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Abstract
Resting-state MRI (rs-fMRI) is a powerful procedure for studying whole brain neural connectivity.
In this study we provide the first empirical evidence of the longitudinal reliability of rs-fMRI in
children. We compared rest-retest measurements across spatial, temporal, and frequency domains
for each of six cognitive and sensorimotor intrinsic connectivity networks (ICNs) both within and
between scan sessions. Using Kendall’s W, concordance of spatial maps ranged from .60 to .86
across networks, for various derived measures. The Pearson correlation coefficient for temporal
coherence between networks across all Time one - Time two (T1/T2) z-converted measures was .
66 (p<.001). There were no differences between T1/T2 measurements in low-frequency power of
the ICNs. For the visual network, within-session T1 correlated with the T2 low-frequency power,
across participants. These measures from resting-state data in children were consistent across
multiple domains (spatial, temporal, and frequency). Resting-state connectivity is therefore a
reliable method for assessing large-scale brain networks in children.

Introduction
Efforts in functional magnetic resonance imaging (fMRI) are shifting from research focused
on specific cognitive domains such as vision, language, memory, and emotion, to assess
individual differences in neural connectivity across multiple whole-brain networks. Resting-
state fMRI (rs-fMRI) is being used increasingly to examine functional connections in the
resting human brain. Rs-fMRI examines temporal correlations between segregated brain
regions during unconstrained intrinsic activity, or task-free rest, periods. This reveals
coherence within and between multiple whole-brain networks, and can be used to develop a
more comprehensive model of human brain connectional architecture (Van Dijk et al.,
2009).
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Rs-fMRI is dramatically increasing our understanding of neural development, including the
sequence of development, and the extent of neural system connectivity in normally and
abnormally developing infants, children, and adolescents (reviewed by Uddin et al., 2010).
Much more work needs to be done, however, to elucidate processes involved in brain
network maturation and to relate them to behavioral development. Linking measures of
neural and behavioral development is complex, as is using deviations in these measures to
examine developmental disease processes. This undertaking is further complicated by non-
neural contributions to network development, including physiological influences,
environmental factors, and genes. Nevertheless, using rs-fMRI, and with advances in
imaging science, researchers have begun to obtain a more comprehensive picture of neural
network development.

In a short period of time, rs-fMRI has advanced our understanding of organizational
principles of central nervous system development. For example, Kelly et al. and Fair et al.
have documented less diffuse local connectivity and increased long-range connectivity with
maturation (Fair et al., 2009; Kelly et al., 2009). The ordering of network maturation appears
to parallel the ordering of behavioral maturation; as is true of brain myelination,
sensorimotor development precedes the development of systems underlying higher cognition
(Kelly et al., 2009). One noteworthy movement in the field is to utilize advanced
information-processing techniques to identify brain regions that drive change in one or more
neural networks. Gao et al., for example, used a graph theoretical measure of node
importance to determine that the posterior cingulate/retrosplenial cortex plays a central role
in the development of the default mode network in infants (Gao et al., 2009).

If rs-fMRI is to be used to advance our theories of neural network development, we must
establish that the neural network signals that form the basis of rs-fMRI are stable across
repeat measures. If these signals can be measured robustly despite the variance introduced
by other sources (e.g., participant state, systemic physiological process such as breathing
and cardiovascular function and scanner variance), and if these signals are reproducible, we
are likely measuring reliable indicators of the status of neural networks. Resting-state fMRI
measures have been shown to be reliable in adults (Meindl et al., 2009; Shehzad et al., 2009;
van de Ven et al., 2004; Zuo et al., 2010a; Zuo et al., 2010b), but not yet in children or
adolescents. Previous research has demonstrated that intra-individual variability is greater in
children than in adults for measures of both behavioral (Williams et al., 2005) and blood
oxygenation level dependent (BOLD) fMRI signal change (Thomason et al., 2005),
rendering a systematic study of resting state reliability essential to further investigations in
this area.

Our first goal was to identify reliable, testable intrinsic connectivity networks (ICNs) in a
large sample of youth from whom peak network locations could be derived for future
developmental rs-fMRI studies. The second goal was to examine the reliability of rs-fMRI
in children both within and across sessions. We chose to test reliability in the most widely
examined cognitive [i.e., default mode (DMN), executive (EN), and salience (SN)], and
sensorimotor [i.e., auditory (AN), motor (MN), and visual (VN)] networks. We scanned 65
children and adolescents, about one-third of whom contributed multiple rest scans on either
one or two different scan dates. Based on our prior experience with rs-fMRI data in children
and based on adult studies of ICN reliability, we hypothesized that despite greater overall
variance, children would demonstrate significant test-retest reliability in rs-fMRI ICNs. We
compared consistency in spatial topography, temporal connectivity between networks, and
frequency content of the network time courses, and examined reliability estimates obtained
for these measures.
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Methods
Participants

Sixty-five children and adolescents aged 9–15 (mean=12.5 years, SD= 2.0) were scanned at
least once, and 21 were scanned either two or three times. For the primary analyses of the
present study, scans were partitioned into either within-session or between-sessions
comparisons. For the between-sessions comparison, 15 children were scanned on the same
rs-fMRI protocol using the same hardware (e.g., coil, scanner, etc) separated by 2–3 years.
Two of these children were removed from analysis due to excess movement (> 1mm) and a
technical problem identified during data reconstruction, leaving 13 children in this group.
For the within-session comparison, 15 children were scanned with 2 consecutive resting-
state scans within one scan session. Table 1 presents the number of participants in each
comparison group. The within-session and between session comparison groups were
matched for age, t(26) = 1.2, p = .24, and gender, χ2 (1) = .19, p = .66.

Participants were recruited through their mothers via the Craigslist website and other online
advertisements and parent networks, and each mother-child pair was compensated $25/hour.
All participants had no reported history of brain injury, no behavioral indications of possible
mental impairment, no past or present DSM-IV Axis I disorder, were right-handed, fluent in
English, and had no reported learning disorders. Parents and children gave informed consent
and assent, respectively, as approved by the Stanford Institutional Review Board.

MRI acquisition
Magnetic resonance imaging was performed on a 3.0 T GE whole-body scanner.
Participants were positioned in a purpose-built single channel T/R head coil and stabilized
by clamps and a bite bar formed with dental impression wax (made of Impression
Compound Type I, Kerr Corporation, Romulus, MI) to reduce motion-related artifacts
during scanning. During the resting-state experiment, participants completed a six-minute
scan during which they were instructed to lay still with their eyes closed. All resting-state
scans were conducted following the anatomical localizer, a field inhomogeneity shim, and a
4-minute perfusion scan. For participants in the within-session comparison group, the two
rest scans were performed back-to-back in the same scanning session.

For this study, 29 axial slices were acquired with 4mm slice thickness (no skip). A T2*-
sensitive gradient echo spiral in/out pulse sequence was used for all rs-fMRI imaging (TR =
2000ms, TE = 30ms, flip angle = 77°, FOV = 22 cm, 64 × 64). An automated high-order
shimming procedure, based on spiral acquisitions, was used to reduce B0 heterogeneity
(Kim et al., 2002). Spiral in/out methods have been shown to increase signal-to-noise ratio
and BOLD contrast-to-noise ratio, and have also been shown to reduce signal loss in regions
compromised by susceptibility-induced field gradients generated near air-tissue interfaces,
such as PFC (Glover and Law, 2001). Compared to traditional spiral imaging techniques,
spiral in/out methods result in less signal dropout and greater task-related activation in PFC
regions (Preston et al., 2004). A high-resolution volume scan (140 slices, 1mm slice
thickness) was collected for every participant using a spoiled gradient-recalled (SPGR)
sequence for T1 contrast (TR = 3000ms, TE = 68ms, TI = 500ms, flip angle = 11°, FOV =
25 cm, 256 × 256). During the resting-state scan, participants’ heart-rate (HR) and
respiration waveform were recorded.

Physiological correction in reconstruction
Previous research has demonstrated that physiological noise can confound detection of
neural activation during rs-fMRI. As a result, methods to model and correct for
physiological effects of noise have been proposed by our group and by others (Birn et al.,
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2006; Chang et al., 2009). For the present study, rs-fMRI images were preprocessed using a
correction that diminishes BOLD signal fluctuations contributed by respiratory and HR
variations. Using the method developed by Chang et. al. 2009, this correction reduces the
effect of low-frequency respiratory variations (i.e., the "envelope" of the respiratory belt
waveform) and heart rate (average rate in a 6-sec sliding window) by first convolving those
independently measured signals with appropriate filters and then regressing them out of the
time series for each voxel (Chang et al., 2009).

Image processing
Our first goal was to identify rs-fMRI network peaks using a data-driven independent
components analysis (ICA) approach in a large youth sample. The second goal was to use
consequent peaks from the ICA analysis to derive seed-based ICNs to study test-retest
reliability. Thus, participant data were processed along two separate paths. The first used
Statistical Parametric Mapping software (SPM8; www.fil.ion.ucl.ac.uk/spm/software/spm8/)
to perform realignment, normalization, and smoothing (6 mm3) for N = 65 rest scans from
65 different children (summarized in Table 1). These SPM8-preprocessed images were used
for the group ICA analysis, described below. The second processing path was used to
perform ROI-based connectivity analyses for only those children scanned more than once as
part of either the within- or between-session groups. Beginning again from the raw-
physiology-corrected image data, this second path of processing was implemented in AFNI
(http://afni.nimh.nih.gov/afni) (Cox, 1996). Preprocessing of these data included slice-
timing correction, volume registration, smoothing (4mm3), bandpass filtering (0.008 < f <
0.15 Hz), and co-registration of functional and anatomical images. It is worth noting that the
work could have been carried out within either software package (SPM or AFNI) and would
generate the same results. The choice to use both SPM and AFNI for the different paths was
primarily based on the convenience of the output file types. For example, SPM produces
ANALYZE format images useful for subsequent group ICA, while AFNI produces time-
course files useful for temporal analyses.

Identification of rs-fMRI networks
We used a three-step method to classify rs-fMRI networks. To address the first goal of the
present study, Steps 1 and 2 were performed to generate network spatial maps in the sample
of 65 children and adolescents. Each child contributed only one rest scan to the ICA
analysis; in cases where more than one scan was available, the first was used. These maps
were used both to visually represent the 6 a priori rs-fMRI networks of interest and to
extract peak spatial coordinates for the subsequent ROI-based connectivity analysis in Step
3. Details of each step follow.

Step 1—Movement was plotted and visually inspected for every participant. Time frames
corresponding to brief movement spikes (> 0.8mm) and lasting less than 5 frames were
removed. This correction for excursions resulted in low average movement across
participants (< 0.5 mm). In addition, the first three time frames were removed for all
participants to allow for signal stabilization. In total, no more than 10% of time frames were
removed. Remaining time frames for all 65 participants (32 females; mean age = 12.5) were
concatenated in a group independent component analysis (ICA) implemented in Matlab
(http://icatb.sourceforge.net) using GIFT (Calhoun et al., 2001). Infomax was used to
estimate 34 components, after which binary spatial templates were used to automatically
identify components corresponding to the 6 networks of interest. A spatial template-
matching technique was used (as described in Greicius et al., 2007). The templates used in
the present study were used in previously published work (Seeley et al., 2007); these were
merely resampled (i.e., changed to the 3D spatial resolution of the target ICC and Kendall’s
W maps) for the present study. Finally, after an automated template-matching algorithm was
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used to determine those individual components corresponding to the default-mode, left and
right executive, salience, motor, auditory, and visual resting-state networks, single-
participant spatial maps were back reconstructed.

Step 2—To visualize the components and extract component peaks for subsequent ROI-
based connectivity analyses, SPM8 was used to create statistical parametric maps for each
network. In order to generate single subject spatial maps for each of the 65 participants that
were included in the group ICA, we used GIFT to implement back reconstruction of single
subject spatial maps from the raw data. Back-reconstructed single subject spatial maps that
corresponded to each network of interest (default, executive, salience, motor, visual,
auditory) were entered into network-specific one-sample t-tests, a method that has been used
in a similar manner in previous studies (Stevens et al., 2009). Thus, t-tests were based on
significance testing for the spatial overlap of 65 single-subject spatial maps, with the
exception of the executive network, in which single-subject spatial maps corresponding to
the right (N = 65) and left (N = 65) executive network ICA components were combined for a
total of 110 spatial maps for that analysis. These networks were used to derive maximally
significant peaks for seed-based analysis, and were otherwise excluded from further
consideration in the present analysis. Peak locations from the resulting random effects maps
are summarized in Table 2.

Step 3—Using a method that is now well established for analyzing rs-fMRI data (Fox et
al., 2005), in step 3, we generated correlation maps in the subset of participants who were
scanned multiple times. This method involves extracting timecourse data from a seed region
and computing the correlation coefficient between that time course and the timecourses of
all other brain voxels. Following previous methodology (Fox et al., 2005), we extracted our
average time-course data from the 2–3 most significant foci (from network maps resulting
from step 2) within each network and averaged these. The trace from each participant’s seed
regions (3D spheres with a radius of 3 mm, centered on the coordinates summarized in
Table 2, and averaged across peaks summarizing each network) was de-trended for 3
translational and 3 rotational motion regressors (AFNI 3dDetrend). This trace was used to
calculate the correlation between the seed region and the time-course data in all of the other
voxels in the brain. Correlation estimates were controlled for estimated translational and
rotational motion as well as a white matter nuisance time-course (sphere with radius of
3mm, centered at the Talairach coordinate (−27, 9, 24)). In the present analysis we did not
apply global signal correction because of the concern that it forces the presence of
anticorrelated networks (Chang and Glover, 2009; Murphy et al., 2009; Weissenbacher et
al., 2009), which could lead to false interpretation of the observed effects. After correlation
coefficients were calculated for each voxel in the brain, correlation coefficients were
transformed by using the Fisher's Z transform for the following concordance and mutual
information analyses. We used time-course data for each network for the subsequent
temporal and frequency analyses.

Voxelwise concordance measures
Intra-class correlation coefficient (ICC) and Kendall’s W were applied to rs-fMRI maps.
ICC and Kendall’s W statistics are frequently used to measure test-retest reliability in fMRI
data (Caceres et al., 2009; Meltzer et al., 2009; Shehzad et al., 2009). Such concordance
measures address the likelihood that regions of high group activation in a first scan session
would be preserved within the participant in a second session, but discriminate between
different participants. Large (approaching 1) or small (approaching 0) values of the
Kendall’s W statistic and the ICC indicate stability of inter-participant variability (i.e.,
participants’ scans are highly stable and unique), or instability of the inter-participant
variability (i.e., within-participant scans are highly variable and there is little between-
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participant differentiability), respectively. Intermediate values of these statistics indicate a
greater or lesser degree of between-participant differentiability.

Intra-class correlation
ICC has been used to assess measurement reproducibility in fMRI (Caceres et al., 2009). It
is defined as the ratio of the between-subjects variance to the total observed variance
(McGraw and Wong, 1996; Shrout and Fleiss, 1979). As Bland and Altman (1996) explain,
ICC may be understood as a measure of discrimination between subjects (Bland and
Altman, 1996). We calculated reliability maps for the third ICC defined by Shrout and Fleiss
(1979):

[1]

where BMS is the between-subjects mean squared variance, WMS is the within-subject mean
squared variance, and k is the number of scan repetitions for each participant. Eq. (1)
estimates the correlation of the subject signal intensities (z-scores) between sessions,
modeled by a two-way analysis of variance (ANOVA), with random subject effects and
fixed session effects. The ANOVA analysis splits the total mean squared intensity values
into BMS and WMS components. In our analysis, k equals 2, and is the number of scans
being considered for comparison. In this context, WMS is due to different scans. The
measure, ICC(3,1) (Eq. (1)) was computed for each voxel.

Kendall’s W
Kendall’s W is a statistic based on ranks rather than values and is a robust, nonparametric
descriptive statistic, with allowable values ranging from 0 (no agreement) to 1 (complete
agreement). If ri,j indicates the rank of the jth subject in the ith scan, then W is given by the
equations:

[2]

where m is number of subjects and n is number of scans, which in our case is 2, and ½[m(n
+1)] is used as it represents the mean value of all the ranks. The measure W was also
computed for each voxel.

Network masks for concordance measures
Results of the one-sample t-tests for each network were used to generate network masks. A
masking procedure was used only to summarize mean concordance statistics. This allowed
us to report results from a whole brain voxel-wise approach as well as a mean computed
across voxels that fell within the network (similar to the approach taken by Shehzad et al.,
2009). To generate masks, network results were thresholded at a level that kept the Family-
Wise Error (FWE) corrected at p<.05 (i.e., minimum Z = 7.75) with a cluster extent of 30
voxels. Using SPM8 smoothing and imcalc functions, the resulting images were smoothed at
6mm and binarized whereby all voxels with values > 1 were assigned to a value of 1, and all
other voxels were assigned a value of zero. Table 3 presents Kendall’s W means for the
whole brain and within-network masks.
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Temporal analysis of correlations across networks
BOLD signal time-courses from the seed regions used for seed-based FC analysis (described
in step 3, above) were extracted from each participant for temporal analysis of correlations
between the 6 ICNs. Using custom Matlab routines, Pearson correlations were computed
between all pairs of network time-courses within each scan. In addition, for each scan, a
single measure of global network coherence was defined as the Fisher z-transformed
average value of all such pair-wise correlations. The global network coherence reflects the
overall relatedness of networks within a subject (see Stevens et al., 2009 for an expanded
discussion of what this parameter might mean in development). Within- and between-
session consistency of global network coherence was examined using the correlation
between T2 and T1 measurements. Separate Pearson's correlations were computed to
examine stability across scans for the following three comparisons: (1) T1/T2 within-session
(N = 15); (2) T1/T2 between-session (N = 13); and (3) all T1 data correlated with all T2 data
for within-and between-session comparisons (N = 28). The goal of this analysis was to
examine whether the temporal relations between networks are stable across repeated
measurements. Interpretations of the correlations between specific networks are beyond the
scope of the present study, but were analyzed in detail by Stevens and colleagues in a recent
study of rs-fMRI networks in children (Stevens et al., 2009).

Temporal frequency analysis
An analysis of low-frequency power was conducted on the ICN time-courses for each
participant and scan. For each time-course, the low-frequency power was computed as the
percentage of the total spectral power lying in the range 0.008 < f < 0.08 Hz. Independent
samples t-tests were then used to test possible differences in low-frequency power across
scans for each network, and Pearson correlation was used to examine the relationship
between T1/T2 frequency measures for each network.

Results
Group ICA

Figure 1 shows well-established networks that we identified by group ICA analysis of 65
children/adolescents aged 9–15 years. Peaks for each network are summarized in Table 2
along with the nuisance white matter region of interest (ROI) used for seed-based analyses
that followed the ICA analyses.

Seed-based connectivity
In order to show the level of individual variation in each network, we show data from a
random selection of six individual participants in Figure 2: three from the within-session and
three from the between-session group. Visual comparison of side-by-side network maps
suggests that there was greater variance across participants than across scans. To quantify
this observation, we used Kendall’s W and ICC to apply discriminability and reproducibility
statistics to spatial maps.

Rest-retest reliability in children
Intersession reproducibility was assessed using statistics that compared variance between
scans versus variance across participants. All test-retest analyses were conducted in a sample
of 15 children who performed two rs-fMRI scans within one scan session (the within-session
group), and 13 children who were scanned 2–3 years apart on the same scan system and
imaging protocol (the between session group). Figure 3 shows measured Kendall’s W and
ICC values for both groups projected in the axial plane in a whole brain, voxel-wise
analysis.

Thomason et al. Page 7

Neuroimage. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To provide greater detail on the distribution of ICC values across all brain voxels, ICC
values are plotted in histograms in Figure 4 for both groups and all networks. We obtained
positive ICC values for the majority of brain voxels in all comparisons, an indication of
stability within participants across measurements.

Mean values for Kendall’s W are listed in Table 3 for both within-network masked ICNs,
and for all brain voxels. Within-session Kendall’s W mean concordance measures range
from .71 to .78 across a whole brain ROI, and from .71 to .86 in within-network ROIs.
Between-sessions Kendall’s W mean concordance measures range from .60 to .65 across a
whole brain ROI, and from .60 to .66 in within network ROIs. One sample t-tests conducted
for all networks on Kendall’s W and ICC values across the brain were significant at p < .
0001. Thus, these observed values within and between sessions reflect greater consistency
within participants than between participants.

Correlations between network time-courses
The temporal dynamics among networks also changes with age (Stevens et al., 2009). In the
present study we tested whether the global network coherence (defined above as the mean
pairwise correlation between all 6 ICN time courses) of an individual would be consistent
across time. We obtained a significant correlation across all Time one - Time two (T1/T2) z-
converted global network coherence measures, r(28)=.66, p<.001, collapsing within- and
between-session measurements, indicating consistency in time-course data over repeat
measurements. Correlation statistics were also significant within each comparison group.
That is, for the within-session T1/T2 comparisons between network z-converted correlation
measures, r(15)=.74, p=.002, and for the between-session comparisons, r(13)=.64, p=.02.
These results are plotted in panel D of Figure 5.

Figure 5 also presents the mean correlations separately for each pair of networks and for
each of the T1 and T2 scans that comprise the within- and between-session comparisons.
The correlation matrix in Figure 5 is organized into superordinate squares that show the
results of each pair-wise network comparison. Consistency within superordinate squares
indicates that the correspondence between pairs of networks in the temporal domain is
consistent across repeated measures.

Frequency results
For all six networks, the proportion of data in the low-frequency power (range 0.008 < f <
0.08 Hz) across participants did not change significantly across time for within-session
measurements (all t(15) values < 1.6, all ps > .1) or for between-session measurements (all
t(13) values < 1.4, all ps > .1; see Fig. 6). However, significant stability across T1/T2
measurements within a network was observed only within the visual network for the T1/T2
within-session comparison, r(15)=.54, p=.037.

Discussion
Our study examined test-retest reliability for a relatively new method, rs-fMRI, which may
prove invaluable for assessing large-scale, functional neural networks in children and
adolescents. Considerable anatomical evidence shows that human brain maturation is
gradual and continuous, characterized by steadily increasing white matter, a general
reduction in grey matter, extensive synaptic pruning, and elaboration through dendritic
arborization (Changeux and Danchin, 1976; Giedd et al., 1999; Huttenlocher, 1990; Paus et
al., 1999). Less is known, however, about human functional brain development.

By measuring function and connectivity in multiple large-scale brain networks, concurrently
and without requiring task-compliance, rs-fMRI studies differ from task-based fMRI studies
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that have been the foundation of systems neuroscience imaging research over the past two
decades. Rs-fMRI studies sample activity in spatially segregated brain regions. This activity
(measured by BOLD signal) apparently occurs spontaneously, but with a coordinated
temporal pattern. Rs-fMRI may be useful for generating data relevant to the development of
functional neural systems, and may increase our knowledge of developmental
neuropsychiatric disorders. Already, rs-fMRI has been applied to infants to measure early
neural network function (Fransson et al., 2007; Lin et al., 2008), to children with
developmental disorders (reviewed by Uddin et al., 2010) and has recently been proposed as
a measure for predicting brain developmental age (Dosenbach et al., 2010). Indeed, analysis
of resting-state brain activity has already been useful in other populations in which task
compliance is not possible, including individuals with disorders of consciousness
(Vanhaudenhuyse et al., 2010) and chimpanzees (Rilling et al., 2007). This tool is made
even more powerful as it can be linked to complementary data about the anatomy of the
brain assessed in the same scan session (Honey et al., 2009).

The early and extraordinary success of rs-fMRI as a useful method for measuring systems-
level brain organization has occurred sufficiently quickly that some of the assumptions
currently being made have yet to be tested. We have experience examining hemodynamic
responses pertaining to BOLD confounds (e.g., physiology, blood flow, breathing-rate) and
have contributed to the methodological literature in that area (Chang et al., 2009; Chang and
Glover, 2009; Thomason et al., 2007). Given our past work showing that BOLD in children
is inherently noisier than it is in adults (Thomason et al., 2005), and given that the best
practices for acquiring and analyzing resting-state data are still being developed (Van Dijk et
al., 2009), it is critical that we determine whether resting-state network measurements are
stable in children. The present data set would have been useful for a developmental study,
but there have already been important contributions in that area (Dosenbach et al., 2010;
Fair et al., 2009; Fair et al., 2007; Kelly et al., 2009; Supekar et al., 2009). The present study
contributes to this literature by being the first to examine temporal stability in rs-fMRI
measurements in children. Our results indicate that rs-fMRI is likely to primarily reflect
features of the underlying biology (i.e., is stable within individual even over 2–3 years), with
some lesser contributions from aspects of the acquisition process (i.e., is even more stable
when within session).

Using group ICA in a large sample of youth, we identified rs-fMRI networks that have been
found in previous research on adults. We reported the peak locations for networks composed
of regions important for executive functioning, salience processing, motor, visual and
auditory processing, and the default mode. These peaks may be useful for seed-based
connectivity analyses in future studies of children.

ICC and Kendall’s W values were predominantly positive across the whole brain volume,
indicating that participant differentiability outweighed scan variance for most brain areas.
The general pattern was one of moderately high concordance across spatial ICNs (Table 3),
but there were some small areas of non-concordance (i.e., where these statistics were
negative). These could reflect genuine neural developmental changes across the scan
interval. For rs-fMRI to be effective, it should reliably measure stable features of the
underlying biology, but still be sensitive to true biological differences. Investigators who
conduct longitudinal rs-fMRI studies of children may find it useful to assess change using a
mutual information approach that would quantify change across the interval and test its
correspondence to behavioral measures, time, or developmental age, for example.

Concordance measured for spatial maps was greater for within-session than for between-
session comparisons (measured by Kendall’s W and ICC statistics). The distribution ICC
coefficients across all brain voxels within each network are presented in Fig. 4. It is apparent
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that concordance was higher within sessions than between sessions in this study. Both
distributions are significantly different than zero, indicating that the networks are stable
within individuals, but the consistency is greater within sessions. Differences in these
distributions could be driven by a number of factors that cannot be distinguished within this
experimental design, including scan session specific biological factors (e.g., temperature),
MRI technology factors (e.g., machine SNR, field shim), developmental maturation, and
psychological factors (e.g., mood).

In this study we extended the investigation of the spatial reliability of ICNs to examine
stability in temporal and frequency domains. We obtained a significant correlation across all
T1/T2 z-converted time-course correlation measures (i.e., scatterplot in Figure 5D, N = 28).
The correlation measure used here (global network coherence) may be interpreted as the
amount of total relatedness between networks, computed by averaging the pairwise
correlations between networks. We found that measures of the relatedness of network time-
course data are reliable for individual participants across time. This is among the first work
to demonstrate empirically that network dynamics are stable reflections of individual
differences, indicating that the study of network dynamics is a key area for future
investigation.

Resting state low-frequency fluctuations are thought to reflect cyclic modulation of gross
cortical excitability and network neuronal synchronization (Balduzzi et al., 2008). Here, we
examined stability of the computed low-frequency power (range 0.008 < f < 0.08 Hz) for
each ICN at each measurement time. Time one to time two comparisons within network
showed smaller differences than those observed across ICNs; this relation was significant,
however, only in the visual network for the T1/T2 within-session comparisons where across
participants the frequency from time 1 to time 2 was correlated (p < .05). Prior work in
adults has shown frequency oscillations in visual cortex are impacted by eyes-open versus
eyes-closed scanning (Yang et al., 2007), and also shown that coherent low-frequency
fluctuations are particularly strong in visual cortex and posterior midline structures (Zuo et
al., 2010a). Having obtained a significant result in the frequency domain in the visual cortex
could therefore reflect aspects of development (i.e. early maturation in sensorimotor cortical
networks), or could relate to qualities inherent to the visual network that persist across the
life-span. It will be useful for future work in large samples of children to measure the
regional specificity and developmental timing of BOLD-derived low-frequency fluctuations
to refine what is understood about frequency dynamics within large-scale brain networks
across development. Consistent with what has been observed in adults (Zuo et al., 2010a),
we obtained significant results in both the temporal and frequency domains, further
supporting stability in rs-fMRI data.

The present results indicate that, if motion is restrained and physiologically generated noise
is appropriately controlled, rs-fMRI data in children are robust, and reflect meaningful
characteristics of the underlying neurobiology. This is consistent with adult studies (Shehzad
et al., 2009; van de Ven et al., 2004; Zuo et al., 2010a; Zuo et al., 2010b), and is the first
indication that ICN maps are relatively stable in children and adolescents. We found that rs-
fMRI measurements across spatial, temporal, and frequency domains were reproducible in
children. This work provides an important demonstration that rs-fMRI measures are viable
for studying developmental progress and of disease. We provide a critical foundation for
using the resting state as a marker of large-scale neural network development, and as a basis
to compare clinical and healthy population samples.
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RESEARCH HIGHLIGHTS

• Test-retest reliability of rs-fMRI networks is demonstrated for children across
time.

• Peaks of six ICA-derived networks are summarized for N=65 children ages 9–
15.

• Results in spatial maps and timecourse data are correlated across repeat
measures.

• Scans taken within-scan and scans separated 2–3 years are compared in a youth
sample.

• Concordance measures and correlations are tested over multiple domains.
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Figure 1.
Spatial renderings of the components examined for reliability. These were identified by
applying group ICA implemented using GIFT (Calhoun et al., 2001) to data from 65
children and adolescents aged 9–15. Components were selected using an automatic template
matching technique developed by M. Greicius ((for description of the method, see Greicius
et al., 2007)). Peaks from these networks are reported in Table 2. These may be useful for
future studies using ROI seed-based connectivity approaches to rs-fMRI data in
development. Peaks from these components were used for reliability analysis.
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Figure 2.
Individual seed-based connectivity maps for 6 participants illustrating each comparison
(within-session, and between-session). Connectivity maps are more uniform within
participants (rows) than across participants (columns).
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Figure 3.
To generate concordance maps, voxelwise ICN z-maps were compared for scans within
session and between sessions. Resulting ICC and Kendall’s W statistics are displayed as
color maps on axial slices. Concordance analysis (verified in both measures) indicates that
there is higher participant differentiability within session than across sessions.
Differentiability across participants is high. Maps are coded using different color scales, to
distinguish the two complementary statistical approaches.
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Figure 4.
Histogram of ICC coefficients. Blue bars indicate distribution of correlations for within-
session comparisons across all brain voxels. Red bars indicate the distribution of ICC values
for between-session, longitudinal (2–3 years) within subject comparisons. Positive values
indicate consistency within participants over time.
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Figure 5.
Correlation matrix and individual participant scatterplot. In the correlation matrix on the left,
temporal relations between networks were computed for each resting state scan. The
resulting correlation coefficients are plotted within superordinate squares of the matrix. As
an example, superordinate square (A) demonstrates that auditory and default mode network
time-courses are more highly correlated than are motor and salience networks (presented in
superordinate square B). It is noteworthy that for this data set, the cool and warm colors tend
to be consistent within superordinate matrix squares, indicating a degree of consistency in
the observed temporal relations between networks. Square (C) provides the legend for the
ordering of the comparisons. The scatterplot on the right (D) demonstrates that participants
with high correlations between network timecourses remain high across repeat
measurement. In contrast, those with little correspondence between timecourses remain low.
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Figure 6.
Consistency in low frequency power. Low frequency power was computed in terms of a
ratio with respect to the total power for each of the resting networks and within each set of
scans that went into within and between group comparisons. Column graphs of means are
clustered within network to illustrate similarities; within-session comparisons are shaded in
blue and between-session comparisons shaded in green. Error bars show the standard
deviation of the mean. The asterisk highlights a significant correlation observed between
time1-time2 (T1/T2) scans for the visual network within-session comparison, r(15)=.54, p =.
037.
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Table 1
Group demographic data summary

Repeat measure comparison groups were matched for age, t(26)=1.2, p=.24, and gender, χ2 =.19, df = 1,p=.66.
Means are reported with (st.dev.).

ICA-derived network maps
Repeat measure comparisons

between-session within-session

N participants 65 13 15

age, T1/T2 12.5(2.0) 11.2(1.5)/13.7(1.4) 13.1

gender, M/F 33/32 8:5 8:7

time between sessions n/a 2.5(0.4)years consecutive

Abbreviations: T1/T2 = time1/time2 scans; M/F = male/female; n/a = not applicable.
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Table 2

Network peaks derived from ICA performed on 65 children ages 9–15

NETWORK PEAK

MOTOR L-BA4 −57 −13 36

MOTOR R-BA4 62 −13 36

AUDITORY R-BA41 52 −18 10

AUDITORY L-BA41 −47 −28 14

VISUAL R-BA17 8 −82 6

VISUAL L-BA17 −13 −85 6

DEFAULT R-BA29 5 −51 12

DEFAULT L-BA10 −2 55 23

DEFAULT R-BA39 49 −61 23

EXECUTIVE R-BA46 49 32 15

EXECUTIVE R-BA7 36 −71 46

EXECUTIVE R-BA8 1 30 41

EXECUTIVE L-BA40 −50 −49 52

SALIENCE R-BA13 39 18 1

SALIENCE L-ACC −2 17 34

SALIENCE L-BA13 −43 12 1

WHITE MATTER −27 9 24

Coordinates given in Talairach and Tournoux convention. For seed-based connectivity analysis, 3mm spheres were centered on these coordinates
and timecoures was averaged across the peaks listed above for each network.
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