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Abstract
Objective—When using imaging to predict time to progression from mild cognitive impairment
(MCI) to Alzheimer's disease (AD), time-to-event statistical methods account for varying lengths
of follow-up times among subjects whereas two-sample t-tests in voxel-based morphometry
(VBM) do not. Our objectives were to apply a time-to-event voxel-based analytic method to
identify regions on MRI where atrophy is associated with significantly increased risk of future
progression to AD in subjects with MCI and to compare it to traditional voxel-level patterns
obtained by applying two-sample methods. We also compared the power required to detect an
association using time-to-event methods versus two-sample approaches.

Methods—Subjects with MCI at baseline were followed prospectively. The event of interest was
clinical diagnosis of AD. Cox proportional hazards models adjusted for age, sex, and education
were used to estimate the relative hazard of progression from MCI to AD based on rank-
transformed voxel-level gray matter density (GMD) estimates.

Results—The greatest risk of progression to AD was associated with atrophy of the medial
temporal lobes. Patients ranked at the 25th percentile of GMD in these regions had more than a
doubling of risk of progression to AD at a given time-point compared to patients at the 75th
percentile. Power calculations showed the time-to-event approach to be more efficient than the
traditional two-sample approach.

Conclusions—We present a new voxel-based analytic method that incorporates time-to-event
statistical methods. In the context of a progressive disease like AD, time-to-event VBM seems
more appropriate and powerful than traditional two-sample methods.
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1. Introduction
Mild cognitive impairment (MCI) is considered a transitional stage between normal aging
and dementia. Amnestic MCI (aMCI) is a subtype of MCI that primarily involves memory
complaints and deficits and is often a prodromal stage of Alzheimer's disease (AD) [1,2]
with about 12%–15% of aMCI subjects annually progressing to AD [2–4]. Diagnostic
criteria for AD are currently based on clinical and psychometric assessment. However
degenerative histological changes occur long before AD is clinically diagnosed [5].
Therefore neuroimaging can be a useful aid in predicting the future progression of aMCI to
AD.

In order to optimally utilize structural Magnetic Resonance Imaging for prediction of future
progression to AD, it is important to understand the patterns of 3D structural changes that
are associated with this clinical event. The most common study design in this context uses
voxel based morphometry (VBM) [6] to perform voxel-wise two-sample comparisons to
assess the full 3D topographic gray matter (GM) atrophy patterns in MCI who progress to
AD (so-called “progressors”) versus those who do not (so-called “non-progressors” or
“stables”) [7–9]. These case-control type studies have identified the medial temporal lobe
limbic cortex, inferio-lateral temporal neocortex, and posterior cingulate as the regions with
the greatest differences. While informative, this two-sample approach by definition
dichotomizes subjects into either progressors or non-progressors after a fixed period of
follow-up. Non-progressors who do not reach this follow-up time cannot be included in the
study due to insufficient time at risk [10]. Also follow-up information that is available in
non-progressors after the fixed follow-up time cannot be used in this type of analysis. Thus,
the two-sample approach discards potentially valuable information which is available but
cannot be used analytically.

Study designs that use time-to-event based statistical methods such as Cox proportional
hazards models are used extensively [11] in the field of biostatistics in part because they
allow for variable lengths of follow-up and for incorporating “partial” information in the
form of censoring. A subject followed for x years who has not progressed by last follow-up
is considered to be stable through x years and to have an unobserved progression time that
occurs at some later point. This subject can be said to contribute x years of progression-free
follow-up but is not rigidly classified as stable.

Several imaging studies have employed time-to-event methods to demonstrate that atrophy
on ROI-based hippocampus and entorhinal cortex volume measurements is associated with
increased risk of progressing to AD [12–14]. Quantifying volumes of medial temporal
structures such as the hippocampus and entorhinal cortex is logical since AD-related atrophy
occurs earliest and most severely in these regions [15,16]. And employing time-to-event
statistical methods in analyses of prediction is fairly straightforward using ROI-based MRI
measurements. However using only measures derived from one (or a few) specific pre-
selected regions does not make use of all the available information in a 3D MRI data set.

In this study we present a voxel-wise time-to-event analysis examining the increased hazard
of progression to AD associated with topographic gray matter atrophy in the brain. Our aims
were to (1) identify topographic patterns of anatomic regions on MRI where atrophy is
associated with significantly increased risk of future progression using robust time-to-event
statistical methods at a voxel level, (2) to quantify the effect size in an interpretable way
using hazard ratio estimates, (3) to compare topographic patterns of risk of progression
found in a time-to-event analysis to those based on a two-sample study design; (4) to
compare the power to detect associations between gray matter atrophy at the voxel level and
progression to AD using time-to-event versus two-sample approaches.
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2. Materials and methods
2.1 Subjects

This study was approved by the Mayo IRB, and informed consent for participation was
obtained from every subject. A total of 296 MCI patients were recruited to the Mayo Clinic
AD Research Center (ADRC) /AD Patient Registry (ADPR) [17,18] and followed through
February 2010. Subjects enrolled in the ADPR are recruited from primary care providers in
the community; they were referred to the ADPR for further evaluation if a memory
complaint came up in the course of the general medical exam. Subjects enrolled in the
ADRC were self-referred or referred by their doctors for a cognitive problem, usually
memory. Although the recruitment mechanisms differ between the ADPR and the ADRC,
once enrolled, the subjects are evaluated using the same protocols and diagnostic criteria.
Individuals participating in the ADRC/ADPR studies undergo approximately annual
neurological examinations, structural brain MRI, routine laboratory tests, and a battery of
neuropsychological tests. At the completion of the evaluation, a consensus committee
meeting is held to determine a diagnosis; committee members include behavioral
neurologists, neuropsychologists, nurses, and geriatricians who evaluated the subjects. A
total of 151 MCI patients agreed to participate in MRI studies, and were followed until
February 2010.

The operational definition of MCI was based on clinical judgment through a history from
the patient and almost always a collateral source without reference to MRI using the criteria
for the broad definition of MCI [2]: Cognitive complaint, cognitive function not normal for
age, decline in cognition, essentially normal functional activities, and not demented. Patients
with MCI were further classified into one of the two MCI subtypes: aMCI, if the impairment
included the memory domain or naMCI if the impairment was in one or more non-memory
domains with relative preservation of memory. We included only aMCI subjects in this
analysis for purposes of diagnostic uniformity. In general, the aMCI determination is made
when the memory measures fall 1.0 to 1.5 standard deviations below the means for age- and
education-matched individuals in our community. Rigid cutoffs on psychometric scores
were not used to establish the diagnosis of aMCI which was made on clinical grounds by
consensus. These well-established criteria have been used by our institution for many years
and have been adopted by numerous research programs including the National Institute on
Aging (NIA) Alzheimer disease Centers Program and the Alzheimer Disease Neuroimaging
Initiative (ADNI) (http://www.adni-info.org/). In all cases the diagnosis of aMCI is made
independently of any quantitative MRI findings. Patients were reevaluated approximately
annually and the decision of whether subjects had progressed to clinically probable AD was
made at a consensus committee meeting as previously described [19]. The diagnosis of
dementia was made based on the Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition [20]. The clinical diagnoses of AD, dementia with Lewy bodies (DLB), and
frontotemporal lobar degeneration (FTLD) were made using published consensus criteria
[21]. Patients with structural abnormalities that could impair cognitive function other than
cerebrovascular lesions were excluded. Subjects were not excluded for the presence of
infarctions and leukoaraiosis, thus the full range of ischemic cerebrovascular disease was
included.

2.2 MRI acquisitions
All MRI studies were performed on fifteen different 1.5 Tesla GE-SIGNA MRI scanners
(GE Medical Systems, Waukesha, WI) over a period 5 years (2001–2005) using a standard
transmit-receive volume head coil. Since these scanners are all used in clinical practice, they
undergo a standardized quality control calibration procedure every morning which monitors
geometric fidelity over a 200 mm volume along all 3 cardinal axes, signal to noise ratio, and
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transmit gain. We did not find evidence of systematic scanner-related differences and
therefore do not account for scanner in our analyses. Subject images were obtained using a
standardized imaging protocol that included a coronal T1-weighted 3-dimensional
volumetric spoiled gradient echo (SPGR) sequence with the following scan parameters:
FOV = 24 × 18.5 or 22 × 16.5 cm, in-plane matrix = 256 × 192, 1.6 mm partition thickness
and 124 contiguous partitions, flip angle = 25°, TR = 23 ms, min full TE. Prior to
processing, all scans were reviewed for artifacts (such as motion) and potential subjects with
severe artifacts were removed from the study.

2.3 MRI image pre-processing
SPM5 was used for tissue segmentation and normalization
(http://www.fil.ion.ucl.ac.uk/spm) of each scan [22]. In order to reduce any potential
normalization and segmentation bias across the subjects, a custom template and tissue
probability maps (TPMs) were created in SPM5 using the T1 weighted 3D MRI scans from
an earlier study [23]. All the MCI scans are registered to this template. Jacobian modulation
was applied to compensate for the effect of spatial normalization and to restore the original
absolute gray matter density (GMD) in the segmented gray matter images. These modulated
images were then smoothed with an 8 mm FWHM smoothing kernel. These GMD images
were down-sampled to an isotropic voxel size of 8 mm by simple averaging to reduce the
computational load and provide less noisy voxel-level estimates. This down-sampling
resulted in a total of 3410 voxel-level GMD estimates for each subject and constituted the
data used for the analysis presented in this paper. Results based on an isotropic voxel size of
4 mm were found to be very similar.

2.4 Statistical methods
2.4.1 Primary analysis—We used Cox proportional hazards models to analyze the data
on a per-voxel level [11]. The earliest available MCI visit with a concomitant MRI was
defined as the baseline, i.e., time zero. Subjects were followed prospectively from their MRI
until the first diagnosis of AD, our event of interest. For those who progressed to AD by last
follow-up, the event time was defined as the midpoint between the last MCI diagnosis and
the first AD diagnosis. Subjects who were not observed to progress to AD were censored at
their last MCI visit, provided they remained stable, or at the midpoint between their last
MCI visit and first diagnosis of a neurodegenerative disease other than AD such as DLB.
Censoring, rather than excluding, subjects who obtained a non-AD neurodegenerative
diagnosis or had died is appropriate because they are considered “at risk” of AD up until
their non-AD diagnosis or death. Since these subjects met the inclusion criteria at baseline
and also had “AD-free follow-up” until that point, to exclude them would bias our findings.
This approach is consistent with a competing risks framework in which subjects may be
considered at risk of several competing events: AD, a non-AD dementia, death, etc. The Cox
model is appropriate in the competing risk framework with hazard ratios interpreted as
“cause-specific”, i.e., AD-specific effects [24]. To estimate the cumulative incidence of
progression to AD in the context of competing risks, we used the competing-risks approach
rather than the Kaplan-Meier approach [25].

Each Cox model included age at MRI, sex, years of education, and the GMD for a given
voxel. Because some voxel GMD distributions were found to be skewed and also to increase
the robustness of our models, we rank-transformed all GMD predictors prior to analysis
[26]. To quantify the effect of GMD at each voxel in an interpretable way, for each voxel we
report age-, sex-, and education-adjusted hazard ratios that represent the relative hazard or
instantaneous rate of progression from MCI to AD, for a participant at the 25th percentile of
the GMD distribution versus one at the 75th percentile. The 25th percentile can be
interpreted as representing a typical value among those with greater-than-average atrophy
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while the 75th percentile can be interpreted as representing a typical value among those with
less-than-average atrophy. For each model, we assessed the proportional hazards assumption
by testing for a correlation between the rank-transformed event times and the Schoenfeld
partial residuals [11].

We performed 1 degree of freedom likelihood ratio tests to quantify the evidence that the
GMD values at that voxel provide additional predictive information regarding time to AD
after accounting for age, sex, and education. We report P-values based on a false discovery
rate (FDR) correction across all 3410 tests. To display the entire cortical findings, we show
cortical surface rendering maps of medial, lateral and ventral surfaces where the intensity is
indexed to the hazard ratio [27] and the results are thresholded to an FDR-corrected P-value
of 0.05.

2.4.2 Secondary analysis—As a secondary analysis, we performed four separate two-
sample analyses using linear regression at each voxel. The first analysis was based on
dividing subjects into those who had progressed by 2 years of follow-up versus those who
remained stable through 2 years. Subjects with less than two years of follow-up were
excluded, as were subjects who had progressed to a non-AD dementia prior to the 2 year
follow up time point. At each voxel we fit a linear regression model in which the response
was the rank-transformed GMD estimate, the primary predictor was group (progressors vs.
non-progressors) while age, sex, and years of education were included as adjustment
variables. These models can be considered two-group analysis of covariance (ANCOVA)
models. A rank transform was used due to skewness and to increase the robustness of our
analyses. We quantify the differences between groups in terms of t statistics and summarize
the results over all 3410 voxels using cortical surface rendering heat maps where the
intensity is indexed to the t-statistic and the results are thresholded to an FDR-corrected P-
value of 0.05. We repeated this two-sample analysis using additional follow-up cut-points of
three, four, and five years.

2.4.3 Power comparison of Cox model with two-sample approaches—We used
two approaches to compare the statistical power of a time-to-event analysis versus a
regression analysis comparing progressors vs. stables. In the first approach we assume a
sample size equal to that of the current analysis (n=123) and assess power to detect a voxel-
level difference as the effect size, i.e., the strength of the voxel-wise association, is varied.
We examined associations ranging from an HR for an interquartile difference (i.e., 25th
percentile vs. 75th percentile) of 1.5 up to 3.0 in increments of 0.5. At each HR level we
generated 1000 replicate data sets and for each data set we performed a Cox model analysis
and a separate two-sample analysis based on comparing progressors vs. non-progressors at
1, 2, 3, 4, and 5 years of follow-up.

The Cox model analysis used a rank-transform of the GMD distribution and a 1 degree of
freedom likelihood ratio test. The two-sample analyses were based on linear regression of
the rank-transformed GMD values in the form of a simple two-group ANOVA. Power for
each test was estimated by the proportion of the 1000 replicate data sets where the P-value
was below 0.05. Although in our full analysis we adjust for age, sex, and education, for
simplicity these power analyses were all univariate. The simulated data sets were generated
from a Weibull distribution using parameters that were realistic given our observed data. For
each Weibull-based progression time, we generated a censoring time that was uniformly
distributed on the interval 0 to 6 years. The simulated observed time was the minimum of
the progression time versus the censor times. A simulated event was observed if the
progression time was before the censoring time. Using this approach, our simulations
closely matched the observed data set in terms of median follow-up times, number of events,
etc.
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In the second approach to comparing statistical power, we assume the imaging predictor is
normally distributed with mean 0 and SD of 1 and that the hazard ratios for an inter-quartile
range (IQR) difference is approximately 2. We then estimate power based on 1000
simulated data sets using the two competing statistical approaches described above for
sample sizes of 50, 75, 100, 125, 150, 175, and 200. All power calculations were performed
assuming a two-sided alpha level of 0.05.

All statistical analyses were performed using R version 2.8.1 (http://www.R-project.org) and
the survival package version 2.35-9. All the results were displayed using Caret software
[27].

3. Results
3.1 Clinical findings

A total of 123 amnestic MCI subjects with a usable MRI scan and at least one follow-up
visit were included in this study. We excluded one available patient because of
inconsistencies regarding her clinical course. Subject demographic characteristics and
cognitive performance at baseline are summarized in Table 1. The hazard ratios for
progression to AD associated with each demographic variable are also listed in Table 1. By
last follow-up, 57 patients had progressed to clinically diagnosed AD, 11 to DLB, and 2 had
progressed to FTD. One subject who progressed to mixed AD plus vascular dementia was
censored at this diagnosis (i.e. this was not considered a “progression-to-AD” event in our
analyses). The remaining 52 subjects were not demented at last follow-up and were
therefore censored. Of these, 16 were known to have died a median of 2.6 years after their
last visit (range 8 months to 6.4 years). Another 12 subjects had a visit within the last 18
months while 24 were lost to follow-up. Using the cumulative incidence method in the
presence of competing risks, the median time to AD was 3.5 years. The follow-up intervals
separated by whether the subject progressed to AD by last follow-up are presented
graphically in Fig. 1.

3.2 Voxel-wise hazard ratio maps
Fig. 2 shows a cortical surface of HRs that are significant at the FDR corrected level of
P<0.05 after adjusting for age, sex, and years of education. The intensity of the maps
corresponds to HRs based on comparing the 25th percentile of GMD to the 75th percentile
of GMD. In other words, an HR of 2 indicates a subject at the 25th percentile of GMD has
twice the estimated hazard of progression versus a subject at the 75th percentile of GMD.
The greatest risk of progression to AD is associated with atrophy of the medial and inferior
temporal lobes including the temporal pole, entorhinal cortex and hippocampus. The MNI
coordinates of the two peak HR clusters were in the right hippocampus (34,−10,−20) and
left hippocampus (−24,−12,−20) with hazard ratio values of 5.3 and 4.4 respectively.

Based on a global test of proportional hazards, only 4 of 3410 voxel-wise models had
evidence of non-proportional hazards based (P<0.05). For the specific test of proportionality
associated with the rank-transformed GMD predictor, we found 108/3410 (3.2%) had
significant evidence (P < 0.05) of non-proportionality. Since we would expect about 5% just
by chance, this was largely consistent with the null hypothesis of proportional hazards.
Further, none of the voxels significant at the FDR-corrected threshold of 0.05 had evidence
of a non-proportional hazard GMD effect.

3.3 Voxel-wise two-sample t-test maps
Fig. 3 shows cortical surface maps of voxels that are significantly different between
progressors and non-progressors at the FDR-corrected level of P<0.05 after adjusting for
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age, sex, and years of education. At two years the progressor to non-progressor ratio was
34:60 with 29 excluded because they did not have the minimum required 2 years of follow-
up or had progressed to a non-AD dementia. For 3 years the ratio was 45:34 with 44
excluded, for 4 years it was 50:25 with 48 excluded, and for 5 years it was 54:16 with 53
excluded. As indicated above, subjects who were free of AD but followed less than the
cutoff were excluded from the respective analysis because of their ambiguous clinical
classification for a 2 group analysis. Fig 3A shows regions of atrophy in progressors
compared to non-progressors with a cutoff of two years. The greatest atrophy is seen in the
hippocampus. With a follow-up cutoff of three years (Fig 3B) atrophy in progressors vs non-
progressors involves the entire medial temporal and inferior temporal lobes. For a cutoff of
four years the anatomic extent of atrophy in progressors vs non-progressors is less than that
seen in at three years. In Fig. 3D with a cutoff of five years, the anatomic extent of atrophy
in progressors vs non-progressors is greater than that seen at four years in the medial
temporal as well as the frontal lobes. We believe that by five years, subjects that were in the
non-progressor group are inherently very stable.

3.4 Power and samples sizes required for Cox model vs. two-sample approaches
For a sample size of 123, the estimated power to detect an association using the Cox-model
approach versus a two-sample approach is compared in Table 2. In terms of power, the Cox
model approach is superior to the two-sample approach, although power for the two-sample
approach varies with the follow-up cutoff used. The estimated power as a function of sample
size for different statistical approaches is shown in Fig. 4. We again see the Cox-model
based approach out-performs the traditional two-sample approach (for any of the follow-up
times evaluated from 1 to 5 years) in terms of statistical power. We note that Fig. 4
illustrates an interesting phenomenon. The similarity in power for the 2- and 5-year cutoffs
was found to be due to quite different characteristics of the samples. On average, the 2-year
cutoff allowed more subjects to be included with better balance between stables and
progressors. The 5-year cutoff included fewer subjects overall, with few stable MCIs.
However, the sample size disadvantage is offset by greatly increased separation in GMD
when the 5-year cutoff is used. This sample-size/separation tradeoff was what made the
power comparable for the 2-year and 5-year cutoffs.

4. Discussion
We applied a time-to-event statistical analysis using age, sex, and education adjusted Cox
proportional hazard models to SPM5-derived GMD estimates at the voxel level. Our
statistical approach, while commonly applied in biomedical research, to our knowledge has
not been used previously in the context of voxel-wise imaging analyses of progression to
AD. Our voxel-based analyses found the strongest associations with progression to AD in
the medial temporal limbic areas, followed by the inferior and lateral temporal neocortex
(Fig. 2). The findings of the present study are consistent with Braak staging topography [28]
and also agree with several imaging studies [13,29–31].

As a secondary analysis, we performed a series of two-sample comparisons based on follow-
up cutoffs varying from 2 to 5 years. While the findings were generally similar, there are a
number of interrelated drawbacks of a two-sample approach. First, in a two-sample study
design based on a cohort study, subjects who have not progressed by last follow-up but also
lack the minimum follow-up must be excluded from the analysis because they cannot
unambiguously be considered non-progressors. Omitting these subjects plus those who
progress to a non-AD dementia reduces sample sizes appreciably as noted above. A second
aspect of the two-sample study design is that the spatial distribution of gray matter atrophy
that distinguishes progressors from non-progressors has the potential to differ depending on
the cut-point selected. Third, two-sample designs ignore the underlying time until
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progression occurs. As illustrated in Fig. 1, the follow-up time for our 123 MCI patients in
the study is quite variable, as is nearly always the case in typical observational studies.
Fourth, two-sample designs depend on an arbitrary follow-up cutoff that can separate
subjects with very similar clinical courses into different groups depending on which side of
the cutoff they fall on. For example, if the two-sample design sets the minimum follow-up at
2 years, a subject who progresses by 23 months could be contrasted with a subject classified
as stable who progresses at 25 months, even though these subjects have nearly equivalent
times to progression. Finally, two-sample designs suggest a binary classification of subjects
rather than facilitating thinking about disease progression on a continuum with some
subjects progressing quickly and others progressing slowly.

We empirically found the Cox model approach to be more powerful than the two-sample
approach. This has been found in other contexts with power gains coming primarily when
there is additional follow-up and consequently additional events, after the cutoff [32]. One
possible critique of our power analysis is that by virtue of simulating from a Weibull
distribution the simulations were performed assuming the Cox proportional hazards model
was “correct.” Specifically, we assumed that MCI subjects progress over time and that when
progression was not observed it was due to a censored follow-up time or a competing event
and that lower gray matter density at a given voxel increases an MCI subject's hazard of
progression and consequently reduces their time to AD. While these assumptions are likely
to only be approximately true in real situations, we think they are more reasonable than the
assumptions underlying a two-sample approach.

An implied assumption in the two-sample approach is that subjects who progress by x years
are qualitatively different from subjects who remain stable through x years. This is difficult
to justify when one considers that the composition of the groups is arbitrary because
shortening or lengthening the cutoff by even a few months would move subjects from one
group to the other. A second but essential assumption is that average gray matter density in
the two groups differs. This is a relatively weak assumption, but one that when found to be
true may not add a lot of clarity. Do the two groups differ because risk of progression
increases as gray matter density decreases? Or do the two groups differ because those who
progress by x years are qualitatively different from those who remained stable through x
years? Overall, we think that the time-to-event framework better models the nature of the
disease and allows for a more straightforward interpretation of the findings.

One interesting aspect of the two-sample approach in our simulations was that power can be
thought of as a compromise between number of subjects who are included in an analysis and
separation of the distributions of gray matter density. Assuming a significant association
between GMD and hazard of progression, the greater the interval from baseline to cutoff the
greater the separation between progressors and non-progressors on the baseline scans.
However, this separation becomes harder to detect because overall sample size decreases
with time due to inevitable attrition. In our simulations, the 3 year cutoff was most powerful
because it represented a balance of group-wise separation and sample sizes. At 2 years, the
sample sizes were comparable to those at 3 years, but the separation was less pronounced.
At 4 years, the separation on the baseline scans between progressors vs non-progressors was
appreciably greater, but the number of stable MCI subjects has dropped considerably, taking
its toll on power. The similarity of the power for the 2-year and 5-year cutoffs is interesting
because the power is achieved in different ways: greater subject numbers at 2 years versus
greater baseline separation in gray matter properties between progressors and non-
progressors at 5 years.
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4.1 Limitations of the Study
There are some limitations to our approach: 1) If everyone was followed for the same length
of time then the proposed technique would not have any advantages over two-sample
techniques. While this may happen in therapeutic clinical trials, it rarely happens in
observational or epidemiological studies and we believe that this data accurately reflects
research practice where the follow-up varies across subjects and individual subjects reach
the event at different times. 2) We did not compare the proposed approach to a third
approach explained in Jagust et al. [33] where we would estimate voxel-wise associations
between lower baseline imaging measures and future cognitive decline. However the goal of
the paper was to investigate the optimal method to apply when creating maps of a specific
clinically definable endpoint – i.e., the clinical diagnosis of Alzheimer's dementia. The
regression approach answers a slightly different question of detecting regions that correlate
with decline in future cognition [8,33,34]. 3) While the Cox model with a rank-transformed
predictor can be considered relatively robust in that it is based on the association between
the rank ordering of GMD and the rank ordering of event times, it is semi-parametric but not
non-parametric. As such, modeling assumptions such as proportional hazards still need to be
verified and alternative models used when the assumptions are not met. However, although
non-parametric voxel-wise approaches have been advocated [35] analyses based on linear
models with little checking of assumptions appear to be the norm. 4) The power to detect
group-wise differences using a two-sample test based on simulated data generated from
event times which themselves depend on an MRI predictor is a complicated function of
many parameters. These parameters include the underlying distribution of the event times,
the censoring mechanism, and the distribution of the predictor. We have not shown the Cox
model to be more powerful analytically but rather under limited simulations that are realistic
given our data. The relative power of the two methods will therefore depend on the actual
distributions, the nature of the censoring, and perhaps even the underlying competing risks.

Research Highlights

• New voxel-based analytic method that incorporates time-to-event statistical
methods

• Empirically Cox model more powerful compared to two-sample approaches

• For a progressive disease like AD, time-to-event VBM more appropriate

• Greatest risk of progression to AD associated with medial temporal lobe atrophy
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Fig. 1.
Follow-up times for 123 patients in the study grouped by whether they progressed to AD by
last follow-up. The cumulative incidence for progression to AD by 1 year was estimated to
be 12%, by 2 years it was 32%, by 3 years 47%, by 4 years 54% and by 5 years 64%.
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Fig. 2.
Cortical surface renderings showing the estimated voxel-wise hazard ratios (HRs) for
progression from aMCI to AD comparing subjects at 25th percentile to the 75th percentile
after adjusting for age, sex, and years of education (FDR corrected p<0.05). Left and right
medial, lateral and ventral (V) cortical surfaces are shown.
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Fig. 3.
Cortical surface renderings showing t-statistics comparing progressors versus non-
progressors after adjusting for age, sex, and years of education for four follow-up cutoffs.
The cut-offs used were (A) two years, (B) three years (C) four years and (D) five years of
follow-up (FDR corrected p<0.05). Left hemisphere medial and lateral cortical surfaces are
shown.
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Fig. 4. Simulation Results
Estimated power as a function of sample size for competing statistical approaches based on
Weibull model simulations. The power of the Cox model approach is indicated by the solid
black line while the power of the two-sample approaches are indicated by a dashed line with
the numeric symbol indicating the follow-up cutoff in years from baseline. Here we assume
the predictor x is normally distributed with mean 0 and SD 1 and that the hazard ratio for an
increase equivalent to one IQR is approximately 2.
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Table 1
Demographics

Demographic and baseline cognitive characteristics of the 123 subjects in the cohort

Characteristic Summary HR (95% CI)a Pb

Gender, no. (%) 0.05

 Women 51 (41.5) 1.8 (1.0, 3.0)

 Men 72 (58.5) 1.0

Age at MRI, years 1.1 (0.9, 1.3) 0.47

 Median (IQR) 77 (72, 83)

 Range 55 to 94

Education level, years 1.0 (0.9, 1.1) 0.98

 Median (IQR) 15 (12, 17)

 Range 7 to 21

Apolipoprotein E, no. (%)c 0.04

 ε4 carrier 59 (50.9) 1.8 (1.0, 3.1)

 ε4 non-carrier 57 (49.1) 1.0

White matter hyperintensity 1.0 (0.8, 1.3) 0.99

 load, cm3

 Median (IQR) 12 (6, 25)

 Range 1 to 110

Cortical infarctions, no. (%)

 Present 9 (7.3) 1.2 (0.4, 3.8) 0.78

 Absent 114 (92.7) 1.0

Subcortical infarctions, no. (%)

 Present 11 (8.9) 0.47 (0.1, 1.5) 0.16

 Absent 112 (91.1) 1

MMSE at baseline 1.2 (1.1, 1.3) 0.002

 Median (IQR) 27 (25, 28)

 Range 18 to 30

CDR sum of boxes at baseline 1.5 (1.3, 1.9) <0.001

 Median (IQR) 0.5 (0.5, 1.5)

 Range 0 to 6.5

AVLT sum of trials 1–5d 1.4 (1.2, 1.6) <0.001

 Median (IQR) 28 (24, 34)

 Range 7 to 48

Abbreviations: HR, hazard ratio; IQR, interquartile range; MMSE, Mini Mental State Exam; CDR, Clinical Dementia Rating; AVLT, Auditory
Verbal Learning Test

a
Hazard ratios for age based on a 5-year increase, for education based on a 1-year decrease; for white matter hyperintensity load based on a 1-unit

increase on the natural log scale; for MMSE based on a 1-unit decrease; for CDR sum of boxes based on a 1-unit increase; for AVLT sum of trials
1–5 based on a 5-unit decrease

b
P-value based on 1 degree of freedom likelihood ratio test

c
APOE unavailable in 5 subjects
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d
AVLT unavailable in 1 subject
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Table 2
Simulation Results

Estimated power to detect an association using a Cox-model based approach vs. a two-sample t-test comparing
progressors and non-progressors. We assume rank-transformed GMD values, a sample size of n=123, and a
two-sided alpha level of 0.05.

Effect Size Expressed in terms of Hazard Ratioa

Analysis Performed 1.5 2.0 2.5 3.0

Cox model approach 0.39 0.80 0.97 1.0

Two-sample approach

 1 y follow-up cutoff 0.15 0.30 0.53 0.62

 2 y follow-up cutoff 0.24 0.54 0.80 0.88

 3 y follow-up cutoff 0.29 0.63 0.88 0.94

 4 y follow-up cutoff 0.27 0.58 0.84 0.91

 5 y follow-up cutoff 0.18 0.39 0.62 0.70

a
Hazard ratio based on comparing the 25th percentile to the 75th percentile
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