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Abstract
In this article, we describe a detailed method for automatically generating tetrahedral meshes from
3D images having multiple region labels. An adaptively sized tetrahedral mesh modeling approach
is described that is capable of producing meshes conforming precisely to the voxelized regions in
the image. Efficient tetrahedral construction is performed minimizing an energy function
containing three terms: a smoothing term to remove the voxelization, a fidelity term to maintain
continuity with the image data, and a novel elasticity term to prevent the tetrahedra from becoming
flattened or inverted as the mesh deforms while allowing the voxelization to be removed entirely.
The meshing algorithm is applied to structural MR image data that has been automatically
segmented into 56 neuroanatomical sub-divisions as well as on two other examples. The resulting
tetrahedral representation has several desirable properties such as tetrahedra with dihedral angles
away from 0 and 180 degrees, smoothness, and a high resolution. Tetrahedral modeling via the
approach described here has applications in modeling brain structure in normal as well as diseased
brain in human and non-human data and facilitates examination of 3D object deformations
resulting from neurological illness (e.g. Alzheimer’s Disease), development, and/or aging.
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1. INTRODUCTION
Approaches to the geometric modeling of neuroimaging data have existed for a number of
years and have been aggregated into a commonly used framework for assessing,
representing, and displaying the results from structural and functional magnetic resonance
(MR) investigations (Joshi, Miller et al. 1997; Miller, Priebe et al. 2009; Thompson, Miller
et al. 2009). These methods seek to, at once, model the 2D embedded surfaces of the brain,
measure the inherent geometric properties of those surface manifolds, and to use collections
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of 2D surfaces to measure sub-elements of brain thickness and volume that lie between
them. Yet, such surface meshes alone do not typically capture the 3D nature of the
cerebrum, its defined sub-divisions, and embedded sub-elements, i.e. closed surface meshes
work well for modeling 2D edges and boundaries of an object but they do not account for
the space inside of the surface. What is needed are efficient methods for generating space
filling meshes that not only represent the surface of the object of interest but fill that object
with a connected lattice that facilitates more comprehensive registration and resulting
statistical analysis of brain structural change. In this paper, a robust model is described for
the generation of 3D tetrahedral meshes applied to MR brain data. Such finite element
modeling approaches provide a useful extension for surface-based modeling and give rise to
many applications in the study of 3D brain architecture.

In what follows, the use of surface mesh modeling in the neuroimaging literature is
discussed, the use of finite element modeling approaches is examined, a detailed method for
generating tetrahedral meshes is introduced, mesh generation on MRI data from several
human subjects and on animal data is illustrated, and several other applications where
tetrahedral meshes are advantageous are described. The paper concludes with summary of
this approach and a brief description of future work in the application of tetrahedral meshes
for neuroscience imaging data.

1.1 Tessellated Surface Representations
The creation of 2D surface-based models of the mammalian cortex first became of interest
to neuroscientists in the 1980’s (Van Essen and Maunsell 1980) becoming mainstream with
the widespread growth of MR imaging and the use of computationally-based approaches for
surface fitting, generation, and representation (Dale, Fischl et al. 1999; Fischl, Sereno et al.
1999; Fischl, Sereno et al. 1999; Fischl, Sereno et al. 1999). Surface models of the cerebral
cortex permit quantification of not only the particular surface geometry itself (e.g. shape
index and local curvature (Thompson, Schwartz et al. 1996), cortical folding (Fischl,
Rajendran et al. 2008), etc) but with nested surfaces, often representing the outer cortical
surface as well as the gray/white matter boundary, it is possible to measure cortical thickness
(Fischl and Dale 2000), sulcal depth (Tosun, Duchesne et al. 2007), as well as the fractal
characteristics (Kuriakose, Ghosh et al. 2004) of the cortical sheet. Surface based
approaches have now been widely applied to measure the cortical geometry normal
(Shattuck, Joshi et al. 2009), schizophrenic (Narr, Bilder et al. 2007), aging (Apostolova,
Thompson et al. 2009), Alzheimer’s Disease (Thompson, Mega et al. 2001), Williams
syndrome (Van Essen, Dierker et al. 2006), and many other subject populations. Lastly,
cortical surface models provide a convenient canvas upon which to “paint” patterns of
cortical activity obtained during cognitively induced blood oxygenation level dependent
change from functional MRI experiments (Van Essen, Drury et al. 1998; Tootell and
Hadjikhani 2001; Slotnick and Yantis 2003; Ekstrom, Bazih et al. 2009). So important have
surface models become in the context of brain imaging that proposals to create databases of
surface representations as well as population based average surfaces have been put forward
with much success (Van Essen 2005).

Yet while surface-based representations provide a useful context for the representation of
embedded manifolds contained in MR data sets (e.g. the outlines of the basal ganglia
(Ballmaier, Schlagenhauf et al. 2008), lateral ventricles (Chou, Lepore et al. 2009), etc) they
present limitations, as well. Surfaces are fundamentally described by their topological
characteristics (e.g. Euler numbers, genus, etc) wherein in extreme cases, some processing
algorithms require that surfaces be continuously differentiable while not having any errors in
the topology (e.g. “handles” or “holes”) that must often be corrected by hand. The reasons
for such constraints include: 1) in the case of examining fMRI data is the desire of the
investigator to smooth or flatten the cortical model to more precisely examine loci of BOLD
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activation existing with sulcal folds; 2) in surface-based atlasing where the cortical surface
may be inflated, represented as a sphere, and subjected to population averaging; and/or 3)
surface models subjected to tensor based morphometric (TBM) approaches to examine the
relative changes in cortical geometry as a function of disease state (Leow, Klunder et al.
2006; Chiang, Reiss et al. 2007; Thompson and Apostolova 2007). Whereas surfaces lend
themselves nicely to the challenges of geometric representation in neuroimaging data, they
are insufficient to fully describe brain anatomy due to their non-volumetric nature (e.g. they
are 2D sheets in a 3D space). What is needed is an extended framework that provides a fully
3D generalization of the surface-based approach but does so in a way that possesses unique
attributes that enable new forms of morphometric measurement.

1.2 Finite Elements and Mesh Generation Methods
Finite element methods have been widely used in physics based modeling for some time
(Hughes 2000; Logan 2007; Roters, Eisenlohr et al. 2010), but are now beginning to be used
in image processing applications as well, such as image registration (Joshi, Shattuck et al.
2007) and various types of deformable modeling (Wang, Gu et al. 2004). These applications
require the construction of a volumetric mesh, and tetrahedral meshes are most common
type. Tetrahedral mesh modeling and analysis (TMMA) is an active area of research even
for single region objects with well defined boundaries (Labelle 2007). Generation of a
tetrahedral mesh from an image poses particular difficulties due to the “voxelization” of the
image, which is a byproduct of how the image is captured, thresholded, and stored and not
reflective of the true shape of the imaged object. For instance, the left side of Figure 1a and
b show tetrahedral meshes that conform exactly to an image of a perfect sphere while on the
right is a mesh of the same image but with the voxelization removed using the method
described below. It is frequently assumed that a smoothed representation is a better
approximation to the true, underlying object. Another means for removing the voxelization
would simply be to generate tetrahedra much larger than the image voxel size, however this
can result in loss of information and so is not advisable. Of the many mesh generation
methods, only a few have been designed to or adapted to work specifically for medical
images. Whether or not a mesh generated from an image volume is considered to be an
accurate representation of the underlying object is somewhat dependent on the application,
but a few useful metrics considered here for assessing mesh quality are the range of dihedral
angles of the tetrahedra, the adaptivity of the tetrahedral sizes, conformity to the data,
boundary smoothness, and the robustness of the method. Examples of existing methods for
tetrahedral generation are briefly summarized below.

One of the most common approaches for tetrahedral mesh generation has been the Delaunay
method (Weatherhill and Hassan 1994). One limitation of the Delaunay approach is that it
can allow tetrahedra to possess exceedingly small dihedral angles, although some research
has attempted to address this (1997). A means of finding the regional boundaries in images
for Delaunay mesh generation has been proposed by Fang and Boas (2009). A limitation of
this approach is that a 2D triangulated mesh needs to be generated a priori as an input to the
Delaunay tetrahedral mesh generation method. Non-intersecting and topologically accurate
high resolution triangulated meshes can be difficult to generate for images with multiple
regions having complicated boundaries. Any intersections that occur in generating this web
of surfaces will cause the Delaunay method to fail, since it is sensitive to topological defects
of the input surface mesh such as self-intersections and overlapping regions. In contrast, the
method described in this article works directly on segmented images, instead of on surfaces
extracted from them, and therefore avoids these issues.

Iterative approaches to tetrahedral mesh generation and improvement have also been
proposed. Ferrant and Warfield (2004) have suggested covering objects of interest with
tetrahedra and systematically subdividing those on the boundary via several approaches.
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However, use of tetrahedra larger than the image voxel size means that the resulting mesh
could contain less information than the original image. Thus, applications using certain
iterative mesh improvement methods may be disadvantageous compared to other finite
difference methods which operate on the more detailed image. Tetrahedralizing images
based on octree techniques has been discussed by Mohamed and Davatzikos (2004) as well
as by Zhang and coworkers (2005; 2008). In contrast to the Ferrant et al. approach, the
Zhang et al. method is shown able to produce smooth meshes with high resolution. We
provide a thorough comparison of this approach to our own method in the results section.

Another technique involves constructing a mesh that approximates the desired geometry and
then physically deforming it. In the method described by Molina et al. (2003) the entire
single region of interest is covered with adaptively sized tetrahedra. A force is then applied
to push the boundary nodes close to the known boundary while tetrahedra quality is mainted
by an elastic response. In a second step, the boundary nodes are moved to lie exactly on the
known boundary regardless of the elastic response. This second step could potentially allow
elements to be crushed (e.g. dihedral angles equal to zero) if the data to be meshed is poor.
This method will only work if a single region is to be meshed and is not designed to directly
mesh an image. Despite the fact that this is a physics based method and the one proposed is
an optimization based one, this method bears the most resemblance to the proposed one in
that it improves a constructed mesh rather than employing the widely used Delauny method.

1.3 Advantages of Tetrahedral Meshes
Tetrahedral meshes have particular utility in image alignment and registration. Additionally,
tetrahedral finite element mesh models of brains have applications in modeling of spatial
brain deformation during neurosurgery (Nimsky, Ganslandt et al. 2000; Nabavi and Black
2001; Skrinjar, Nabavi et al. 2002). Tetrahedral meshes are useful for accurately modeling
the bio-mechanical forces acting on the brain which may cause it to deform in a nonlinear
manner (Ferrant, Warfield et al. 2000; Wittek, Kikinis et al.). Tetrahedral meshes are helpful
in modeling of volume conduction effects in EEG and MEG (Van den Broek, Reinders et al.
1998) and for simulating the potential and magnetic field for realistically shaped head
models and understanding the effects current distribution (Hebden, Veenstra et al. 2001;
Van Uitert, Weinstein et al. 2003; Darvas, Pantazis et al. 2004). Finally, tetrahedral meshes
have been used in optical tomography, diffuse optical tomography and bioluminescence
tomography (Hebden, Veenstra et al. 2001) to model diffusion and radiative transfer
equation and hemodynamics for human brains, mouse models, as well as modeling the adult
human breast (Bluestone, Abdoulaev et al. 2001; Hebden, Veenstra et al. 2001; Wexler,
Peters et al. 2002). Given these applications, accurately generating robust tetrahedral meshes
is an important step and deserves particular consideration to the necessary mathematics
involved.

1.4 Proposed Mesh Generation Approach
In the current paper, a voxel conforming mesh is constructed that has good quality tetrahedra
and adaptive sizes inside individually segmented regions. The method proposed in this paper
extends the basic approach of Molina et al. (2003) to obtain a structured mesh within region
interiors and a modified mesh generation for multiple ROIs to ensure voxel conformity on
region boundaries.

To perform the smoothing, the methodology of active surfaces (active contours in 2D) is
used. Active contours refers to a body of research concerned with finding objects in noisy or
otherwise degraded 2D images (Jifeng, Chengke et al. 2007; Le Guyader and Vese 2008).
This is initiated using a simple initial curve (usually a circle) and evolving it to the boundary
of an object by attempting to minimize an energy value. The energy typically contains a
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term for how well the curve matches the boundary and a regularization term, relating to the
smoothness or length of the curve. That is, the voxelization of the image needs to be
removed while keeping the overall shape of the regions entirely intact. The energy to be
minimized is given below and based on previous work on joint segmentation and
registration (Le Guyader and Vese 2008).

2. MATERIALS AND METHODS
2.1 Image Processing on Segmented Data

The starting point for this approach is any digital image that has been segmented into N
multiple regions at the voxel level. Many established methods are capable of finding distinct
regions of interest even if the image quality is relatively low (Tu, Narr et al. 2008). The
segmented image can also be easily adjusted to create the thresholded image used for the
meshing. For example, unnecessary regions can be removed manually or using a
segmentation algorithm, the image dimensions can be adjusted, or necessary topological
characteristics can be enforced. For all the examples to follow, a simplistic masking feature
is applied as an initial step, which reassigns voxels that share zero or one voxels with
another voxel of the same type. This has no effect on smooth regions but removes single
voxel features for which it is not appropriate to mesh.

2.2 Regions and Level Set Generation
For meshing purposes, every voxel is represented as a unit cube. If two cubes of a different
type share a face, then that face is considered as a boundary. This defines both the
boundaries of the individual regions ("region boundaries") and union of all region
boundaries (called here simply “the boundary”). The distance function φ0(x) to the boundary
is computed using the fast marching method (Sethian 1996). This function remains fixed, it
is computed only once, and is not updated during the iterative process. The distance function
is used both for adaptively sizing the tetrahedra and for the active surface smoothing, as
discussed below.

2.3 Voxel Conforming Mesh Generation
In this step, a tetrahedral mesh that conforms exactly to the voxelized regions of interest is
created. Every 1-by-1 square on the boundary is composed of two tetrahedral faces. On each
side of the boundary, two tetrahedra, taken together, form a pyramid, whose base is the 1-
by-1 square of the boundary and whose apex is exactly at the center of a unit cube formed
from a single voxel. In this way, no tetrahedra are permitted to have all 4 nodes on the
boundary.

For the interior tetrahedra, an adaptive body-centered cubic (BCC) mesh based on Molina et
al. (2003) is used. It begins by creating large tetrahedra and refines each of these into 8
identical smaller tetrahedra. This process is continued in an iterative fashion until the degree
of fit is satisfied. The signed distance function (Osher and Sethian 1988) is used to
determine how many refinements are made. Tetrahedra near the boundary are refined many
times, making them smaller, while the interior tetrahedra are refined less and so will tend to
be larger. T-junctions can be formed when a node of one tetrahedron lies on the edge of
another tetrahedra and results in an unusable mesh. These are identified and systematically
removed allowing interior tetrahedral elements to be adaptively sized and have good quality.

Most meshing methods allow for adaptively sized elements on region boundaries. This is an
extremely useful property for meshing an object of arbitrary detail that is flat or nearly in
some areas. For example, a mesh of an airplane might only need large tetrahedra for the
wings but smaller tetrahedra would be needed for more detailed areas such as the engine
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nacelle. Medical images, such as those of the brain, usually do not have large flat areas
where large tetrahedra can be effectively used. Two other image-to-mesh methods
referenced in the introduction, Zhang et al. (2005) and Fang and Boas (2009), employ
tetrahedral generation methods with the capacity for adaptively sized boundaries, but the
boundaries of segmented brain regions end up being universally small on the boundaries. In
contrast, the methods that mesh arbitrarily detailed boundaries of man-made objects make
effective effect use of adaptively sized boundary tetrahedra. Additionally, many image
processing applications like registration are concerned with the pooling of data to assess
between-group differences. A smooth boundary in one mesh should be able to be registered
to a less smooth boundary in another mesh or image. Keeping the boundaries at a uniformly
high level of detail allows for more types of deformation at the level of detail allowed by the
image resolution.

2.4 Boundary Smoothing Method
The effects of voxelization are removed while maintaining the overall geometry of the
regions. For the notation of the equations below, we utilize symbols that are standard in
continuum mechanics (such as x, X, F) and some that are standard in level set applications
(such as δ, Ω) when possible. The initial voxel conforming state is given by X, while the
deformed state is denoted by x, and the displacement vector field, ν, is given by:

The smooth mesh is obtained by finding a v that minimizes an energy G(ν). G(ν) has three
additive terms, an elastic term, E(ν), a smoothness term, S(ν), and a fidelity term B(ν). The
formula for the energy is:

The elastic energy prevents dihedral angles from becoming too small and tetrahedral
elements from collapsing. In places where the voxelized region is smooth and well shaped,
the elastic term has no effect on the location of the boundary nodes. It is undesirable to have
the boundary moved unnecessarily to improve element quality. In poorly shaped regions
(most likely from errors in the automatic segmentation), the smoothing should be done as
much as possible, but the elasticity should still maintain element quality and affect the
location of the boundary nodes. These features allow to the proposed meshing method to
succeed in producing a mesh with uniformly good element quality and smoothness and/or
accuracy consistent with the accuracy of the initial segmented input image. We employ
techniques from nonlinear elasticity (Hughes 2000), since these allow larger and smoother
deformations.

The displacement vector field is related to measures of deformation F and C. Here, I refers
to the identity matrix. F is often called the deformation gradient and C is referred to as the
right Cauchy-Green Deformation Tensor (Gonzalez and Stuart 2008).

As done with many existing elasticity models such as the Mooney-Rivlin elasticity (2000),
an elasticity penalty is computed using the three invariants of C. If λ1, λ2, λ3 are the
eigenvalues of F:
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The first invariant is most affected by large amounts of stretching, the second by large
amounts of shearing, and the third by significant changes in volume. The elasticity will
provide no resistance to small deformations, but will resist large stretch, shear, and volume
changes. While this is not a physically realistic model for solids, it is effective for spreading
deformations evenly throughout the mesh. This allows the elasticity to have as little effect as
possible on the boundary location while enforcing uniformly high element quality. We first
introduce the following functions (as part of the nonlinear elastic component),

and the elastic penalty term is given by:

where k1,k2,k3,e1,e2,e3 are parameters of the meshing model. The function W3 will resist a
change in the volume. The number e3 when greater than 0 will allow the volume to decrease
before any penalty is applied. The functions W1 and W2 will apply a penalty if too much
stretching or shearing, respectively is applied relative to the volume change. They are
initially calibrated to be 0, regardless of e1 and e2, if the deformation is equal in all
directions, e.g. if the three eigenvalues of F are all equal. The values of e1 and e2 when
greater than 0 allow modest stretching and shearing to occur before any penalty is applied.
All parameter values used are provided in a detailed listing in Appendix A. This elasticity,
E, is a function of all three invariants of the deformation and should resist all possible types
of changes in the shape of a tetrahedron. As discussed in the results section, in practice no
tetrahedra were noted to approach becoming inverted and a variety of measures show the
elements to be of good quality.

Another possibility for maintaining element quality is to directly optimize common quality
measures, such as a tetrahedron's dihedral angles (Freitag and Ollivier-Gooch 1997).
However, in these cases, it may be difficult to adapt a general quality measure to limit its
effect on the boundary (if the boundary is not fixed). The proposed elasticity is also well
suited for optimization where as differentiating a general quality measure may be more
susceptible to local minima.

The second term of G(ν) is a smoothing term, S(ν), involving level sets, φ0,m. Each region 1,
‥, m, … N, has its own associated level set. No topological changes are permitted at this
stage and the level sets themselves are not evolved. Instead, a map ν is morphed, as
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performed in Le Guyader and Vese (2009). We define the smoothing term using the
harmonic energy, as follows,

where we recall the Heaviside function and its distributional derivative delta function,

Recalling that φ0(x) is the distance function to the union of all boundaries of segmented
regions, we use in the above smoothing term another function, defined for each m between 1
and N, as the distance function inside region m, and zero outside:

An approximation to the delta function is typically used when functionals of this type are
used in finite difference applications. In the proposed method, only the boundary is moved
to minimize the above functional and the interior nodes are allowed to position themselves
in a way that maximizes element quality.

The third term of G(v) is a data fidelity term, B(ν), similar to ones used in Chan-Vese (2001)
and Le Guyader and Vese (2009). Inside the integral for each region, there are three factors
multiplied together. The product of the first two factors is either just, at each x, 0, if the
mesh label and image label match, and 1 if the mesh label and image label do not match.
The third multiplicative factor increases the penalty as a node moves farther away from its
corresponding voxelized region. The proposed data fidelity term is thus given by

where we defined for each m between 1 and N, the label function of each region,

and

As with the smoothing term, only the boundary nodes are moved to minimize the above
functional. However, to avoid overly strict enforcement of the voxelization, the value of the
Heaviside function on the boundary nodes is taken to be a weighted average over nodes in
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the surrounding volume using the connectivity of the mesh. If the constant c is 0.5, no
penalty is applied until a boundary node is half a voxel away from its corresponding region.

The minimum of the above energy is found by solving the Euler-Lagrange equation via
gradient descent:

At each time step, the L2 gradient and Laplacian of the level set function are computed
independently using linear basis functions and a straightforward application of the finite
element method (Bank 1996; Mezger, Thamszewski et al. 2009). Computationally, this can
be done quickly and does not require solving a system of equations at each time step. In
contrast, a strict use of the finite element method for non-linear differential equations
frequently requires solving a nonlinear system of equations, which can be computationally
expensive.

To further improve the speed of the numerical implementation, the Sobolev Gradient
Method (1997; 2005) is employed by solving

The Sobolev Gradient implementation requires a linear system to be solved at each time step
where K>0 is a constant step-size parameter.

2.5 Storage of Tetrahedral Representations
Generation of the tetrahedral meshes produces a list of nodal locations and their associated
connectivity. Several means for storing this information exist, most notably the multi-file
format set of TetGen (http://tetgen.berlios.de/fformats.html). This format consists of three
ASCII-text files, one for each of the mesh nodes, elements, and boundary faces. The
software created to implement the tetrahedral mesh generation approach described here uses
TetGen file formats for file I/O and TetView (the viewing program accompanying TetGen)
was used for graphical display. Incidentally, the GIFTI file format
(http://www.nitrc.org/projects/gifti) does not presently accommodate higher-order mesh
descriptions and, thus, is not sufficient for describing tetrahedra. As such, we are currently
developing a more general file description format designed to accommodate a range of
geometric representations and employed it here to form the basis of a subsequent
publication.

3. RESULTS
The parameters used for the examples are given in Table 1. They were selected to provide a
good balance of smoothness, high tetrahedra quality, and fidelity to the image. The
parameters are independent of the image geometry and values given should be adequate for
many applications. A summary of the meaning of each parameter is also provided.

Two examples of our mesh generation are presented in Figures 1A and 1B. In Figure 1A
(left), the equation of a perfect sphere is approximated to fit on a finite grid and concludes
with the degree of voxelization as shown. Figure 1A (right) shows the recovered sphere,

Lederman et al. Page 9

Neuroimage. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://tetgen.berlios.de/fformats.html
http://www.nitrc.org/projects/gifti


which is very close to spherical. The fidelity term constant c is set to 0. The minimum
dihedral angle of the tetrahedra is 20 and maximum dihedral angle is 152. Figure 1B shows
a larger sphere and its smoothened version, generated with the constant c set to 0.5, which
results in dihedral angles between 18 and 155.

To demonstrate the robustness of the proposed tetrahedral meshing method, we randomly
assigned a 60×60×60 block the values in the range of 0 to 5 (0 corresponding to empty
space) and ran the meshing procedure. It succeeded in creating a mesh with dihedral angles
between 13 and 160 degrees, and a maximum edge ratio of 5.0. (Figure 1C). This example
illustrates that our method can generate tetrahedral meshes for arbitrary shapes with rough
edges with a reasonable mesh quality. This illustrates that this approach can be applied to
mesh segmented regions in a volume having arbitrary shape and size and thus is suitable for
many medical imaging applications in which one or more regions-of-interest have been
defined.

The number of tetrahedra generated depends both on the image size (here as large as
160×256×256 for the automatic segmentation) as well as on the number and geometry of the
regions. As with all explicit methods, instability can occur if the time step is too large, but
that can always be avoided by selecting a suitably smaller time step. In our experience, the
only reason the meshing method will fail is due to lack of random access memory. But even
with 8GB RAM, the algorithm can generate all the examples here and possess up to 16
million tetrahedra, if practical.

3.1 Application to a Sample of Normal Data
T1-weighted MRI images volumes were selected from N=10 normal subjects included as
part of the Alzheimer's Disease Neuroimaging Initiative (ADNI)(Ho, Stein et al. 2010),
stored in the Integrated Data Archive (IDA; http://ida.loni.ucla.edu) maintained by the
Laboratory of Neuro Imaging (LONI; http://www.loni.ucla.edu). Volumetric data were
stored in 16-bit Analyze format and all pre-processing and tetrahedral model generation
were performed using the LONI computational grid system, comprised of 1400 multi-
threaded CPUs, on a Linux-based operating system, and Sun Grid-Engine.

Image volume segmentation was performed using LONI Brain Parser software (2008). Brain
Parser is a learning based algorithm that efficiently performs whole brain image
segmentation to parse an input MRI image into N=56 anatomical structures of interest. It
automatically fuses a detailed set of image features and context information from a large
candidate pool to perform classification and segmentation. It can be trained to “learn” how
to segment a particular set of structures of interest if a set of training images with the
corresponding ground truth labels are provided. Brain Parser specifically includes skull and
scalp removal, image non-uniformity compensation, voxel-based tissue classification,
topological correction, rendering, and editing functions. The collection of tools is designed
to require minimal user interaction to produce cortical representations. Brain Parser software
segments regions of interest based on a training set of data and generates 3D MRI volumes.
Figure 2 shows an example of the meshing from one of these brains showing the parcellation
and a cross-sectional sagittal cut through the mesh.

Fitting tetrahedral meshes across a cohort of brains from multiple subjects permits within
and between subject registration as well as for carrying out between group statistical
analyses on the effects of disease or brain injury. Figure 3 (parts 1 and 2) shows the results
obtained from tetrahedral mesh generation for N=10 example normal brains drawn from the
ADNI normative cohort and segmented into the N=56 distinct, color-coded, cortical and
sub-cortical regions. The complete meshes range in size from 6.8 to 8.2 million elements in
which the dihedral angles for all tetrahedra have been constrained to range between 12 and
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160 degrees. The use of tetrahedral mesh representations for the registration and analysis of
patient and matched-control samples will be subjects of forthcoming publications from our
group.

3.2 Application to Gray/White Matter Segmented Data
The tetrahedralization method was applied to gray/white segmented image data from the
Montreal Neurological Institute (MNI) digital brain phantom
(http://mouldy.bic.mni.mcgill.ca/brainweb/) (Collins, Zijdenbos et al. 1998). The image was
partitioned into gray matter, white matter, cerebrospinal fluid, and rest of the head based on
local image models where each models the image content in a subset of the image domain
(Tohka, Krestyannikov et al. 2007; Tohka, Dinov et al. 2010). The segmentation framework
used here derives local models for tissue intensities and Markov Random Field priors and
combined these into a global probabilistic image model. This is valuable since it offers
better protection against intensity non-uniformity artifact than the corresponding method
based on a global (e.g. whole image volume) modeling scheme. Some regions in the image
were removed prior to meshing. For example the edge of the head intersected the image
field-of-view, which would have created an undesirable artificial boundary in the mesh and
unnecessarily increased the final mesh size. The resulting tetrahedral model (Figure 4)
contains over 15 million elements and is color coded according to tissue type.

3.3 Application to Small Animal Image Data
Finally, the tetrahedral mesh generation approach was applied to the Digimouse atlas
(http://neuroimage.usc.edu/Digimouse.html). Freely available from the Biomedical Research
Imaging Laboratory at the University of Southern California, the Digimouse atlas was
generated using co-registered CT and cryosection images of a 28g nude normal male mouse
(Dogdas, Stout et al. 2007). Seventeen anatomical structures are labeled in the Digimouse
including the whole brain, external cerebrum, cerebellum, olfactory bulbs, striatum,
medulla, massetter muscles, eyes, lachrymal glands, heart, lungs, liver, stomach, spleen,
pancreas, adrenal glands, kidneys, testes, bladder, skeleton and the skin. The segmentation is
manual, and thus existing methods such as the Delaunay method can be employed. A
tetrahedral mesh is available for download along with the atlas generated using TetGen
(http://tetgen.berlios.de/). For the Digimouse atlas the surface triangular mesh for each organ
had to be generated first followed by tetrahedralization. This mesh contains 58,244 vertices
and 306,773 tetrahedral faces. Using the approach described here, the voxelized image was
first reduced by a factor of two in each direction in order for the meshing program to require
less than the 8GB limit on our computing power. Further reductions in image size or region
number may be desirable depending on the computational requirements of the imaging
application. The mesh contains 15,481,899 tetrahedra with constrained dihedral angles
between 12–160 degrees, and 2,750,350 nodes (Figure 5).

3.4 Comparison with other tetrahedral meshing methods
Table 2 presents a brief comparison between several of the major public domain and
commercial tetrahedral meshing programs presently available. We have also worked to
compare this approach to other methods discussed in the literature. However, the proposed
method is difficult to directly compare with all other meshing methods because many, such
as Molina et al. (2003) for example, were simply not designed to work on image data having
multiple segmented regions. Other methods, such as that of Ferrant and Warfield (2004),
produce meshes that are larger than the resolution of the original image, making a direct
comparison of meshing accuracy and quality somewhat inequitable.

We applied the open source code method Fang and Boas (2009), shown to be applicable to
brain imaging data, to one of our automatically segmented brains. However, we were unable
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to obtain a successful result using the method as they describe. We suspect that this may be
due to the difficulty associated with finding a triangulated boundary mesh prior to the
application of the Delauny method. The mesh examples described in their paper do not
appear to contain as much detail as the ones presented here and tetrahedra quality measures
are not reported.

In the papers by Zhang and colleagues (2005; 2008), four high resolution meshes are
generated from medical images that appear to capture roughly as much detail as the
proposed method. Two tetrahedra quality measure given in these papers are the edge ratio,
which is defined for each tetrahedra as the largest edge divided by the smallest, and the Joe-
Liu parameter (Liu and Joe 1994), which ranges from 0 for a flattened tetrahedra, and 1 for a
equilateral tetrahedra. The formula for the Joe-Liu parameter is given in the Appendix. The
poorest edge ratio of the four meshes in the examples reported by Zhang et al. was 8.5. The
poorest edge ratio across all 15 of our examples was 5.2. The smallest Joe-Liu parameter for
their method was reported as 0.01, while it is 0.07 for our method. We also note that the
method described by Zhang et al. directly calculates these two measures and works to
improve them. In contrast, the proposed method does not involve iteratively computed
tetrahedra quality measures - they are simply computed after the mesh is generated. It is
possible that mesh improvement techniques such the one described by Zhang as well as
other methods such as Freitag and Ollivier-Gooch (1997), could be used to further improve
the mesh quality beyond what is presented here. However, this is not essential as the
tetrahedra quality have been shown to be good even without any mesh improvement
techniques.

Software embodying the TMMA approaches for tetrahedral mesh generation and smoothing
described here are being made publicly available via the Laboratory of Neuro Imaging
(LONI) web site for use with the LONI Pipeline (Dinov, Van Horn et al. 2009) workflow
environment and through the TetraMetrix project (http://www.nitrc.org/projects/tmma) on
the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC;
http://www.nitrc.org) website.

4. DISCUSSION
As we discuss above, 2D surface model representations present convenient manifolds for
modeling cortical and sub-cortical boundaries of the brain, permitting their deformation, as
well as characterization of their local properties (e.g. curvedness, shape index, fractal
dimension, etc). Collections of surface models have permitted large-scale surface
registration leading to population-based atlasing (Van Essen and Dierker 2007) as well as
between groups comparisons (Narr, Thompson et al. 2001). Such applications are important
tools for graphically representing cortical change and for use in indicting areas of activity in
functional imaging studies.

Tetrahedral mesh generation, on the other hand, extends the notion of surface tessellation to
3D and provides a finite element means for the filling of segmented spaces in the brain and
other data. As shown by applying it to both human brain segmentation and non-human
mammalian data, this method is likely to be useful for many other medical imaging
applications, as well (e.g. cardiothoracic imaging) that have a need to isolate and model
specific structures. The approach we detail here is able to generate high quality mesh from
images with a large number of regions even if the segmentation is poor in some areas as
might occur for an automatic segmentation.

An important advantage of this approach is that it does not require pre-built 2D surfaces as
inputs and works directly on segmented brain image volumes. Related to this, the method is
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robust with respect to topology issues in comparison to the Delaunay method which requires
a 2D surface (and surface meshing usually requires a genus zero region as discussed) as
input while our method does not need surfaces. As such, this method may be more widely
applicable to cases where whole brain or image masks may not satisfy the genus
requirements of many 2D surface generators.

5. CONCLUSION
This paper describes a detailed TMMA-based method for tetrahedral mesh generation
applied to neuroimaging anatomical data containing one or more segmented parcellations.
We expect it to find broad application in many medical imaging data types, most notably in
the modeling, registration, and statistical analyses of tetrahedral deformation over time or
between samples. The approach is efficient and has desirable properties, which enable the
modeling of fully 3D objects extracted from medical imaging data.
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APPENDIX
The formula for the Joe-Liu parameter (Liu and Joe, 1994) is given by

Here V is the volume of a tetrahedron. If the four nodes of the tetrahedra are labeled 0, 1, 2,
and 3, then |eij| is the length from node i to node j.
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Figure 1.
A) This figure illustrates an example of a voxel conforming mesh of the image of a smaller
sphere (left). The boundary of the smooth mesh (right) was penalized for any disagreement
with the voxelized boundary but still resulted in a much smoother mesh. B) In another
illustration, a tetrahedral mesh of the image of a large sphere that conforms exactly to the
voxelization (left in yellow) and the recovered smooth sphere (right in fuchsia), resulting in
many more tetrahedra being utilized but maintaining dihedral angles between 18–155
degrees. In this example only, the boundary was allowed to move without penalty by up to
half a voxel to fully remove the voxelization. C) A tetrahedral mesh generated from an
image of random noise. This example demonstrates the robustness of the meshing method,
regardless of the number and shape of segmented regions contained in the input image.
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Figure 2.
A close-up view of the result of tetrahedral mesh generation for an example regionally
segmented T1 anatomical image volume comprising 56 distinct cortical and sub-cortical
regions. Note the finer tetrahedra promixal to each regional boundary and relatively larger
tetrahedra near their centers.
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Figure 3.
(parts 1 and 2): The results of tetrahedral mesh generation for N=10 example brains drawn
from the ADNI normative cohort. Across the subjects, meshes range in size from 6.8 to 8.2
million elements in which the dihedral angles have been constrained to range between 14
and 159 degrees.
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Figure 4.
A nested tetrahedral meshing of a brain segmented into gray (blue) and white (red) matter
partitions comprising a total of over 15 million elements.
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Figure 5.
A tetrahedral representation of the DigiMouse whole body scan. The mesh is comprised of
over 16 million tetrahedral elements.
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Table 1
Values and Descriptions of Tetrahedral Model Parameters Utilized

The parameter values, their useful ranges, and a brief description of their function used to constrain the
computational model and cost functions are given in the table below:

Parameter Value Typical Range Description

e1 1.25 [0,3] Affects amount of stretching that can
occur without penalty

e2 2.5 [0,3] Affects amount of stretching that can
occur without penalty

e3 0.7 [0,1] Affects amount of volume change that
can occur without penalty

k1 4 [0,∞) Affects elastic energy growth under
changes in volume

k2 4 [0,∞) Affects elastic energy growth with
changes in stretch

k3 324 [0,∞) Affects elastic energy growth with
changes in shear

A 0.1 [0,∞) Affects relative importance of smoothing

B 0.1 [0,∞) Affects relative importance of data
fidelity

C 0 and 0.5
(value .5
used in
Figure 1

only)

[0,.5] Allows mesh to mismatch with the image
by up to half a voxel without penalty

K 10 [0,∞) The stepsize parameter associated with
the Sobolev Gradient Method.
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