in an
experiments (Figure 2, right).

A classifier is a mechanism for predicting the label of an example. It is learned from a
training set, consisting of examples and their labels, and evaluated on a test set, where it
predicts the labels for other examples, as shown on Figure 3. The classifier accuracy on a
given test set is the fraction of examples for which it predicted the correct label. A good
basic introduction to these and other machine learning concepts is [22] (and [30] and [25], in
the specific context of using classifiers with fMRI data)

Whereas one could divide any set of examples into training and test sets, some form of
cross-validation is typically used in practice. This consists of making that division
repeatedly (e.g. half of the examples are training, half are testing, then this is reversed),
training and testing a classifier for each division and averaging the accuracy scores across
divisions. This allows every example to be used once for testing, ensuring a better
estimation of the classifier’s true accuracy, as described in Section 2.3. In most of the
experiments in this paper we will use leave-one-example-group-out cross-validation (see
Figure 2, one group is test, all others are train) as that will maximize the amount of data
available for training.

The searchlights described in [20] had a spherical shape, with various possible radii. In this
paper we will focus on the simplest searchlight case: a 3 × 3 × 3-voxel cube containing a
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voxel and its adjacent neighbours. A searchlight example will be the subset of an example
containing solely the values of voxels in that searchlight, with the same label as that of the
entire image.

2.2 Classifiers
We will train three broad types of searchlight classifier (see [14] for extensive descriptions
of all of them):

Generative Model—These classifiers rely on modelling the joint distribution of activation
of the voxels in each searchlight and using it with Bayes’ Rule to make a prediction about
the class of an example. In more detail, the classifier learns the distribution of an example x
belonging to each of k classes, P(x|classk), the class conditional distribution. Given a new
example xtest, Bayes’ rule yields the probability of each class

and one can classify by picking the class k for which this is highest. One could assume P(x|
classk) to belong to any family distribution, or even estimate it non-parametrically; the most
common choice – and the one we will use – is to assume that distribution is a multivariate
gaussian [14]. In that situation, what is learned for each class is a vector µ ̂k of mean values
taken by the voxels in examples of class k and also their covariance matrix Σ̂k. Even then,
there are several possibilities:

• single voxel gaussian classifier (same as a t-test, for comparison)

• GNB (“gaussian naive bayes”, diagonal covariance matrix, shared between classes)

• LDA (“linear discriminant analysis”, full covariance matrix, shared between
classes)

• QDA (“quadratic discriminant analysis”, full covariance matrix, different for each
class)

Figure 14 provides a depiction of what these assumptions mean geometrically. There are
also various options for estimating the covariance matrix in LDA or QDA, of which we will
consider two. The first is the usual maximum likelihood estimator; this may yield a matrix
that is not invertible – this inversion is a step that both LDA and QDA use – if there are
more variables than data points and sometimes even when there are more. The classifiers are
often modified to add a zero matrix with a very small nonzero value in the diagonal, which
will allow the matrix inversion to take place. The second is to use a shrinkage estimator,
which combines diagonal and full covariance matrix estimates using the data to decide on
the extent of the trade-off [31]). This type of estimator is often used to address the problem
the first estimate can suffer from; in the experiments described later we will use both kinds
of estimate.

Discriminative Model—These classifiers model the decision of which class to predict
directly from the voxel activation values, rather than modelling the joint voxel activation
P(xtest|classk) and then using Bayes’ Rule. This model could be probabilistic in nature, in
which case P(classk|x) is what is being learned, or instead a function f mapping x to the
prediction, i.e. ŷ = f(x). Logistic regression is an example of the former and support vector
machines (SVMs) of the latter. For example, a linear classifier in a two class situation would
predict by considering a linear combination of voxels
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with each voxel v weighted by wv and w0 being a bias term.

Given the close correspondence between logistic regression and some of the gaussian
generative models described above[26], and the fact that SVMs have been frequently used
for information mapping and voxel selection, the analyses that follow focus on the latter.

The decision function that is learned by a SVM is a linear combination of feature values in a
particular feature space. What changes between the different types of SVM is the
relationship between that feature space and the original features (voxels, in our case); a
given choice of kernel function will determine an (implicit) feature space in which the
decision takes place. For a linear kernel, this is the same as the original space, hence one
would be learning a linear discriminant on voxels. For a quadratic kernel the feature space
also contains features that correspond to the product of the activation of every pair of voxels,
something analogous to interaction terms in a linear regression model. For kernels such as
radial basis function (RBF) or sigmoid, the implicit feature space is more complicated than
we have space to discuss. Suffice to say that, for anything other than a linear kernel, the
linear decision function in the implicit feature space corresponds to a nonlinear decision in
the original space.

When applying SVMs to classification problems involving more than two classes the
classification problem generally has to be converted into several binary problems, each of
each yields one SVM classifier. These classifiers are each applied to a test example and their
outputs combined in order to make a prediction. The method implemented in the SVM
software package we will use [3] is an all versus all encoding, in which one classifier is
trained for each of all possible binary problems involving a pair of classes. A test example
label is predicted by applying each binary classifier, recording a ‘vote’ for the winning class
for that pair and, after doing this for all pairs, picking the class with the most votes. There
are alternative schemes for doing this, though they are not directly supported by the SVM
software we used. For thorough descriptions and comparisons of those methods, see [6] and
[1].

Nearest-neighbour—This is the simplest type of classifier, in that no parameters are
learned. Classification of a test example xtest is done by reference to neighbours, other
examples in the training set that are closest to it by some measure (e.g. euclidean distance or
correlation similarity of the voxel vectors) and using their respective labels as votes in a
prediction decision. There are two different choices to make here. The first is what similarity
or distance measure to use. This decision is combined with the need to downplay the
influence of irrelevant or noisy voxels in the measure computation [22]. We will consider
correlation similarity, as these is commonly used with fMRI data (a trend started in [15])
and the number of voxels per searchlight is small. The second choice has to do with what
neigbours are considered:

• nearest neighbour - this will assign the label y of example x in the training set that
is closest to xtest. It’s conceptually simple but also susceptible to noise, as it only
takes one example of the wrong class to be close to yield an incorrect prediction.

• nearest class mean - this is a variant of nearest neighbour where what is considered
is distance to the mean activation vectors for examples of each class.
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• k-nearest-neighbours - instead of considering just the nearest neighbour, consider
an odd number of neighbours and pick the class to which most neighbours belong.

2.3 Statistical testing of accuracy
The person training a classifier on fMRI data is concerned with establishing that a variable
of interest can be decoded from it, i.e. a classifier can be trained whose true accuracy is
better than that of a classifier deciding at random. Formally, the true accuracy is the
probability that the classifier will correctly label a new example drawn from the same
distribution that the training examples came from; it can also be viewed as the accuracy one
would get if one had an infinite number of examples in the test set. The accuracy on the test
set is thus an estimate of the true accuracy of the classifier trained. It is an unbiased estimate
because the test examples have not been seen by the classifier during training. How precise
an estimate it is depends on the size of the test set; the fewer examples used the greater the
variability of the estimator, as we shall see below. One could take this further and consider
that the training set is also drawn from an example distribution, if what was desired was a
result about all classifiers trained on a dataset of a given size rather than the specific training
data we have; this is beyond the scope of this paper, but see [7] for a discussion of this topic.

A statistically significant classification result is one where we can reject the null hypothesis
that there is no information about the variable of interest in the data. Establishing statistical
significance is generally done by determining how improbable the observed classification
accuracy would be were the null hypothesis to be true. This p-value can be obtained in two
ways: through an analytical model that provides a distribution of accuracy under the null
hypothesis and through a permutation test. The next two sections describe each of these
approaches in more detail as well as guidelines and caveats of their use, and they are
compared across datasets in Section 3.3.

2.3.1 Analytical test—Suppose we have a problem in which the classifier predict one of
two classes that are equally frequent in the data, and that the classifier succeeds in correctly
classifying k of the n test examples it is given. To determine whether this experimentally
observed accuracy is statistically significant we must determine how likely it is that we
would observe at least k successes out of n test trials if the classifier were in fact operating at
chance (i.e., if the null hypothesis were satisfied). If this were the case, and if the test
examples were drawn independently, then we would expect an accuracy of k/n = 0.50 on
average; the actual observed accuracy might vary above or below 0.5 due to variations in the
sample of test data we happen to be using. It’s to ward off against this that we need to
determine the probability that this experimentally observed accuracy might vary to a value at
least as high as k/n even when the null hypothesis is satisfied. Note that the observed
accuracy might also reach values substantially below 0.5 under the null hypothesis, but we
are not interested in the chance of coincidental deviations below the expected 0.5 because
we would not try to claim our classifier was succeeding in that case.

The probability of obtaining a given classification result under the null hypothesis can be
viewed as the outcome of tossing a coin for each of the test examples to be classified, with
the coin’s bias reflecting the probability of labelling an example correctly by chance (50% in
a two class problem, 25% in a four class problem, etc). More formally, each coin toss can be
modelled as a Bernoulli trial with probability q of success. The probability of achieving k
successes out of n independent trials is given by the binomial distribution. If we define k to
be the number of correctly labeled test set examples out of n, the p-value under the null
hypothesis is simply P(X ≥ k), where X is a random variable with a binomial distribution
with n trials and probability of success 0.5 (two class), 0.25 (four class), etc. If the p-value is
below a certain threshold (typically 0.05 or 0.01) the result will be declared significant.
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Figure 4 shows what this distribution looks like for n ranging from 10 to 200 with q = 0.5,
over the range of possible accuracies. As n increases the distribution becomes narrower and
lower values of accuracy above 0.5 would be declared significant. This is indicated by the
position of the vertical red line in each plot, which is the accuracy value that would be
significant at the 0.01 level.

Note also that, thus far, we have been talking about a single classifier being applied to a test
set. The accuracy estimate obtained through cross-validation is a combination of results
produced by classifiers trained on mostly overlapping training sets, hence we will treat that
estimate as if it came from a single classifier, following common practice [18], which then
allows us to test it in exactly the same way.

2.3.2 Permutation test—The analytical test described above is based on a null hypothesis
about classifier performance in the face of there being no information about the class label in
the data. One can, instead, have a null hypothesis about that absence of information by using
a permutation test. Assuming there is no class information in the data, the labels can be
permuted without altering the expected accuracy (chance level). In practice, this entails
shuffling the labels within each training set, training a classifier and applying it to the test
set. The procedure is then repeated many times, with a different shuffling each time. Over
many repetitions, this yields a sample of accuracy results under the null hypothesis.

The p-value in this case is the fraction of the sample that is greater than or equal to the
accuracy actually observed when using the correct labels. Note, also, that the true labeling is
one of the possible labelings and should be included; a consequence of this is is that the

smallest possible p-value is , where P is the number of permutations tried [27]. A good
review of permutation tests in classification (with one functional neuroimaging application)
is [10].

2.3.3 Test choice and caveats
Multiple comparisons: When extending these points to information mapping, the first issue
that arises, regardless of which test is used, is that the procedures described are for testing a
single classification result. When computing accuracy over the searchlight centered around
each voxel in the brain, we would have as many results as voxels and thus a multiple
comparison correction would be required. Given that searchlights overlap, this will ensure
correlation between test results and thus should be taken into account when selecting a
correction criterion. In this paper we will use False Discovery Rate [9] (FDR), which
controls the average fraction of false positives out of the set of all positive test results. We
chose it both because it caters for the case where the test results can be correlated and also
because we only expect a small fraction of the total number of voxels to be deemed
informative.

Conservatism of permutation tests: The binomial test is exact if the assumption about test
example independence holds and hence preferrable to the permutation test if considering
computational expense; a large number of permutations may be required to get possible p-
values in a range that would survive multiple comparison correction. By virtue of inclusion
of the correct labelling along all other shufflings of labels, the permutation test will be
conservative.

In order to ascertain whether this is an issue in practice, with the numbers of examples or
permutations typically used, we generated various datasets containing independent, normally
distributed noise examples in which each voxel was generated independently, structured as a
3D volume. We then trained/tested Gaussian Naive Bayes searchlight classifiers to produce
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analytical p-values, and ran a permutation test using them as well. Figure 5 shows the results
of this, by contrasting analytical and permutation test p-values, at various numbers of
permutations and voxels. As expected, the lower permutation test p-values get smaller as the
number of permutations increases, getting closer to the lower analytical p-values; the
distribution of points still lies above the diagonal line regardless of the number of
permutations. The effect of increasing the number of permutations is to narrow the spread of
permutation p-values. This makes sense if we consider that each permutation p-value is an
estimate of the value we would get with an infinite number of test examples, with a
distribution centered around this value where the variance depends on the number of
permutations [11].

Example independence assumption: If the assumption of independence does not hold the
binomial test would be assuming the count of correctly labeled examples came from a larger
number of trials than was effectively the case, thus yielding lower p-values than it otherwise
should. To see why this is the case, consider a situation where trials are well separated –
more than 30 seconds, say – and the two consecutive images at the peak of the trial response
are taken as examples. Given the properties of the hemodynamic response [21], the values of
any voxel would be similar between these two examples. Let’s assume, further, that we are
training a classifier on the examples from all other trials and testing on those from this one.
Because of the similarity between the two examples, it is likely that the label predicted for
one would also be the label predicted for the other; the prediction would hence be correct for
both or wrong for both. In this situation, the number of independent decisions would be

roughly  of the number of test examples, and thus the correct n to use in the binomial
distribution for the analytical p-value. The accuracy estimate would still be unbiased but its
true variance would be higher than what one would expect. This is a particularly extreme
illustration of example dependence, but it can happen in more subtle ways. So how does one
determine whether it is happening and, if so, how it should be addressed?

Consider a situation where there is one event per trial, and an example is the image collected
at the peak of the BOLD response in that trial. If trials are very clearly separated, i.e. the
BOLD response to one trial does not overlap with that of the subsequent trial, then it is
reasonable to assume the corresponding examples are independent. The duration of the
BOLD response is a good starting point for considering the dependence between
consecutive examples. Following [4] (Figure 2), the BOLD response in primary visual
cortex to a 1 second flashing checkerboard stimulus lasts roughly 12 seconds; we will not be
overly concerned with the weaker fluctuations beyond that, which might extend a few
seconds longer. In [2], similar stimuli (checkerboards interleaved with vertical gray bars)
with durations of 3, 6, 12 and 24 seconds lead to responses lasting roughtly 12, 16, 24 and
36 seconds. Given that the BOLD response is stronger in visual cortex than in most other
locations, we take these as reasonable upper bounds on how long a response would last
given those stimulus durations, assuming it would be less intense and perhaps a bit shorter
elsewhere.

We could also approach this issue from a statistical angle and say that consecutive examples
x and y are independent if p(y|x) = p(y) (assuming examples are images and thus high-
dimensional vectors where voxels are the vector entries). Estimating these probabilities and
whether they are close is not practical, as we would need to estimate the joint distribution of
activity of all voxels xi in an example x. If we are willing to assume voxels are independent
it would be feasible, though it would still require specifying a distribution for the activity of
each voxel.
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A more practical approach would be to invert the implication between independence and
lack of correlation and look for correlation as an indicator of lack of independence. To do
this we need to examine the autocorrelation of each voxel at lag 1 and higher, with the lag
corresponding to how many preceeding examples could influence each example. In the lag 1
case, this is simply the correlation between voxels xi and yi over all pairs of consecutive
examples x and y. The first way of using this is simply to plot a histogram of the correlation
values for all voxels at a given lag and see if deviates substantially from a symmetric
distribution with a median around 0; if it does, it means that most voxels in an example
depend to some extent on the previous example. If one wanted to be more stringent, the
second way of using this would be to convert the correlation ri in each voxel xi into a z

score, using the Fisher transformation  (where n is the number of
values used to compute the correlation, i.e. the number of examples minus the lag). Using
the standard normal distribution, the z score for each voxel can be converted into a p-value
under the null hypothesis that the true correlation is 0 and the entire set can be thresholded
(using FDR, for instance). This latter approach is more useful if one wants to look at the
time series of voxels that exhibit dependence, to see if responses to different trials overlap
enough that the images used to create an example in a trial are still influenced by those used
to create the example in the preceeding one. We will illustrate the use of autocorrelation for
some of our datasets later, in Section 3.3.

What if it is known that there is a dependence that cannot be eliminated, e.g. a fast event-
related design where the responses to trials are certainly overlapping? In that particular
situation, one could resort to deconvolution to obtain images of beta coefficients (one per
trial, or one per condition, keeping in mind that deconvolution would have to be performed
separately for each cross-validation leave-one-out unit, e.g. a run, otherwise there would be
circularity [20]). A different possibility is to use a permutation test to obtain p-values, as the
permutation distribution incorporates the dependence between examples in the test set, i.e.
the variance of the result is higher than it would be if the examples were independent. To see
if this is warranted, one could simply compute the p-values both analytically and using a
permutation test for a classifier where this can be done quickly (e.g. the GNB provided in
the toolbox we will describe in Section 4.5), and see if the significance results are very
different. If so, it would be worthwhile to run a permutation test for whatever classifier
produced the best results. Yet another possibility is the following heuristic: reasoning either
from BOLD response first principles or the autocorrelation statistics described above,
determine how many preceeding examples an example is likely correlated with and divide
the number of test examples n by that; in the example given above, n was divided by 2.
While this will almost certainly be conservative, as the dependent examples will likely not
be perfectly correlated, it’s a simple way of checking whether the significance results are
robust in face of the dependence and that may all that is required.

Circularity: A second reason for using permutation tests arises in a situation where there is
a suspicion that a classification procedure is optimistic due to circularity; this is situation
where data that is used for testing also influences the training of the classifier or selection of
the features it sees (see [20] for an excellent description of many possible scenarios where
this could happen). Another subtle way of biasing results is to report the highest
classification result out of several, testing it as if it were the only one. Even if all classifiers
being compared performed at chance, it would be possible for one of them to show better
performance than the others. In such situations, running a permutation test of the entire
procedure (e.g. train all the classifiers from which you will pick the best and then do so)
would yield results with the same positive bias and thus would make it harder for the result
to be declared significant erroneously (see the second chapter of [29] for a lengthy
discussion and experiments on this topic).
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Exchangeability: If combining permutation tests with cross-validation, one needs to keep
track of the fold structure when permuting example labels, as it is possible to have training
sets where a given class is not represented and others where it is overrepresented. The effect
of this would be to artificially lower performance, as the classifier would have to deal not
just with the labels having been permuted but also with an imbalance the real classifier did
not face. A practical solution is to do a stratified test, and permute within the partitions of the
dataset used for cross-validation, e.g. runs or epochs.

In general, one should be satisfied that the examples in set that can be permuted are
exchangeable under the permutation distribution. Intuitively, this means that any order of
examples could have arisen out of the process generating them; if using successive TRs as
examples, for instance, this would certainly not be the case. To see how this could be a
problem, consider a situation where there are 10 examples which are consecutive TRs, all
with the same label. The labels are permuted and, in this permutation, 5 of those examples
have one class label and 5 have another. When the classifier is trained on these examples, it
will see very similar examples with opposite labels. This could produce a worse classifier
than what would be possible if training with independent examples labelled at random,
where chance could lead to some coherent structure in voxel activation being identified over
examples with the same label. This would, in turn, lead to the results under the permutation
distribution being negatively biased and p-values thus lower than they should be. A way of
addressing this would be to ensure that the permutation distribution assigned the same label
to all 10 examples (which could be different for different permutations, of course).

A second situation where exchangeability could be violated is if examples from one part of
the dataset were somewhat different from examples from another part, regardless of label.
An example of this would be data from various runs having a different characteristic, such
as mean activation or variability in each voxel, or coming from multiple sessions. Whereas
there is no obstacle to cross-validating while mixing from both parts, it is common to simply
equate the parts with the folds in cross-validation in order not to have to worry about
exchangeability. For a discussion of the exchangeability property see [27] in the imaging
context or [11] in general.

Equating cross-validation folds with example groups is also often done to make sure that the
examples in the training and test sets are definitely well separated. Note, though, that
differences between folds could violate a more important assumption than exchangeability;
that the training and test examples come from the same distribution. This is the basis for
claims about a classifier being able to generalize to unseen data, and one of the things to
consider examining in face of poor results.

3 Experiments comparing accuracy maps
The main purpose of the experiments in this section is to understand which factors
determine whether a classifier will be better than another for the purpose of identifying
informative voxel searchlights. In order to test this we will produce classifier maps for
several datasets, with varying numbers of classes and examples per class. Beyond this, we
will address the question of whether the analytical test of accuracy described in Section 2.3
is more powerful than a permutation test, at various numbers of permutations.

3.1 Classifiers
The basic details about all the various types of classifier considered are provided in Section
2.2, the following is a key for the designations used in all figures (all classifiers operate on
searchlights unless otherwise mentioned):

• voxelGNB - single voxel gaussian naive bayes
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• voxelGNB_smooth - single voxel gaussian naive bayes over spatially smoothed
data (using a 3 × 3 × 3 uniform smoothing box around each voxel)

• GNB - gaussian naive bayes

• LDA - linear discriminant analysis (using the trick of adding a small value to the
diagonal of the covariance matrix)

• LDAshrinkage - linear discriminant analysis (with a shrinkage estimator for the
covariance matrix)

• QDAshrinkage - quadratic discriminant analysis (with a shrinkage estimator for the
covariance matrix)

• SVMlinear - linear support vector machine (LIBSVM [3] implementation, default
parameter C = 1)

• SVMlinearxv - same as SVMlinear, training set cross-validation to set C parameter

• SVMquadratic - quadratic support vector machine (LIBSVM implementation,
default parameters)

• SVMrbf - RBF kernel support vector machine (LIBSVM implementation, default

parameters C = 1 and )

• nearest_neighbour - nearest neighbour classifier using correlation over all voxels in
the searchlight as the similarity measure

• nearest_mean - same as nearest neighbour, but computing distance to all class mean
patterns

3.2 Datasets
We considered five different datasets 1 with similar tasks but rather different numbers of
classes and examples. Datasets D1, D2, D4 and D5 shared the same experimental paradigm.
In each trial, a subject sees a word or picture for a given concept for three seconds, during
which she needs to consider its properties, visualize its use, etc. This is followed by eight
seconds of blank screen, until the beginning of the following trial. In datasets D1 and D2 the
stimuli (words/pictures) belong to one of two categories, tools or dwelling types, and those
are the two classes a classifier will have to distinguish. Dataset D4 is similar to D2 but we
will consider ten classes (which exemplars of tools or dwellings) for classification purposes.
D5 contains stimuli belonging to twelve categories and is described in more detail in [24].
Dataset D3 has a block design, with all the photo stimuli in one block belonging to the same
category, one of eight possibilities; for more details see [15].

In order to create examples for classification in datasets D1, D2, D4 and D5, the images
around the haemodynamic peak of each trial were averaged into a single one, which
becomes the example. The label of that example has to do with the stimulus shown in the
trial, and is one of two categories (tools/dwellings) for D1 and D2 (2 classes, 48 examples
per class), ten exemplars for D4 (10 classes, 6 examples per class) and twelve categories (12
classes, 30 examples per class) for D5. For dataset D3 we averaged the images in one block
(minus the first two) into an example, labelled with the category of the stimuli in that block
(12 examples per class). The voxel sizes were 3 × 3 × 5 mm for datasets D1, D2, D4 and D5

1Datasets D1, D2, D4,D5 were shared by Rob Mason and Marcel Just, of the Center for Cognitive Brain Imaging and Tom Mitchell of
the Machine Learning Department, both at Carnegie Mellon University. Dataset D3 was shared by James Haxby of Dartmouth
College.
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and 3.5 × 3.75 × 3.75 mm for dataset D3. Numbers of voxels in cortex varied between
14K-20K for D1, D2, D4, 23K-24K for D3 and 20K-21K for D5.

We selected 4 subjects from each dataset, both for practical computational reasons but also
to facilitate the presentation of figures; the number should also suffice to show that any
trends identified are consistent across subjects within each dataset. Throughout the paper,
subjects are numbered 1–4 in each dataset, corresponding to original subject identifiers
01481B, 01482B, 01897B and 02062B (dataset D1), 02553B, 02607B, 02714B and 02745B
(dataset D2), subj1_ii, subj2_ss, subj4_jj and subj6_wp (dataset D3), 02553B, 02607B,
02714B and 02745B (dataset D4) and P1, P2, P3 and P4 (dataset D5).

3.3 Generation and testing of accuracy maps
All the accuracy maps are produced by cross-validating a classifier on the data for the voxels
inside each searchlight and assigning the resulting accuracy value to the voxel at the center
of the searchlight. Note that this procedure is an unbiased estimator of the true accuracy of
the classifier over that particular searchlight and thus there is no need for separate test data.
Each accuracy value is then converted into a p-value for the null hypothesis that the true
accuracy of that classifier over that searchlight is chance level, using the analytical test
procedure described in Section 2.3 (this takes into account the variability of the accuracy
estimate). Each map is then thresholded using FDR, q = 0.01, to yield the significant voxels
for that map.

The alternative way of obtaining a p-value for each voxel is to resort to a permutation test.
The criteria for whether this is desirable or necessary were discussed in Section 2.3.3. In
order to judge that we computed the autocorrelation at each voxel between consecutive
examples (lag 1) and, for comparison, between examples with one example between them
(lag 2). The comparison of these two lags seems reasonable, since for all the studies
examples with another example between them are well separated as far as the respective trial
BOLD responses are concerned. The results are displayed in Figure 6, as histograms with
the distribution of autocorrelation values across voxels for each subject and lag. For datasets
D1, D2, D4 and D5 the distributions at the two lags are very similar, symmetric and their
median is close to 0. For dataset D3, however, the distributions at lag 1 clearly differ from
those at lag 2, and they have medians well above 0. This indicates that there is dependence
between consecutive examples, even though the separation between stimuli going into the
two examples is almost 18 seconds (7 TRs). The practical consequence of this is that the
analytical p-values for D3 are lower than they should be and thus optimistically biased,
whereas this appears not to be the case for the other datasets.

This allows us to revisit the question of whether permutation p-values are conservative
relative to analytical p-values, discussed earlier in Section 2.3.3, with real datasets instead of
one consisting entirely of noise. This comparison is subject to two different kinds of
practical consideration: computational expense (each permutation requires the production of

an entire accuracy map) and power (the smallest p-value possible is , which
might be much larger than the FDR threshold for significance).

In order to examine this question empirically we considered datasets D1, D3 and D5, in
order to have both two and multi-class problems. Using a special-purpose implementation of
GNB capable of producing a whole-brain accuracy map in seconds (more details in Section
4.5), we computed permutation p-values for each searchlight using various numbers of
permutations, which we then compared with analytical p-values for the same searchlight.
The results are shown in Figure 7 (dataset D1) and Figure 8 (dataset D3).
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Considering Figure 7 for dataset D1, the first thing to note is that permutation test p-values
are higher than analytical ones; so much so that it would take 10000 or 100000 permutations
for any searchlight classification accuracies to be deemed significant under FDR. In
addition, as the number of permutations increases, the permutation test p-values approach
the analytical ones, by narrowing the distribution of the former for a given value of the
latter. This suggests that, for a given searchlight classifier accuracy, and corresponding
analytical p-value, the permutation p-values converge towards a value that is higher than
that analytical p-value.

Considering Figure 8 for dataset D3 we have the added complication that consecutive
examples are dependent, rendering the analytical p-values likely optimistic. In order to
examine the effect of this, we overlaid a second scatter plot (in blue) on top of the original
one (in red), contrasting the lower bound analytical p-values obtained by considering half
the number of testing examples (as discussed in Section 2.3.3) with the permutation test p-
values. This shows that permutation p-values are a viable choice in a situation where
examples are dependent, and not as conservative as the lower bound.

Also considering Figure 9, it takes fewer permutations for p-values to be significant in D3 or
D5, even though the number of voxels considered is similar to D1. Our conjecture is that
this happens because many of the permutations in D1, which has two classes, leave many of
the examples with similar labels to those they had originally; this is far less likely in D3, as
each example can have one of eight labels and even less so in D5, where it can have one of
twelve.

Figure 8 also suggests a possible heuristic for finding a reasonable compensation for
optimistic bias in analytical p-values: use GNB to produce permutation test p-values and
then reduce the number of test examples for analytical p-values until the cloud of points in
each scatter plot is spread around the diagonal, both above and below. This reduction factor
could then be used on analytical tests for results from other classifiers, if running
permutation tests is unfeasible.

We think these results justify the use of analytical p-values to determine classification result
significance in datasets D1, D2, D4 and D5, and will use them in the rest of the paper. We
will be more cautious with dataset D3 and use the heuristic of halving the number of test
examples when determining significance. While this lowers the number of voxels deemed
significant, the various plots that depend on this look qualitatively similar with and without
the heuristic, which suggests the findings are robust.

3.4 Methodology for comparing accuracy maps
For each dataset, we will consider maps produced with several classifiers, using the notation
a = [a1,…,av] for the map produced by classifier a (and similarly b, c, etc). We would like to
be able to say whether, for a given dataset, a classifier is better than another. But how should
this be defined? If we knew precisely which voxels were informative, we could compare the
accuracies of the two maps over those; an experiment with synthetic data would allow it, at
the cost of having to specify exactly how information would be encoded in the data. Given
this, one possibility would be to compare the respective accuracy maps voxel by voxel and
see whether one map is higher than the other for the majority of voxels. The issue with this
approach is that we would be considering tens of thousands of accuracy results, most of
which would likely be around chance.

The approach we will take tries to combine the two ideas above by comparing over the set of
voxels that are deemed informative by any classifier; this can be obtained by thresholding
the accuracy map for each classifier using the analytical test in Section 2.3 to transform it
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into a p-value map and FDR to correct for multiple comparisons (q = 0.01). The main idea is
that, not knowing a priori which voxels are informative (or how much), we will at least be
using a subset of those. After this process accuracy map a is reduced to just this set of
voxels, a* (see the left of Figure 10).

In order to compare the reduced maps of all the classifiers we will use a combination of a
Friedman test and a Nemenyi post-hoc test, following the procedure described in [5]. The
Friedman test consists of the following steps:

• for each selected voxel, rank all classifiers (the ranks for classifier a are ra)

• compute the average rank across selected voxels for each classifier

• null hypothesis: any two classifiers a and b are equally good and their average
ranks r ̂a and r ̂b are the same

If the null hypothesis is rejected, we then use a Nemenyi post-hoc test (0.05 level). This test
considers the magnitude of the difference in average ranks (r ̂a − r ̂b) for each pair of
classifiers and also controls the family wise error rate for comparing all the pairs. This
difference is deemed significant if it is greater than a certain critical value (see [5] for more
details). The end result is a #classifiers × #classifiers matrix that summarizes these results
and will be discussed and illustrated in the next section.

3.5 Comparison of accuracy maps
Figure 11 depicts a comparison of each classifier against each other, for each of 4 subjects in
5 datasets. For each subject, the result of the comparison procedure is a #classifiers ×
#classifiers binary matrix, where entry (a, b) is 1 if the difference r ̂a − r ̂b is significant and 0
otherwise. In order to provide a visualization of the significant differences in an informative
scale, we created a new matrix from this one where each entry (a, b) shows either dab, the
median of the sample of values a* − b* (more informative than rank difference, as the scale
is in the units of accuracy), or gray if the difference r ̂a − r ̂b was not deemed significant. In
practical terms, (a, b) is positive if the paired accuracy of classifier a is larger than that of
classifier b across the voxel searchlights considered (those that were deemed significant in
any classifier accuracy map), negative if the reverse is true and gray if the difference is not
statistically significant under the Nemenyi test performed.

• Much as [19] points out, there is a benefit to using a searchlight (almost all
searchlight classifiers do better than a single voxel classifier) and most of that gain
does not come from a spatial smoothing effect (as the voxelwise classifier on
smoothed data is still outperformed by almost all searchlight classifiers, even as it
outperforms the basic voxelwise classifier).

• For gaussian classifiers, GNB and shrinkage LDA show better performance than
LDA and shrinkage QDA. In a two class situation (D1 and D2), GNB and LDA
with shrinkage are roughly equivalent in terms of performance. With more than two
classes (D3,D4,D5), LDA shrinkage is better (D3,D5) unless there are relatively
few examples per class (6 in D4 versus 12 in D3 and 30 in D5). Overall, this
suggests there is covariance structure to exploit in multiple class situations, even
though it may not be different between classes.

• For SVM classifiers using default parameters, quadratic kernel SVMs are
uniformly worse than either linear or RBF kernel SVMs across all datasets. RBF
kernel SVMs are slightly better than linear kernel SVMs for D1 and D2, but the
reverse is true for the multi-class datasets. Finally, cross-validating the C parameter
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in linear SVMs makes them comparable to RBF kernel SVMs in D1 and D2. This,
together with the accuracy maps in the Appendix, could indicate that there may be
no nonlinear voxel interactions to exploit. Exploring this further would require
either an exhaustive two parameter search for RBF kernel SVMs or training of
another nonlinear classifier such as a neural network.

• For nearest-neighbour classifiers, nearest-mean is better than nearest-neighbour
across all datasets. This may indicate that individual examples are just too noisy for
reliable classification, but also that the class mean examples are good enough (in
that results are not much worse than for methods that use class means and voxel
variance/covariance inside the searchlight).

Whereas Figure 11 provides a measure of how classifiers compare across all the voxels that
are significant in at least one of them, we can also consider more condensed measures: the
number of such significant voxels for each classifier or the median accuracy across all
significant voxels, as shown in the left and right, respectively, of Table 1. These corroborate
the results above and indicate that, in terms of numbers of voxels detected, GNB and
shrinkage LDA are the best methods but comparable to cross-validated parameter linear
SVM.

But how different are the maps produced by the various classifiers? In the Appendix we
provide pictures of the maps for one subject in each of the studies, in Figure 23, Figure 24,
Figure 25, Figure 26 and Figure 27. Comparing these with the naked eye shows relatively
few differences across maps for the various datasets.

A more revealing approach is to consider the similarity of the maps. Figure 12 examines the
similarity of the accuracy maps produced by the various classifiers, via their correlation
across voxels in the entire brain, and the same computed just across voxels significant in any
map, for dataset D1. The figure also quantifies the extent to which two maps a and b have
the same significant voxels by their overlap fraction,

. A few examples will make the overlap
fraction plots more tangible: for two classifiers sharing approximately half of their

significant voxels, the overlap fraction would be around , sharing 60%, around , sharing

80%, around  and sharing 90%, around . Figure 13 shows the same for dataset D3 (and
Figure 20, Figure 21 and Figure 22 for datasets D2, D4 and D5 in the Appendix) show the
same for datasets D2, D3, D4 and D5. From these figures, and the pictures of maps in the
Appendix, we can conclude that the better classifiers identified above share most of the
voxels they identify as significant, especially in the multiclass problems.

4 Experiments on exploratory data analysis with accuracy maps
4.1 What can classifiers learn?

Although it is feasible to compare various classifiers on several datasets, as we did in the
previous section, it is helpful to consider their capabilities in ideal circumstances to guide
our choice or aid in interpretation of results. The ability of a classifier to learn complex
relationships between features and the class label comes together with more sensitivity to the
amount of training data available. If this is not enough, a classifier can base the prediction
mechanism on details that are idiosyncratic to the training set and would not be present in
the test set; this phenomenon is called overfitting. This can also be viewed as a bias-variance
tradeoff: a classifier that is simple has high bias, whereas one that is too complex may be
very different from training set to training set, thus having high variance. If there are more
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features than examples, it is generally possible to learn to predict the training set perfectly
even if there is no information about the class label.

In the following sections we will consider several scenarios for relationships between
features and connect that to what classifiers can or cannot learn. As, in practice, we usually
do not have the luxury of large datasets or few features, we will compare classifiers in ideal
circumstances; to do this we will use synthetic data generated from a “searchlight” with just
a few voxels, allowing us to have large training and test sets. The former allows each
classifier to learn all it can learn and the latter to reduce the uncertainty of the accuracy
estimate until it is close to the true accuracy.

4.1.1 Learning the covariance structure of searchlight voxels—All of the
gaussian classifiers described earlier rely on estimating the mean and covariance matrix of
the class conditional distribution of the values of the voxels in a searchlight; they vary in
what they assume about the structure of that covariance matrix. The view of activation under
this model is that each voxel will take a particular mean value in each class (e.g. active or
inactive) and that that value is corrupted by noise, whose structure is described by the
covariance matrix. A diagonal matrix shared between classes means noise at each voxel is
independent from the others but at the same level for both classes, a full matrix will allow
for voxels to have correlated noise (e.g. adjacent voxels) and a different full matrix for each
class means that the noise structure changes between classes. In order to understand the
impact of these assumptions, we considered the output of the estimators used by the various
classifiers in those three scenarios. We generated synthetic data for a two-voxel searchlight
and estimated the class conditional covariance matrices using GNB, LDA and QDA (which
make the assumptions in each of the three scenarios, respectively).

Figure 14 shows scatterplots of a sample of 100 points for each class (x axis is voxel 1, y
axis voxel 2) in each of the three scenarios (rows), repeated for three estimators (columns).
Overlaid on each scatterplot are probability density estimate contours (an ellipse of constant
probability density, which is a graphical depiction of the point spread implied by the
covariance matrix), green for the true covariance matrices used to generate the data and red
for the ones estimated from that data. In this situation there is enough data to estimate
covariance matrices using any of the methods, so we can focus on the mismatch between the
scenario and the assumptions of each method. In the first row, all methods retrieve the
correct spherical covariance shared between classes. In the second row, GNB cannot retrieve
the correct matrix because it is forced to assume that both axes of its ellipse are parallel to
the graph axes (it does not require the length of the axes to be the same, which would
happen if one further constrained the covariance matrix to have the same value in all entries
of the diagonal). In the third row, GNB and both LDA versions fail to retrieve the correct
matrices because they assume that they have to be the same for both classes.

4.1.2 Learning the relationship between voxels and the target label—In the
previous section we considered classifiers that learned the covariance structure of voxels in a
searchlight, and their mean activation patterns in each class. As we saw before in Section
2.2, the covariance and class mean patterns can then be used to make classification decisions
via Bayes’ Rule. We could, instead, examine how the values taken by the voxels relate to the
class label, in particular in the case where that relationship can be expressed as a linear
discriminant with one weight per voxel. This is the case for a linear SVM, for instance,
where this discriminant is learned directly, but also for GNB and LDA, where the
classification decision with Bayes’ Rule is equivalent to that of a particular linear
discriminant.
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We consider six synthetic data scenarios with 1000 examples for each of two classes, in a
searchlight with 5 or 6 voxels. The activation of a voxel in one class is generated from a
gaussian distribution with a mean that reflects the voxel’s response to that condition. For
simplicity, we assume all voxels have the same level of noise (standard deviation of the
gaussian) in each condition. In each scenario, half the voxels are uninformative (mean
activity is the same for both classes) and half are informative in a scenario-specific way:

1. 3 voxels are equally informative (same distance between class means)

2. 3 voxels are informative, one more than the others (larger distance between class
means)

3. 3 voxels are equally informative, but the noise in the 3rd correlates with noise in
the 2nd

4. 2 voxels are informative and the class is the logical AND of their being active (e.g.
a conjunction detector)

5. 2 voxels are informative and the class is the logical OR of their activations (e.g.
either voxels is on for the desired class, but both are on together only for some
stimuli)

6. 2 voxels are informative and the class is the logical XOR of their activations (a
control case)

The first row of Figure 15 depicts a sample of 2000 examples generated from each of the six
scenarios (columns). For each sample plot, the first 1000 examples belong to one class and
the following 1000 to the other (as indicated by the class label in the rightmost column). A
higher value of a voxel (yellow/red) corresponds to activation.

We trained and tested three classifiers - linear SVM, GNB and LDA - on data generated
from each of the six scenarios, yielding one linear discriminant per classifier. The linear
discriminant weights w1,…,w#voxels and bias w0 for each (see Section 2.2) are plotted in the
remaining rows of Figure 15. Under each discriminant weight plot are the train and test set
accuracies of that classifier on the datasets from the corresponding scenario.

For linear SVM, all informative voxels are weighted equally in scenario 1, as one would
expect. In scenario 2, the voxel that is more informative gets more weight than the other
ones. In scenario 3, even though voxels 1 and 2 are equally informative, the fact that voxel 3
is correlated with voxel 2 means a weight equivalent to that of voxel 1 gets split between
them. In scenarios 4 and 5 the two informative voxels get weighted equally, as they
contribute the same amount to the decision. What changes between the two scenarios is the
bias of the discriminant; in scenario 5, it is high enough that either voxel being active by
itself is enough to get the decision past the threshold to predict class 1. In scenario 4, the
bias has a lower value and hence it takes both voxels being active for this to happen.
Scenario 6 is included to show how, in a situation where there are more examples than
voxels, a linear classifier cannot learn this particular relationship between voxels and class
label.

GNB displays a very similar pattern of weights for all scenarios except 3, where it weighs
each of the two correlated voxels the same as the other voxel. Whereas this is one reason the
classifier is sometimes overconfident (it overcounts evidence that appears repeatedly), it can
also be used to counter the dilution of weight seen with linear SVM if its test set accuracy is
comparable. This should also demonstrate that care needs to be applied when interpreting
the relative magnitudes of weights assigned by a classifier to different voxels.

Pereira and Botvinick Page 17

Neuroimage. Author manuscript; available in PMC 2012 May 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



LDA weights are very similar to those produced with linear SVM, in this setting. In practice,
the former positions the linear discriminant taking into account the entire sample of points of
each class (and assuming, furthermore, that each sample has a certain class of parametric
shape). The SVM considers only support vectors, the examples at the edges of the margin
around the discriminant. This can be relevant in that considering the differences between
those examples may be more informative - they are crucial differences - than the differences
between the two class mean examples.

4.2 Why learn multiple classifiers?
The synthetic data examples in the previous sections show the component parts – class mean
patterns, voxel covariances, voxel weights – of the simpler classifiers, and how those reflect
the relationships between voxels and between those voxels and the class label in several
common situations. This knowledge is necessary in order to interpret why a classifier can (or
fail to) capture information in a searchlight. But how would we know that a more complex
classifier was required?

In order to compare classifiers of increasing complexity, at least within the same type
(generative or discriminative, say), we can apply the following kind of reasoning:

• If complex does better than simple, we know there is a complicated relationship
between the features and the class label that can be identified.

• If simple does better, we know there is overfitting and hence not enough data to say
that anything beyond the simple relationship exists.

• If they do equally well and models learned look similar (if they can be visually or
numerically compared) or make exactly the same predictions in the same examples,
it would be reasonable to assume that nothing more than the simple relationship is
present.

• If no classifier does well, one cannot say that information about the class label is
not present. Whereas that may be the case, it’s also possible that there is too much
noise, not enough data to learn even a simple relationship or that the relationship
present is entirely out of the scope that the type of classifier used can learn.

The interpretation of what a non-linear or non-parametric classifier captured is more
dependent on the type of classifier than in the case of the linear classifiers in the previous
sections. A RBF-kernel SVM would require comparison of the support vectors for one and
the other class, whereas a QDA classifier would still allow for a decision function to be
considered, though it would be quadratic and thus involve not just voxels but also their
interactions (via products of voxel values).

To provide a more concrete example of how this type of reasoning could be used, we could
use a GNB and shrinkage LDA map to identify locations where it was advantageous to
capture covariance structure, as determined by the accuracy being larger for shrinkage LDA.
In Figure 16, we consider the top 6 such searchlights for one of the subjects from dataset D3,
via their respective covariance matrices, mean activation patterns in each class (both
averaged across cross-validation grops) and confusion matrices between the classes. In this
case, we can see which searchlights “specialize” on one class (e.g. 1) or contain information
about multiple classes and a covariance structure where groups of voxels are correlated or
anti-correlated (e.g. 4).

4.3 Extracting different kinds of information from a multiple class dataset
The previous section focused on how one might find interesting structure in the data that
was related to the prediction task of interest through the comparison of various classifiers.
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One can, instead, turn to a different question: identifying how many different kinds of
information are present in a multiple class dataset. This is more exploratory in nature than
the analyses in the previous section, and hence the emphasis will be on providing examples
of what can be done rather than exhaustively try every approach on all subjects in every
dataset.

Thus far we considered accuracy maps where classifiers performed multi-way
discrimination. In that setting, the more classes there are, the lower ”chance” level is and the
easier it is for any voxels to have significant accuracy, as seen for datasets D3, D4 and D5 in
Table 1. It is not likely that a voxel will distinguish every class from every other class, and
hence accuracy values can be relatively low and yet significant. But what does it mean to
say that a voxel with 20% accuracy contains information when 10% is chance, for instance?
One possibility is that the classifier labels 20% of the examples of each class correctly. More
plausible is that, in a given searchlight, a classifier can distinguish a few of the classes from
a few of the others, doing no better than chance on the rest (as seen in confusion matrices in
the third row of Figure 16, say). Taking this further, one could also ask if those
distinguishable categories would be the same for all voxels; the answer is clearly no, and
one need only consider voxels preferentially responsive to faces, houses or body parts, for
instance. The question in a multiple class situation should therefore be not only whether
there are searchlights with significant accuracy but also how many different confusion
matrices there are among such searchlights and what those matrices look like.

One possible approach to this question would be to compute the confusion matrices for all
searchlights and then cluster them and, hopefully, have a few groups emerge. This would
require specifying an appropriate distance measure between confusion matrices, as well as
dealing with the more standard practical issues that arise while clustering.

Given that we are interested in confusion matrices as indicators of whether pairs of classes
can be distinguished, there is a simpler alternative:

• produce a searchlight accuracy map for every pair of classes (for a total of #pairs)
using a versatile classifier (given the results in previous sections, shrinkage LDA is
a good choice)

• threshold all the pairwise maps into binary maps of significance using FDR with q
= 0.01

• this produces a matrix with #pairs rows and #voxels columns, where each row is a
binary map

• the column for each voxel is a binary vector encoding all the pairwise distinctions
its searchlight makes, which can be reshaped into what is essentially a binarized
confusion matrix

Prior to examining the binary confusion matrices produced, one can simply count the
number of class pairs that can be distinguished within the searchlight for a voxel, and
contrast that with the accuracy map obtained with the same classifier. In Figure 17 and
Figure 18 we can see this contrast for one subject in datasets D3 and D5. Although this still
does not tell us whether two voxels with the same counts distinguish the same classes, it
provides a more detailed image than the accuracy map, especially as the number of classes
(and pairs) increases; this is especially evident for D5.

Finally, one can simply look at the various binary vectors/binarized confusion matrices that
occur. Whereas one could have up to 228 different ones in dataset D3 (as there are 28 pairs
of classes), only 1388 actually occur and, at that, most are very infrequent. Figure 19 shows
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the 20 most frequent. In dataset D5 there are 266 possible different matrices, and only 2770
actually occur.

4.4 Group level analysis
Thus far we have not touched on the topic of group level analyses, except to look for
coherence of conclusions across subjects. While there is no canonical approach, we can
suggest a few possibilities. The most basic is to report per-subject results in the manner of
Table 1 and summarize across subjects; one example would be to do a sign test on whether
one result is better than another in each subject, for instance. Beyond that, one can look for
commonalities in the various reports described in this part of the paper, e.g. qualitatively
similar confusion matrices across subjects.

If the datasets for various subjects have been normalized to a common space (e.g. MNI or
Talairach), one can combine the binary significance maps obtained by thresholding accuracy
maps by stacking and adding them, yielding a count map that depicts how many subjects a
voxel (searchlight) is significant in. In each significance map, a voxel that is significant is a
false discovery with a certain probability, and one could use this fact to attach probabilities
to values in the count map under various null hypotheses. If one cannot expect a neat
superposition of significant voxels across subjects, even with the intrinsic smoothing that
comes from the fact that searchlights overlap, one could still report counts of significance
within regions of interest defined anatomically or via separate localizers.

4.5 The Searchmight toolbox
Until now we refrained from any discussion on how the various classifiers and tests used in
the paper were implemented. There are two excellent general purpose toolboxes for MVPA,
namely the Princeton MVPA toolbox (in MATLAB, http://www.pni.princeton.edu/mvpa)
and PyMVPA (in Python, http://www.pymvpa.org, [12]), which have been used in several
publications and have mailing lists with vibrant user communities. We opted not to use
either of them for this paper, as we felt there were advantages to focusing on a single,
specific workflow: information mapping of the same data with as many classifiers as
possible, uniform statistical testing and making subsequent interpretation easier. For that aim
we introduce the Searchmight toolbox, which is available as standalone code via the
Resources section of the website for the Botvinick lab
(http://www.princeton.edu/~matthewb) or with Princeton MVPA toolbox wrapper functions
at their web site.

Concretely, this consisted of producing either custom implementations of classifiers
optimized to cross-validate while caching computation for each searchlight or efficient
wrappers for existing classifiers. An example of the former is a version of GNB that can be
run for the whole brain in 1 second, in dataset D1; an example of the latter is LIBSVM,
where we altered the code not to output any messages during training, which speeds it up
substantially given that the process happens for each of tens of thousands of searchlights.

We also implemented a single API that can be used to call all the different classifiers (with a
few specific parameters, if using something other than default settings) and returns not just
an accuracy map but also a p-value map, produced with either of the approaches described
in the text. The goal of this is to lower the barrier to doing this kind of analysis, such that
conclusions are not biased by the use of a single classifier (all of them can be tried with the
same amount of effort) or by misguided statistical testing of accuracy results. Finally, the
toolbox directly supports the creation of the pairwise classification maps described in
Section 4.3 for exploratory analysis of multiple class datasets; it also returns various
classifier specific information (such as searchlight covariance or confusion matrices, or
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linear classifier weights) directly, instead of requiring that the users know about the specific
way in which these are stored for the various wrapped classifiers. Beyond this, the toolbox
also includes the functions implementing the statistical tests used to compare multiple
classifiers against each other and example autocorrelation which were described in Section
3.3 and Section 3.4.

5 Conclusions
With respect to choice of classifier, we have shown there are differences between classifiers
in terms of how many searchlights they can be trained on with significant accuracy; that
said, the better classifiers identify many of the same voxels. This suggests that, at least at the
scale of tens of cubic millimeters per voxel and for this type of experimental paradigm, there
seems to be no advantage to training a nonlinear classifier; that said, it is definitely worth
trying to exploit the covariance structure between voxels in a searchlight, at the very least.
Hence, if processing time is a scarce resource, a GNB classifier is a reasonable choice for
quick mapping or for voxel selection. Given more time, shrinkage LDA is likely preferrable.
A linear SVM can achieve the same level of performance, but we have found that training
set cross-validation for setting the sole classifier parameter was required in order to get it.

The conclusion regarding testing of the significance of accuracy results is that analytical
result significance tests are less conservative and computationally much cheaper than
permutation tests. Whether they can be deployed depend on the verification of a number of
assumptions described in the test, and this should precede the choice of either testing
approach

These conclusions must be considered provisional, since they are based on the analyses of
empirical data. Nevertheless, we used different datasets and tasks with varying degrees of
difficulty and obtained consistent results across multiple subjects, suggesting that our
conclusions may hold a reasonable degree of generality.

Finally, showing that there are different kinds of informative voxels in a multiple class
dataset requires reasoning from several accuracy maps and careful scrutiny of the classifiers
learned for each searchlight. Given that this is a more ad-hoc process, we opted to provide
details about the nuts and bolts of each classifier and the interactions between those and
possible voxel behaviours in the data, where this could be visualized, as well as the general
principles for reasoning about differences between maps. Furthermore, we provided various
examples of how to use accuracy maps for all possible two-class problems in a dataset, in
order to identify various types of informative voxel behaviour present in the data.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Maps of accuracy in a two-class problem produced for the same subject by two different
classifiers.
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Figure 2.
A classifier is learned from the training set, examples and their labels, and used to predict
labels for a test set, examples whose labels it cannot see.
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Figure 3.
A classifier is learned from the training set, examples and their labels, and used to predict
labels for a test set, examples whose labels it cannot see.
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Figure 4.
Distribution of accuracy under the null hypothesis that the classifier performs at chance (p =
0.5, two class problem), for test set sizes n from 10 (leftmost plot) to 200 (rightmost plot).
The vertical red line indicates the accuracy value above which a result would be deemed
significant at the 0.01 level using the binomial test described in the text.
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Figure 5.
Comparison of analytical versus permutation test p-values for 4 noise datasets (columns):
1000 voxels, 40 examples (S1K40E), 100 examples (S1K100E), 10000 voxels 40 examples
(S10K40E) and 10000 voxels 100 examples (S10K100E). The rows correspond to number
of permutations, 100, 1000, 10000 and 100000. In each scatter plot, the x-axis is the
analytical p-value and the y-axis the permutation p-value. For visual convenience, the scales
in each scatter plot are logarithmic (base 10), hence the p-values close to 0 are on the left
and those close to 1 on the right.
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Figure 6.
For each of 4 subjects (columns) in the 5 datasets, histograms of voxel autocorrelation
between consecutive examples (lag = 1) and examples separated by another example (lag =
2). The median of the distribution is shown below each histogram.
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Figure 7.
Comparison of analytical versus permutation test p-values for 4 subjects (columns) in
dataset D1, using 100, 1000, 10000 and 100000 permutations (rows). In each scatter plot
each red point has analytical and permutation p-values as the x and y axes, respectively. For
visual convenience, the scales of each axis are logarithmic (base 10), hence the p-values
close to 0 are on the left and those close to 1 on the right. The vertical dotted line is the FDR
q = 0.01 significance threshold for the map of analytical p-values, and the horizontal (if it
exists) for the map of permutation test p-values.
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Figure 8.
Same as Figure 7, for dataset D3. Each scatter plot has a second set of points (in blue)
overlaid on the main one (in red). This depicts analytical versus permutation p-values, as
before, but the analytical p-values are with respect to half the number of examples actually
used for testing, as a heuristic lower bound on what they should be.
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Figure 9.
Same as Figure 7, for dataset D5.
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Figure 10.
In order to compare multiple accuracy maps, their maps of p-values are thresholded with
FDR (q = 0.01 and the set of voxels significant in any map is identified (left). Each pair of
accuracy maps is compared across that set of voxels, using a Friedman test (center). If the
test rejects the null hypothesis that no pairs are different, a post-hoc Nemenyi test is
conducted to identify which pairs are (right).
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Figure 11.
Comparison of each classifier against each other, for 4 subjects (columns) in 5 datasets
(rows). In each plot, entry a, b is positive (red) if the paired accuracy of classifier a is larger
than that of classifier b across the voxel searchlights considered, negative (blue) if the
reverse is true and gray if the difference is not statistically significant under the Nemenyi
test performed.
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Figure 12.
For 4 subjects (columns) in dataset D1, correlation of all pairs of accuracy maps across
voxels in the entire brain (top row), same just across voxels significant in any map (middle
row) and overlap fraction between sets deemed significant by any two maps (overlap

fraction is ) (bottom row).
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Figure 13.
Same as Figure 12, for dataset D3.
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Figure 14.
Probability contours for class conditional distributions in 3 scenarios (rows) estimated using
3 different covariance matrix estimators (columns), with 100 data points per class (true
contours are green, estimated ones red).
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Figure 15.
Top row: samples of 2000 examples generated from each of the six scenarios in the text
(columns), 1000 from one class and 1000 from the other (red is activation, blue/green is lack
thereof) Bottom three rows: weights on each voxel of the linear discriminants learned by
each of the three classifiers we consider. Each plot shows the weights first (1 to 5/6
weights), followed by the bias term to the right and the train/test accuracy below.
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Figure 16.
For subject subj1_ii in dataset D3, in 6 searchlights (columns) where accuracy is larger for
shrinkage LDA than GNB, top: covariance matrices, dimensions are #voxels × #voxels
middle: mean pattern across the voxels in the searchlight for each of 8 classes (in each plot
rows are faces, houses, cats, chairs, scissors, bottles, shoes and scrambled objects, columns
are voxels), bottom: confusion matrices between 8 classes (in row i, fraction of examples of
class i that gets labelled by the classifier as each of the 8 classes). Above each column is the
accuracy of the GNB and LDA classifier trained on the corresponding searchlight.
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Figure 17.
For subject subj1_wp in dataset D3, accuracy map (top row) and count map (bottom row),
both obtained with a shrinkage LDA classifier. Note that the scale for the count map ranges
from 0 to the maximum number of pairwise tasks a voxel searchlight is deemed significant
on.
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Figure 18.
For subject P1 in dataset D5, accuracy map (top row) and count map (bottom row), both
obtained with a shrinkage LDA classifier.
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Figure 19.
The 20 most frequent binarized confusion matrices appearing in the pairwise maps for
subject subj1_wp in dataset D3. Some correspond to distinctions between faces (1), houses
(2) or scrambled objects (8) against other categories.
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