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Abstract
In this paper, we present a semi-supervised clustering-based framework for discovering coherent
subpopulations in heterogeneous image sets. Our approach involves limited supervision in the
form of labeled instances from two distributions that reflect a rough guess about subspace of
features that are relevant for cluster analysis. By assuming that images are defined in a common
space via registration to a common template, we propose a segmentation-based method for
detecting locations that signify local regional differences in the two labeled sets. A PCA model of
local image appearance is then estimated at each location of interest, and ranked with respect to its
relevance for clustering. We develop an incremental k-means-like algorithm that discovers novel
meaningful categories in a test image set. The application of our approach in this paper is in
analysis of populations of healthy older adults. We validate our approach on a synthetic dataset, as
well as on a dataset of brain images of older adults. We assess our method’s performance on the
problem of discovering clusters of MR images of human brain, and present a cluster-based
measure of pathology that reflects the deviation of a subject’s MR image from normal (i.e.
cognitively stable) state. We analyze the clusters’ structure, and show that clustering results
obtained using our approach correlate well with clinical data.
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1. Introduction
Assigning images into groups with respect to meaningful characteristics is of significant
importance in many applications. Supervised classification approaches aim at deducing a
decision function from the labeled training data. This learned function, i.e. classifier, can
then be used to assign novel images into known categories. For example, significant work
has been done in applying pattern classification algorithms in the context of Alzheimer’s
disease (AD) and mild cognitive impairment (MCI) (Duchesne et al., 2008; Fan et al., 2008;
Kloppel et al., 2008; Misra et al., 2009). In the supervised analysis of medical images,
patients are usually grouped under a common umbrella corresponding to high-level clinical
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categories (e.g. AD, MCI, autism, schizophrenia). However, in many diseases patients’
populations are highly heterogeneous. For example, the autism spectrum encompasses
Autism, Asperger’s disorder, and Pervasive Developmental Disorder-Not Otherwise
Specified (PDD-NOS). Additionally, a disease may evolve in a continuous manner, without
going through distinct clinical stages. Figure 1 shows a diagram of two possible scenarios of
patients’ distribution in many clinical studies. Clearly, the high level label information (i.e.
grouping into normal and patient categories) utilized by existing supervised approaches does
not present a comprehensive picture of the data structure. As a result, fully supervised
approaches both fail to discover categories at finer granularity levels, and do not reflect the
continuous nature of many diseases.

Problems where categorical labels are only partially available, or available only at higher
granularity levels, are commonly addressed with the help of a semi-supervised learning
approaches (Bensaid et al., 1996; Song et al., 2009). Semi-supervised analysis employs user-
provided labels to bias the process of discovering structure in the data. Several techniques
exist for incorporating prior information into semi-supervised analysis, such as seeding
(inserting labeled objects into the dataset) (Basu et al., 2002), and distance metric learning
(training a similarity measure using the labeled objects) (Kumar et al., 2005). Unfortunately,
these semi-supervised techniques often assume that both labeled and non-labeled data come
from the same distributions. Moreover, it is unclear how the labeled information can be
incorporated into an unsupervised pattern discovery process if the data under consideration
does not contain categories provided by the partial labels. As an example, consider the task
of clustering normal older participants into meaningful categories (e.g. the ones that will
develop a cognitive impairment in the future and the ones that will not). As none of the
healthy individuals is diagnosed with MCI, it is not immediately evident how the labels of
healthy and MCI subjects can guide the process of analyzing the structure of the healthy
cohort.

Clustering is a popular form of unsupervised and semi-supervised learning, and seeks to
determine how the data is organized. A multitude of clustering algorithms were proposed to
date that can be divided into those that assume that the number of clusters is known
beforehand, and those that automatically determine the number of clusters in a dataset (i.e.
unsupervised clustering algorithms). As there is often not enough prior knowledge about the
specific categories that the clustering algorithm should reveal, the unsupervised clustering
algorithms are particularly appealing.

The data in many real-life applications is high-dimensional and, due to the curse of
dimensionality, cannot be readily analyzed. The dimensionality reduction can be achieved
by extracting a small set of features from descriptive anatomical regions. These descriptive
image neighborhoods can be detected by considering local region saliency (Lindeberg,
1993), intergroup correlation (Fan et al., 2007), etc. Approaches that find neighborhoods
signifying intergroup differences are particularly appealing as they allow incorporation of
prior information in the form of labeled image sets.

In order to examine spatial patterns across individuals there is a need to establish a unified
coordinate systems across all images. Registering images to a common template allows
association of measurements across images, and often serves a purpose of signifying local
deviations from a template (Davatzikos et al., 2001; Zitova, 2003). While image registration
is often used in medical image analysis (Zitova, 2003), it is also common in other imaging
problems (e.g. face recognition (Jia et al., 2006), astrophotography (Mink, 1999), etc.).

In this paper, we present a semi-supervised approach to discovering coherent subpopulations
in image sets. We specifically target the problems where subjects populations are
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heterogeneous, or when a disease evolves in a continuous manner. The former problem is
addressed naturally by using a semi-supervised clustering approach. In the case of normal
elderly populations when there are possibly no distinct subpopulations in the dataset, we
show that denser subpopulations of normal older adults may correspond to individuals with
better cognitive performance. By iteratively removing dense subpopulations from the data,
we isolate patient subpopulations of increasing levels of pathology. Our approach differs
from the existing classification methods applied to studies of elderly populations in that
rather than attempting to classify individuals into known diagnostic categories, we attempt
to understand the heterogeneous structure of the elderly populations, and, possibly, discover
novel categories in it.

We hypothesize that the local regions reflecting differences between images in two labeled
sets will also be discriminative for clustering images that belong to novel categories. By the
term “image region” we understand a group of neighboring locations (i.e. voxels) in the
image. We propose a method for estimating local appearance models around the locations
that signify regional differences in the two labeled sets. Additionally, we incorporate a
feature ranking strategy that weights local neighborhoods with respect to their relevance for
clustering. We develop an incremental k-means-like clustering algorithm that employs a
merging procedure to automatically determine the number of clusters in the dataset. Finally,
we validate our approach on both synthetic and real datasets. We assess our method’s
performance on the problem of discovering clusters of MR images of human brain, and
present a cluster-based measure of pathology that reflects the level of abnormality of a
subject’s MR image. We analyze the clusters’ structure, and show that clustering results
obtained using our approach correlate well with clinical data. The flowchart of our approach
is presented in Figure 2 and depicts the main steps in our semi-supervised clustering
algorithm.

The remainder of this paper is organized as follows. In Section 2, we detail the main
components of our interest region detection process. In Section 3, we describe the clustering
algorithm used in our framework. We present our experimental results in Section 4. Finally,
conclusion and discussions are provided in Section 5.

2. Estimating Appearance Models at the Discriminative Locations
In real-life scenarios some types of data labels may be more reliable than others.
Additionally, labels for some image categories may be missing during training. At the same
time, labeled subject populations are often grouped into two categories, with one
corresponding to healthy individuals (e.g. normal controls), and another being a subgroup of
patients with disease (e.g. AD, autism). Our main hypothesis is that image locations
signifying differences between the labeled groups of healthy and patients, are also suitable
for clustering unlabeled images into novel categories. These categories may correspond to
finer granularity levels in healthy or non-healthy groups, or to the various stages of disease,
as individuals progress from healthy to diseased. For example, when analyzing image
clusters of individuals with mild cognitive impairment (MCI), one may expect the regions
that distinguish between the normal individuals (NC) and individuals with Alzheimer’s’
disease (AD), to be also suitable for clustering MCI subjects into potential progressors and
nonprogressors.

In this section, we present an approach that utilizes information from two labeled subsets of
images to estimate local appearance models at the locations corresponding to large regional
intergroup differences. This supervised stage of our approach consists of the following steps:
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1. Detecting point-wise regions of intergroup differences. In this step, initial regions
are obtained that reflect the intergroup point-wise differences between two sets of
labeled images.

2. Local PCA models estimation. Here, for each initial region, a PCA model of local
appearance is estimated in the neighborhood of locations corresponding to the
highest value of intergroup differences.

3. Ranking interest regions. In this step, regions of interest are ranked with respect to
their relevance for clustering.

The steps of the supervised stage are detailed next.

2.1. Detecting point-wise regions of intergroup differences
As it was mentioned earlier, the high data dimensionality must be reduced to a relatively
small set of descriptive features. Unlike point-wise measurements, regional measurements
are always more robust to appearance variations due to noise and global transformations.
Consequently, our goal is to detect image subregions that have the most potential to be
useful for clustering unknown categories.

In order to identify regions of interest (ROI), we begin by assuming the availability of two

sets of labeled images  and . These training sets reflect our
guess about the differences that the clustering algorithm should emphasize on. For example,
sets  and  may correspond to images from the group of normal controls and the group of
patients. In the task of clustering normal elderly populations considered in this paper the two
sets correspond to the normal adults with good cognitive performance and MCI patients.

We use Kullback-Leibler (KL) divergence to evaluate the group-wise differences at a given
image location. KL divergence is a common measure of the difference between two
probability distributions, and measures the expected number of extra bits required to code
samples from one distribution when using a code based on another distribution. In the case
of normal distributions, unlike t-test which emphasizes the difference in means, KL-
divergence places importance in both their means and their variances.

The KL divergence at location u has the following form:

(1)

where, x is an image descriptor at location u, and p(x) and q(x) are the probability densities
of measurements at location u in the first and second labeled sets, respectively. While the
method presented in this paper is general and its presentation does not depend on specific
type of input, in our experiments we used a tissue density preserving approach to preprocess
the raw MRI data. As a result, image descriptor x in our specific experiments indicates the
value of gray matter tissue density.

Estimating KL divergence for every location in the image results in a group differences map
where higher values indicate higher point-wise difference between two labeled sets.
Adjacent locations with high KL-values can be grouped into regions using a segmentation
algorithm. In our implementation, we followed (Fan et al., 2007), and used the watershed
algorithm to partition an image into regions according to the similarity of point-wise KL
divergence values.
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As the result of segmenting the KL divergence map, we obtain a set of L regions {R1, …,
RL} of high intergroup point-wise differences. A simple way to use the segmentation-
derived regional elements for a specific image would be to average all intensity values in
each region, yielding a regional measure corresponding to a specific region in the image.
Such regional measures from all regions could constitute a feature vector to represent
appearance information of the image, which is robust to noise, global transformations, and
inter-image appearance variation (Fan et al., 2007). However, using all points in the region
to compute a regional measure might reduce the discriminative power of this region, since
the regions Rl may include points of varying intensity, while at the same time having similar
KL divergence values. As a result, simplistic regional measures may not be suitable for
clustering. On the other hand, the segmentation-based partitioning can provide a good
initialization for selecting an appropriate subregion from each segmented region.

2.2. Local PCA models estimation
As discussed above, large region sizes may lead to overly complex distributions of intensity
values inside corresponding subregions. At the same time, if the regions are too small, the
volumetric measures become sensitive to noise. In order to address these issues, for a given
region Rl, we define location  corresponding to the maximum value of KL-divergence in Rl

(2)

By choosing a single location for every region we keep the overall number of locations  in
the image small. For example, the tissue density maps considered in our experiments are of
the size 96 × 113 × 94. As the result of segmenting the KL divergence map, we obtain about
103 regions, and hence, as many locations  (i.e. one location of interest per region). This
number is significantly smaller than the original dimensionality of the data.

Intuitively, the immediate subregion around the location corresponding to the highest value
of KL divergence has the most potential to reflect the intergroup differences in the test set.
For j-th training image and at location , we extract a square (or cuboid in case of 3-D
images) subregion  of standard size. For example, in our real-life experiments the size of
the subregions was selected to be 5 × 5 × 5 voxels. Although the image values in 
describe the neighborhood of the point with the largest group difference in Rl,j, the
distribution of intensity values in  may still be multivariate disallowing usage of
simplistic regional statistics. This is particularly evident for the cases where the disease is
accompanied by increased intensity values in one regions and decreased intensity values in
others. In the worst-case scenario, simple averaging over a combination of such regions may
cancel our the effect of pathology. Consider, for example, intensity values corresponding to
tissue density values. Existing studies suggest that AD may be accompanied by both
disease-like patterns of brain atrophy, primarily in the temporal lobe, and increase in
estimated gray matter in periventricular regions highlights regions of greater white matter
abnormalities (Davatzikos et al., 2009). As the result, for AD-like subjects one can observe
regions of increased tissue density as well as regions of decreased density. The problem may
become even more pressing for studies of autism, where there may be multiple neighboring
brain regions of increased and decreased brain matter (Akshoomoff et al., 2002; McAlonan
et al., 2005).

Alternatively, principal component analysis (PCA) presents a simple, yet effective,
procedure for revealing the internal structure of the data in a way which best explains the
variance in the data. In our approach, for a given location  we extract intensity values from
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all subregions . We then estimate a PCA model  of the extracted data, where the first
principal components in  account for most of the variability in the subregion data. In this
way,  represents the local appearance model in the neighborhood of . While the size of
the subregions  and the number of retained principal components in the appearance
model have to be selected in advance, our experiments suggest that the results presented in
this paper are relatively stable with respect to the choice of these two parameters.

As the result of this step, we obtain a set of L locations  with a set of corresponding PCA

models . The pairs ( ) can now be used to obtain a feature-vector representation V
of a novel image by extracting subregions at locations , and by projecting the extracted
data onto the first n principal components of the corresponding PCA models. However,
different pairs of locations  and corresponding PCA models will most likely result into
PCA projections with different descriptive power. In order to assess the relevance of
individual locations for clustering, we use the relevance estimation procedure described
next.

2.3. Ranking interest regions
Findings in the area of high-dimensional clustering suggest that not all subspaces of the
original vector space are equally relevant for clustering (Agrawal et al., 2005; Baumgartner
et al., 2004; Bohm et al., 2004). In order to estimate the clustering ability of the pairs

( ), we adopt the quality criterion originally proposed in (Baumgartner et al., 2004).
However, unlike (Baumgartner et al., 2004) we do not estimate the clustering quality of
individual dimensions in feature vectors V, but measure the clustering relevance of locations

. Additionally, in our experiments, we found that clustering quality at the specific locations
is more relevant if estimated from the labeled data, rather than from the test data. This can
be explained by the fact that labeled data usually corresponds to a pair of well-defined
clusters, and thus, the ranking procedure can easier determine locations suitable for
clustering labeled images. At the same time, the dataset considered in this paper does not
have clearly defined clusters, and, hence, the ranking procedure may be misguided if applied
directly to the clustered data.

We proceed by projecting the data extracted in the neighborhood of  from all training
images in  onto the first n PCA components of . This results in a set of n-
dimensional vectors . For a given , let NN(ws) be a set of k-nearest
neighbors of the projection vector ws. Additionally, let dnn(ws) be the distance between ws
and its k nearest neighbors, and defined as follows:

(3)

where d(ws, wi) is the Euclidean distance between ws and wi. For comparability purposes,
the values dnn(ws) are scaled to be in the range dnn(ws) ∈ [0, 1].

The k-nearest neighbors distance (k-nn distance) of ws indicates how densely the elements
from  are populated around ws. The smaller the value of dnn(ws), the denser is the
distribution of elements around ws. An important observation is that for uniformly
distributed elements in , the k-nn-distances of elements will be almost equal. On the other
hand, if  contains clusters with different densities and noise objects, the k-nn-distances
should be different. As the result, the presence of significantly different k-nn-distances
suggests higher relevance of PCA projections around location . A theoretical weakness of
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the measure in Equation 3 can be observed in the case of several ideally separated clusters
without noise. If the separation between the noiseless clusters is large, the values dnn(ws)
will be nearly constant, erroneously suggesting irrelevance of the location for clustering.
However, in the real data we have found this criterion to work well. Our experiments
showed that even without considering these extreme cases, the use of the described quality
indeed improves clustering performance.

A good measure of differences in dnn(ws) is based on the sum of absolute differences of each
dnn(ws) to the mean k-nn-distance μNN. This measure is given by

(4)

The measure in Equation 4 can be further scaled by μNN times the number of elements
having smaller k-nn-distance than μNN, i.e. the elements from the following set:

(5)

Finally, the clustering quality at given location is calculated as:

(6)

where  indicates the number of elements in , and Q is in the range between 0 and 1.

As the result of the clustering relevance estimation procedure, we obtain a quality value Ql
for every location . A lower quality value indicates less interesting clustering structure at
location , while large Ql suggests that the corresponding location is more relevant for
clustering. We can now retain only M highest-ranked locations where M < L, and perform
clustering of the feature vectors extracted from the test images at the retained locations.
Next, we describe the details of our clustering algorithm.

3. Incremental Clustering
The ROI estimation stage presented in Section 2 results in a set of M locations  with a set

of corresponding PCA models . The pairs ( ) can now be used to obtain a
feature-vector representation of a novel image by extracting standard subregions at locations

, and by projecting the extracted data onto the first n principal components of the
corresponding PCA models . After concatenating all PCA projections for all M locations

 in the image, we obtain a feature-vector representation V of the image. In this way we can
extract a set of feature vectors  from a set of S test images.

Our task is to use a clustering method to discover categories in a set of images with the goal
of better understanding the structure of the data at hand. More specifically, we want to
discover clusters in  that correspond to instances exhibiting similar imaging profiles.
Unfortunately, there is often not enough prior knowledge about the specific categories that
the clustering algorithm should reveal. This is particularly evident in the problems where the
properties with respect to which the data can be grouped are not known beforehand. As the
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result, the number of clusters in the set of images is not provided, and the task of the
clustering algorithm is to reveal the internal structure of the data under consideration.

In our approach, we follow the unsupervised clustering strategy of Iterative Self-Organizing
Data Analysis Techniques (ISODATA) to perform cluster-based analysis of MRI data.
While we tried a number of clustering approaches, ISODATA provided the most consistent
performance on the task of grouping MCI-like patients into a single category. Quantitative
evaluation of alternative algorithms is provided in the experiments section of this paper.

Various ISODATA approaches extend k-means clustering algorithm by adding splitting and
merging of clusters (Jensen, 1995). Clusters are merged if either the number of elements in a
cluster is less than a certain threshold, or if the centers of two clusters are closer than a
certain threshold. Clusters are split into two different clusters if the cluster standard
deviation exceeds a predefined value and the number of members is twice the threshold for
the minimum number of members. The ISODATA algorithm is similar to the k-means
algorithm with the distinct difference that the ISODATA algorithm automatically
determines the number of clusters, while the k-means assumes that the number of clusters is
known a priori.

While traditional ISODATA algorithm has the advantage of being unsupervised, it requires
a number of parameters to be empirically chosen. The standard deviation threshold used for
splitting clusters is the least intuitive and most difficult to select. In order to reduce the
number of parameters in the traditional ISODATA algorithm, we do not incorporate the
cluster splitting procedure into the clustering algorithm. Instead, starting with a large
number of small clusters, our algorithm performs iterative merging until the stopping criteria
are met. Algorithm 1 in the appendix provides details of the ISODATA procedure used in
our approach.

Although, the algorithm takes as its input the desired number of clusters K, there is no
guarantee that exactly K clusters will be produced. Instead, K serves as a rough preference
for the granularity of the resulting grouping. When K is large, the algorithm will prefer a
larger number of small clusters, and will tend to produce a small number of larger clusters if
K is small. Additionally, discarding of too small clusters in Line 3 of Algorithm 1 may lead
to the cases when not all elements are assigned to clusters. In order to achieve cluster
assignment for all elements, we perform a post-clustering step where each unassigned
element is being associated with a cluster corresponding to the centroid closest to that
element.

4. Experimental Results
4.1. Data Description

In order to assess the validity of our proposed approach, we performed a set of simulated
and real-data experiments. The datasets used in our experiments are described next.

4.1.1. Simulated data—Simulations enable us to generate images that come from
precisely known distributions. This allows us to quantitatively assess the performance of our
clustering algorithm. To this end, we selected a template ribbon shape that represents a
common morphology in the cortex of human brain. In order to simulate atrophy of the brain
cortex, we manually selected regions of thinning in the template image. Thinning of the
ribbon simulates atrophy of the brain cortex, and was achieved by performing morphological
operations. In our experiments, the amount of thinning was parameterized by Gaussian mean
and variance. Example template image and the selected thinning regions are shown in Figure
3(a,b).
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We applied random scaling and rotation transformations to simulate global errors in the
tissue registration process. Finally, we applied Gaussian smoothing to the simulated images.
Figure 3(c) shows the dataset variance induced by global transformations. It can be seen
from Figure 3(c), that due to the global transformations in the images, regions with high
variance occur in the nonthinned areas (i.e. right-top end of the ribbon). Similar noise
variance often occurs in real-data, where registration errors may confuse the analysis. Some
example simulated images with varying levels of atrophy are shown in Figure 4.

We simulated three different levels of atrophy by selecting distinct means governing the the
distributions of thinning parameters (i.e. μ1 for low atrophy, μ2 for medium atrophy, and μ3
for high atrophy). Different levels of simulated atrophy reflect the fact that some diseases
may evolve through a set of distinct stages. Additionally, if thinning parameters μ1, μ2, and
μ3 are significantly different, then the corresponding atrophy stages are distinct. In contrast,
similar values of μ1, μ2, and μ3 indicate that atrophy evolves in a continuous manner. We
generated simulated images using different sets of thinning parameters, and assessed the
performance of our approach when the distinctiveness of atrophy stages decreases. For every
set of thinning parameters, we generated 20 images with lower atrophy level, and 20 images
with higher atrophy level. These images served the purpose of guiding the feature detection
process described in Section 2. Additionally, we generated 150 images representing the
three levels of atrophy (i.e. 50 images for each atrophy level). These 150 images were
subsequently clustered following the procedure described in Section 3.

4.1.2. Real MR brain images from the Baltimore Longitudinal Study of Aging—
The Baltimore Longitudinal Study of Aging (BLSA) is a prospective longitudinal study of
aging. Its neuroimaging component, currently in its 16th year, has followed 158 individuals
(age 55-85 years at enrollment) with annual or semi-annual imaging and clinical evaluations.
The neuroimaging substudy of the BLSA is described in detail in (Resnick et al., 2003). At
the time of development of this paper the dataset contained 975 scans that had associated
cognitive evaluations. Eighteen participants were diagnosed with MCI over the course of the
study. There were 93 scans with associated cognitive evaluations of MCI participants.

Cognitive evaluations: To determine the relationship between our clustering results and
cognitive performance, we examined the clustering results obtained with our approach in
relation to performance on tests of mental status and memory. From the battery of
neuropsychological tests administered to participants in conjunction with each imaging
evaluation, we selected four measures for analysis. The four measures used in the current
analyses were the total score from the Mini-Mental State Exam (MMSE) (Folstein et al.,
1975) to assess mental status, the immediate free recall score (sum of five immediate recall
trials) on California Verbal Learning Test (CVLT) (Delis et al., 1987), and the long-delay
free recall score on CVLT, to assess verbal learning and immediate and delayed recall, and
the total number of errors from the Benton Visual Retention Test (BVRT) (Benton, 1974) to
assess short-term visual memory. We focused on these measures because changes in new
learning and recall are among the earliest cognitive changes detected during the prodromal
phase of AD (Grober et al., 2008).

4.1.3. Preprocessing MRI data—All MR images were preprocessed following mass-
preserving shape transformation frame-work (Davatzikos et al., 2001). Each skull-stripped
MR brain image was first segmented into three tissues, namely gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF), by a brain tissue segmentation method
proposed in (Pham and Prince, 1999). Afterwards, each tissue-segmented brain image was
spatially normalized into a template space, by using a high-dimensional image warping
method (Shen and Davatzikos, 2002). The total tissue mass is preserved in each region
during the image warping, which is achieved by increasing the respective density when a
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region is compressed, and vice versa. Finally, tissue density maps were generated in the
template space, reflecting local volumetric measurements corresponding to GM. An
example of tissue density map for GM is shown in Figure 5. These tissue density maps give
a quantitative representation of the spatial distribution of tissue in a brain, with brightness
being proportional to the amount of local tissue volume before warping.

4.2. Analysis
4.2.1. Clustering simulated data—As has already been mentioned, the simulated
thinning of regions in 2-D shapes represents presence of different types of atrophy. The aim
of our simulated experiments is to determine whether our clustering approach can separate
groups with different types of simulated atrophy. In our experiments, we performed the
training stage of our approach using 40 training images (i.e. 20 images with low atrophy
level, and 20 images with high atrophy level). Following the training procedure in Section 2,
we detected locations of interest, and built local PCA appearance models using the data
extracted from the detected locations’ neighborhoods of dimensions 5 × 5. Only the first two
principal components were used for projecting local regional data. A clustering relevance
value was associated with every point, with higher values corresponding to locations that are
likely to be useful for clustering. At the test stage, we extracted image features using
locations and local PCA models obtained during training.

We assessed the ability of our algorithm to cluster test images into three groups according to
the level of atrophy. A complete simulated experiment consists of data generation, feature
detection, and clustering. As discussed earlier, significantly different levels of atrophy in the
dataset indicate presence of distinct stages of disease. We repeatedly performed the
complete experiment for different triplets of means governing thinning parameters
distributions. That is, for a specific triplet of parameters means we generated training images
and test images, and feature detection and clustering was performed using the generated
images. The process of image generation, feature detection, and clustering was repeated 50
times. By adjusting the parameter corresponding to the desired number of clusters in the
clustering algorithm, we obtained three clusters at each complete simulated experiment. A
cluster can be assigned a label based on the atrophy level of the majority of the elements in
the cluster. Ideally, one would hope to find three clusters, with a specific cluster containing
images with the same atrophy level.

Clustering results as observed for varying dissimilarity between atrophy levels in the dataset
are shown in Figure 6.

As expected, if atrophy levels in the three groups are similar (i.e. parameter distributions are
overlapping), the algorithm fails to discover the three atrophy classes. On the other hand, for
significantly different atrophy levels, the algorithm can achieve near perfect performance
even in presence of confusing global transformations. Nevertheless, data noise seems to
affect the clustering performance when the distinctiveness of atrophy groups approaches the
middle of the considered spectrum of atrophy triplets.

4.2.2. Clustering BLSA brain images—In the next set of experiments, we tested the
performance of our approach on the images from the BLSA dataset. The main goal of our
experiments was to examine the structure of the data in the BLSA study. Cluster analysis of
the BLSA data is a challenging task as a subject’s cognition usually degrades in a
continuous manner. Additionally, we explored ways of using discovered subpopulations to
quantify the severity of pathology in individual brains.

In the interest region detection stage of our algorithm one needs to identify two training
subsets that could potentially yield features that are relevant for clustering. Ideally, the two
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training subsets would belong to different ends of disease spectrum, with one subset
corresponding to participants with better cognitive performance and the other subset
corresponding to participants that are cognitively declined. We selected 50 MRI scans of 8
subjects diagnosed with MCI to represent the cognitively declined subset. We used cognitive
scores to identify a subset of normal adults that may show relatively better cognitive
performance. Specifically, we selected 50 images of 7 participants in such a way, that the
average MMSE score and the average CVLT List A score of the selected participants at the
first visit was above average of the first-visit evaluations. It is obvious that many alternative
strategies for selecting the two training sets are possible, and care has to be taken to ensure
the two selected sets allow to detect features that a relevant for clustering.

The remaining 875 scans were retained for clustering and included 43 MCI images that did
not take part in feature detection. The presence of some scans of MCI subjects allowed us to
judge the clustering performance of our algorithm as described later in this paper.

During the interest region detection stage of our approach, we learned local PCA models in
the 5 × 5 × 5-voxels neighborhoods of locations of interest. We used only the first two PCA
components of local models. After ranking detected locations with respect to their relevance
for clustering, we retained only half of top ranked locations and corresponding local PCA
models. We then extracted feature vectors from the images retained for clustering, resulting
in 875 feature vectors of dimensionality being approximately 103. Example of 103 top-
ranked detected locations and their immediate neighborhoods are shown in Figure 7. In the
figure, the neighbourhoods are colored with respect to their relevance for clustering. Notice
that, while there is a relatively large number of detected locations in the occipital lobe,
which is not commonly associated with age-related cognitive decline, they have low
clustering relevance values.

The high dimensionality of the feature vectors obtained at this point may prevent the
clustering algorithm from producing reliable results. At the same time brain images can
sometimes be assumed to be lying on a low-dimensional manifold embedded in a high-
dimensional space (Batmanghelich and Verma, 2008; Khurd et al., 2006). The problem of
discovering true intrinsic dimensionality of the manifold can be approached with manifold
learning techniques like ISOMAP (Tenenbaum et al., 2000) or Locally Linear Embedding
(LLE) (Roweis and Saul, 2000). The ISOMAP algorithm forms a graph by connecting each
point to its nearest neighbors, approximates pairwise geodesic distances on this graph, and
applies metric mutidimensional scaling (MDS) to recover a low dimensional isometric
embedding. In our experiments ISOMAP failed during the MDS step. Therefore, we
resorted to LLE which works by computing nearest neighbors of every point, solving for the
weights necessary to reconstruct each point using a linear combination of its neighbors, and
finding a low dimensional embedding that minimizes reconstruction loss. As a result of
applying LLE, we reduced vector dimensionality to 20.

We performed clustering of the data using our incremental approach. Our algorithm
discovered two clusters of significantly different sizes (i.e. 855 and 20 elements
respectively). Notably, all 43 MCI scans belonged to the larger cluster. Following this
observation, we hypothesized that subjects’ brains in a larger cluster may have overall
higher levels of pathology than the subjects in the smaller cluster. This in turn would mean
that the image population of subjects with relatively better cognitive performance is more
densely distributed than the population of less normal brain images.

4.2.3. Hierarchical structure of the data—In order to further analyze the structure of
the data, we performed several iterations of the clustering algorithm, where at each iteration
we obtained subclusters of the larger cluster found at the previous iteration. At each
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iteration, the algorithm yielded two subclusters, one large subcluster and one relatively
small. A part of the hierarchy of obtained subclusters and corresponding subcluster sizes are
shown in Figure 8.

Next, at each level of the hierarchical clustering structure in Figure 8, we calculated mean
cognitive scores and mean age. The plots showing evolution of different mean cognitive
scores in smaller subclusters with the subcluster depth are presented in Figures 9(a-d). This
is an important result, suggesting that more normal brains usually form tighter clusters, and
that cognitive scores usually worsen with the cluster depth.

Additionally, the hierarchical structure of clusters in the BLSA dataset (Figure 8) indicates
that there are no clearly defined clusters. This supports the hypothesis that brain morphology
degrades in a continuous manner.

4.2.4. Effect of the choice of parameters—As described in Section 2.2, during the
feature detection stage of our algorithm one needs to select the size of standard subregion
and the number of principal components that encode local appearance in the subregion. We
performed a set of experiments to assess the effect of choosing these parameters. In
particular, we varied the parameters and evaluated the evolution trends of mean cognitive
scores in smaller subclusters with the subcluster depth.

The plots in Figures 10 and 11 show evolution of mean CVLT List A Sum in smaller
subclusters with the subcluster depth for different parameters of the appearance model
estimation step. The results are consistent with the mean score evolution initially shown in
Figure 9(a), and once again suggest that clusters of normal elderly adults at the higher levels
of hierarchy may correspond to subpopulations with better cognitive performance. As the
result, we retain only the first two principal components for the remaining experiments
described in this paper. This choice results in a smaller size of feature vectors and reduces
computation time of our approach.

4.2.5. Cluster-based level of pathology—While the obtained clusters give us
understanding of the image set structure, it is also desirable to be able to quantify the amount
of atrophy in an individual brain. Given a cluster of images with higher pathology CP, and a
cluster of more normal images CN, we propose to define the level of pathology for an image
represented with a feature vector V as follows:

(7)

where d(V, mN) and d(V, mP) are the distances from V to the centroids of more normal and
more pathological clusters, respectively. As the result, we expect individuals with better
cognitive performance to have lower level of pathology, and vice versa.

In our experiments, we used the centroids of two clusters obtained at the highest hierarchical
level to calculate the level of pathology in Equation 7. Having calculated the level of
pathology for every image in the dataset, we can asses the validity of the proposed measure
by analyzing the correlation between the measure and cognitive scores.

4.2.6. Relationship between level of pathology and cluster hierarchy—We
calculated mean level of pathology for the smaller subclusters in the cluster hierarchy.
Figure 12 shows a plot of evolution of the level of pathology with the cluster depths.

The plot suggests that, at each iteration, our algorithm “peels off” a subset of images with
the lowest level of pathology. This small and dense subset of images corresponds to the
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most normal subpopulation at the specific iteration. This implies that the BLSA data looks
more like “Scenario 2” in Figure 1.

4.2.7. Relationship between cognitive performance and level of pathology—In
order to analyze the relationship between the level of pathology and clinical performance,
we divided individuals into two groups with respect to their mean level of pathology. One
group was formed out of individuals having mean level of pathology values in the upper
quartile (i.e. upper 25%). The subjects with the lower 75% of the mean level of pathology
were placed into the second group. Analysis of groups that correspond to the extreme
quartiles of the pathology values is similar to the analysis of classification-based biomarkers
of AD (Davatzikos et al., 2009), where only the extreme quartiles of the real-valued
biomarkers can be considered when assessing relationships with cognitive performance.

We performed cross-sectional analyses of the four cognitive measures (CVLT Sum of
Immediate Free Recall, CVLT Delayed Free Recall, BVRT errors, and MMSE) in relation
to the mean level of pathology. Cognitive performance between groups was compared by
one-sided t-test.

As shown in Table 1, dividing participants with respect to the mean level of pathology
yields two groups, where subjects in one group usually have significantly better cognitive
scores than subjects in the other group. Only for BVRT Error at the first visit there was no
significant group difference observed. Overall, the results in Table 1 suggest that clusters
obtained using our approach allowed us to define a measure of level of pathology in human
brain. Additionally, we did not observe significant age difference between the lower and the
upper quartile groups (p=0.322). This suggests that our method captured pathology that is
not solely induced by age.

Additionally, we performed voxel-wise t-tests to compare the image groups corresponding
to the upper and lower quartiles of the level of pathology (upper 25% vs. lower 25%). The
corresponding group differences are shown in Figure 13. The figure shows p-vales of one-
sided t-test obtained for two groups, and suggests that there is significant loss of brain matter
in individuals with associated higher level of pathology.

4.2.8. Comparison with alternative clustering approaches—We compared
performance of the ISODATA clustering algorithm and alternative clustering approaches.
Recall, that among all images considered in our experiments, 43 scans belong to MCI
subjects. Thus, for an appropriate two-class clustering algorithm, one would expect all MCI
subjects to be grouped within the same cluster. This expectation is reasonable as the feature
extraction process itself was designed to detect features that potentially separate MCI from
those normal controls that perform very good cognitively.

We applied a set of alternative clustering algorithms and estimated their ability to group
MCI subjects into a single cluster. To achieve this, we employed a leave-one-out scheme
that consisted of the following steps:

1. Perform feature detection step as described earlier.

2. At every run of leave-one-out evaluation, remove one subject from the dataset.

3. Cluster the remaining subjects into two clusters.

4. Identify MCI-like cluster as the cluster with the largest number of MCI images.
Calculate the fraction of the total MCI scans that belong to the MCI-like cluster.

5. Return the average fraction of the total MCI scans that belong to an MCI-like
cluster.
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As the result of the above procedure, for each clustering algorithm we obtain the average
fraction of the total MCI scans that belong to the MCI-like cluster in a two-class clustering
problem. Table 2 provides summary of our results. In particular, it shows that ISODATA
algorithm usually groups most of the MCI subjects into the same cluster (i.e. 97.5% on
average).

Other clustering algorithms yielded less consistent performance, which signifies the fact that
the choice of ISODATA algorithm may be more appropriate for the problem of clustering
normal aging populations. Additionally, poor performance of standard algorithms suggests
possible absence of distinct stages in the development of MCI.

It is worth pointing out that in our experiments, clustering was performed on the features
that ranked in the top half. Under such choice, both ISODATA and k-means algorithms
achieved highest fraction of MCI in an MCI-like cluster.

Finally, in order to assess the importance of the feature extraction stage in our approach, we
arranged the original GM density maps in a vector form, and applied k-means algorithm
directly to the vectorized density maps. By employing a leave-one-out scheme for
evaluation, we found that on average only 79.9% of the MCI subjects belong to an MCI-like
cluster. This is significantly lower than 89.3% obtained using k-means after feature
extraction.

4.2.9. Effect of selecting the number of top-ranked locations—Finally, as we
mentioned earlier in Section 4.2.2, retaining a large number of top-ranked detected locations
may result in inclusion of locations that are not usually associated with the age-related
cognitive decline. It is therefore of interest to understand if the clustering results are
significantly affected when choosing a different number of top-ranked locations. For this
purpose, we performed clustering using only 102 top-ranked locations. Figure 14 shows an
example of the 102 top-ranked regions.

Figure 15 shows evolution of mean CVLT List A Sum in smaller subclusters with the
subcluster depth when using only 102 top-ranked locations.

The figure suggests that clustering results are similar when using 102 or 103 top-ranked
locations. Moreover, we found that the average fraction of the total MCI scans that belong to
the MCI-like cluster in a two-class clustering problem is 96.2%, which is similar to the
result obtained when using 103 top-ranked locations.

5. Conclusions
In this paper, we addressed the problem of semi-supervised analysis of imaging data. Unlike
widely accepted supervised approaches that assume that the data structure is known, our
method allows us to automatically discover novel categories in the dataset by employing a
clustering technique. We developed an interest region detection strategy that uses high level
labeling information of only a part of the data to identify a subspace of image features that
may be relevant for clustering. We then described a clustering algorithm for revealing the
structure of the data at the finer levels of granularity. When applied to the problem of
analyzing MR brain images in elderly individuals, our method discovered internal data
structure that agrees with existing knowledge about morphological changes taking place in a
brain. The main strength of our approach is the ability to discover homogeneous
subpopulations in heterogeneous data. We used the discovered clusters to design a measure
of individual’s brain’s deviation from healthy state. We showed, that the proposed measure
correlates well with clinical data. In particular, our results suggest that groups of more
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normal individuals are homogeneous, while at the same time, there is significant
inhomogeneity in groups of subjects with brain abnormality. Moreover, our proposed
approach allows us to separate the subpopulation that performs well cognitively, from the
rest of images in the dataset.

The two training sets in our approach may correspond to the extreme cases of the disease
(e.g. extreme healthy vs. extreme sick). Our results from the study of older adults were
consistent with existing approaches. Together with our simulated experiments this suggests
that in studies of healthy older adults, relevant features can potentially be obtained from the
images corresponding to the cognitively declined and cognitively stable subpopulations. At
the same time, great care has to be taken when identifying the two train sets, as improperly
balanced training data may bias the feature detection process toward undesirable effects. For
example, when clustering populations with autism spectrum disorders (ASD) one may need
to select one of the training sets such that it includes all forms of ASD.

While the presented approach provides insights into the fine structure of the data, several
important questions still have to be addressed. First, our proposed measure of pathology is
based on two clusters obtained at the highest clustering level. It would be interesting to
investigate the possibility of establishing a more complex measure based on the deeper level
clusters. Second, the data in the BLSA study does not seem to have clearly defined and well
separable clusters. In contrast, in other clinical studies subjects are more likely to form
distinct subpopulations with respect to the type of abnormality (e.g. study of autism). Using
our proposed approach in alternative studies presents an interesting direction for future
investigation.

Finally, while our framework is designed to find novel categories in heterogeneous sets, it
would be interesting to assess the performance of the feature detection component of our
approach in the task of classifying images into known categories. We plan to extend our
clustering approach to the classification scenario, and apply it to the problem of classifying
normal, MCI, and AD subjects.
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Figure 1.
Typical scenarios of disease evolution. Scenario 1: While patients are grouped under a
common umbrella, in reality they form distinct clinical categories. Scenario 2: Disease
evolves gradually, and there are no distinct clinical categories in the data. However, the level
of disease progression is different for different individuals.
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Figure 2.
Flowchart of our approach. The supervised part of the input consists of two groups used to
detect features that may be useful for clustering. In the feature detection step, regions of high
intergroup differences are first obtained by segmenting KL-divergence map obtained from
the two groups. For each region, a location (i.e. voxel) that corresponds to the highest
intergroup difference value is selected and the appearance model is learned in its
neighborhood. Only those locations and corresponding appearance models that are
“relevant” for clustering are retained. These locations and appearance models are then used
to obtain feature-vector representation of the new data. If dimensionality of the extracted
feature vectors is large, it is reduced using a manifold learning technique. Finally, the data is
being clustered using a version of ISODATA algorithm.
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Figure 3.
Simulated data generation process. (a) Template image; (b) Two thinning regions; and (c)
Variance in the simulated dataset due to global transformations.
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Figure 4.
Example simulated images corresponding to varying levels of atrophy.
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Figure 5.
Example of smoothed tissue density map of GM.
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Figure 6.
Evolution of clustering accuracy with atrophy distinctiveness. The horizontal axis represents
difference between thinning parameter distributions. Thinning parameter distributions for
some experiments are also shown. Intuitively, highly overlapping distributions indicate
absence of distinct clusters in the dataset.
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Figure 7.
Example of 103 top-ranked detected locations signifying differences between cognitively
stable and cognitively declined subjects in the BLSA study. The neigbourhoods of the
detected locations are colorcoded with respect to their relevance for clustering. For display
purposes, the values of clustering relevance for the top 103 locations where normalized to be
within the unit interval. Higher values of the color map indicate higher relevance.
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Figure 8.
Hierarchical structure of the BLSA data. Numbers in the boxes indicate the number of
elements in corresponding subclusters.
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Figure 9.
Evolution of mean cognitive scores in smaller subclusters with the subcluster depth.
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Figure 10.
Evolution of mean CVLT List A Sum in smaller subclusters with the subcluster depth for
different choices of standard subregion size.
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Figure 11.
Evolution of mean CVLT List A Sum in smaller subclusters with the subcluster depth for
different choices of the number of retained principal components in the appearance model.
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Figure 12.
Evolution of mean level of pathology in smaller subclusters with the subcluster depth.
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Figure 13.
Voxel-wise differences in groups corresponding to lower and upper quartiles of level of
pathology. The images show p-values of one-sided t-test.
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Figure 14.
Example of 102 top-ranked detected locations signifying differences between cognitively
stable and cognitively declined subjects in the BLSA study. The neigbourhoods of the
detected locations are colorcoded with respect to their relevance for clustering. For display
purposes, the values of clustering relevance for the top 102 locations where normalized to be
within the unit interval. Higher values of the color map indicate higher relevance.
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Figure 15.
Evolution of mean CVLT List A Sum in smaller subclusters with the subcluster depth when
using only 102 top-ranked locations.
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Table 1

Relationship between cognitive performance and mean level of pathology

CVLT
List A Sum

CVLT Long
Delay Free

BVRT
Errors MMSE

Mean Scores 0.001 <0.001 0.007 0.048

First Visit Scores 0.001 0.001 0.011 0.137

Last Visit Scores <0.001 0.001 0.042 0.038

p-values of one-sided t-test obtained for the group with mean level of pathology in upper 25% vs. the group with mean level of pathology in lower
75%.
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Table 2

Comparison of clustering algorithms

Clustering algorithm Fraction of MCI in the MCI-like cluster

ISODATA 97.5%

spectral clustering 89.7%

k-means 89.3%

expectation-
maximization

83.9%

affinity propagation 81.5%

Average fraction of MCI subjects that were assigned in the same cluster.
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