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Abstract
Prevailing psychometric theories of intelligence posit that individual differences in cognitive
performance are attributable to three main sources of variance: the general factor of intelligence
(g), cognitive ability domains, and specific test requirements and idiosyncrasies. Cortical thickness
has been previously associated with g. In the present study, we systematically analyzed
associations between cortical thickness and cognitive performance with and without adjusting for
the effects of g in a representative sample of children and adolescents (N = 207, Mean age = 11.8;
SD = 3.5; Range = 6 to 18.3 years). Seven cognitive tests were included in a measurement model
that identified three first-order factors (representing cognitive ability domains) and one second-
order factor representing g. Residuals of the cognitive ability domain scores were computed to
represent g-independent variance for the three domains and seven tests. Cognitive domain and
individual test scores as well as residualized scores were regressed against cortical thickness,
adjusting for age, gender and a proxy measure of brain volume. g and cognitive domain scores
were positively correlated with cortical thickness in very similar areas across the brain. Adjusting
for the effects of g eliminated associations of domain and test scores with cortical thickness.
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Within a psychometric framework, cortical thickness correlates of cognitive performance on
complex tasks are well captured by g in this demographically representative sample.

Keywords
General intelligence; cognitive abilities; cognitive performance; cognitive domains; factor
analysis; cortical thickness

INTRODUCTION
Human intelligence has been defined as “a very general mental capability that, among other
things, involves the ability to reason, plan, solve problems, think abstractly, comprehend
complex ideas, learn quickly and learn from experience. It is not merely book learning, a
narrow academic skill, or test-taking smarts. Rather, it reflects a broader and deeper
capability for comprehending our surroundings - ‘catching on’, ‘making sense’ of things, or
‘figuring out’ what to do ” (Gottfredson, 1997). This definition, which stresses the general
nature of the intelligence construct, is consistent with the phenomenon called ‘positive
manifold’: scores on cognitive ability tasks of all kinds are positively correlated. In other
words, people who achieve high scores on a test of any one aspect of intelligence are likely
to score above average on others (Neisser et al., 1996). This empirical fact is nuanced by the
finding that scores on tests that are more similar in content are more closely correlated with
each other than with tests that have different content (Deary et al., 2010).

A widely accepted framework for representing these correlational patterns is a hierarchical
arrangement with a general intelligence factor (g) at the apex that contributes to several
more specialized cognitive ability domains arrayed below it, which in turn contribute to
individual test scores (Carroll, 1993; Deary et al., 2010; Johnson et al., 2004; Johnson et al.,
2008; Neisser et al., 1996). According to this view, individual differences in test
performance can be accounted for by the combined influence of general intelligence (g),
specific cognitive ability domains (sometimes called group factors of intelligence), and
skills specific to each test. Of course, apart from this hierarchy of sources of cognitive
variance, observed scores will reflect error variance and non-cognitive individual influences
at the time of performing the test. That said, the general factor, g, is typically the major
source of variance in test scores, accounting for 40% or more of total variance in
performance on mental test batteries in representative samples (Carroll, 1993; Deary et al.,
2010; Jensen, 1998).

Recently, efforts have been made to link components of this psychometric model of
intellectual function to measures of brain structure and function revealed by brain imaging
(Deary et al., 2010; Haier et al., 2009a). Indeed, it is reasonable to hypothesize that neural
correlates of performance can be found for each of the components of the model. It has
therefore been suggested that these sources of variance be partitioned in order to assess the
respective contributions of brain structure and/or function to cognitive performance for the
different levels of the model (Colom et al., 2009; Colom et al., 2007; Haier et al., 2009a;
Jung and Haier, 2007).

An accumulating body of work has linked specific features of brain structure to general
intelligence with a fair amount of consistency. A recent review concluded that a distributed
network of multimodal association areas consisting of the dorsolateral prefrontal cortex
(DLPF), the inferior and superior parietal lobule, the anterior cingulate cortex (ACC) and
parts of the temporal and occipital lobes is highly correlated structurally, functionally and/or
biochemically to general intellectual ability (Jung and Haier, 2007). These findings led to
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the proposal of a Parieto-Frontal Integration Theory (P-FIT) of intelligence, according to
which, sensory information is first processed by temporal and occipital areas for subsequent
integration and abstraction in parietal areas. Problem evaluation is then implemented by the
prefrontal cortex and response selection mediated via the anterior cingulate. Consistent with
this proposal, Colom et al. (2009) used voxel-based morphometry to demonstrate positive
associations between scores representing g and gray matter concentration in several clusters
including the dorsolateral prefrontal cortex, Broca's and Wernicke's areas, the somato-
sensory association cortex, and the visual association cortex. Converging findings came
from a study of 241 patients with focal brain damage, using voxel-based lesion-symptom
mapping (Glascher et al., 2010), in which a measure of g was associated with damage within
a distributed network in frontal and parietal brain regions as well as with lesions in white
matter association tracts in frontopolar areas. These findings suggested that the general
factor of intelligence reflects the efficacy of regions integrating verbal, visuospatial, working
memory, and executive processes and their connections.

In a prior study, we demonstrated associations between a measure of g and measures of
cortical thickness in a representative sample of 216 healthy children and adolescents
between the ages of 6 and 18 from the NIH MRI Study of Normal Brain Development
(Karama et al., 2009). Cortical thickness has significant advantages in terms of precision and
interpretability over voxel-based morphometry, as detailed elsewhere (Karama et al., 2009).
Significant associations were documented in most multimodal association areas of the
cerebral cortex, somewhat more pronounced on the left side. Although the associations
appeared somewhat stronger in adolescents than children, these differences did not achieve
statistical significance. These results were generally consistent with the P-FIT model,
although more associations were found with medial structures than that model would have
predicted.

To date, neuroimaging studies have addressed structural brain correlates of crystallized and
fluid intelligence (Gray and Thompson, 2004) as well as of verbal and performance IQ, in
addition to full scale IQ (Andreasen et al., 1993; Luders et al., 2007; Luders et al., 2010;
Witelson et al., 2006). However, brain imaging studies have yet to characterize the structural
correlates of the different levels of the psychometric model including more specific
cognitive ability domains and test performance. The objective of the current study was to
extend this line of research further by examining associations between local measures of
cortical thickness and (a) the general factor of intelligence; (b) cognitive domains/group
factors; and (c) specific test scores in the same sample of children and adolescents from the
NIH MRI Study of Normal Brain Development reported previously (Karama et al., 2009). In
light of previous work (Colom et al., 2009; Deary et al., 2010; Flashman et al., 1997;
Glascher et al., 2010; Jung and Haier, 2007; Luders et al., 2009), associations between
cortical thickness and the various measures of cognitive performance were expected to be
widely distributed and to cluster around association areas, but to differ depending upon task
demands. Given the large proportion of test score variance explained by g, however, we
hypothesized that adjusting statistically for the effects of g would significantly attenuate the
degree and extent of the associations between cognitive domain and test scores, and local
cortical thickness, thereby revealing more constrained and localized areas of association for
the more specific abilities at lower levels of the hierarchy.

METHODS
Sampling and Recruitment

Data were obtained from the Pediatric MRI Data Repository (Release 2.0) created for the
NIH MRI Study of Normal Brain Development (Evans and Brain Development Cooperative
Group, 2006), a multi-site longitudinal project aimed at providing a normative database to
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characterize healthy brain maturation in relation to behavior. A listing of the participating
sites and of the study investigators can be found at:
http://www.bic.mni.mcgill.ca/nihpd/info/participating_centers.html.

This data base includes 433 children from 4:6 to 18:3 years of age at enrollment who
underwent extensive cognitive, neuropsychological and behavioral testing along with three
MRI brain imaging sessions (two years apart). Data from the first cross-sectional visit were
used here. As this study aimed to study healthy subjects, exclusion criteria included (but
were not limited to) prior history of medical illnesses with CNS implications, IQ < 70, intra-
uterine exposure to substances known or highly suspected to alter brain structure or
functions. For further details regarding sampling procedures and exclusion criteria, see
Evans et al. (2006) as well as Waber et al. (2007).

Psychometric Measures
A comprehensive neuropsychological test battery was administered on the day of or within a
few days of brain scanning. For a thorough description, see Waber et al. (2007). The
cognitive ability measures included for the present study were the Wechsler Abbreviated
Scale of Intelligence (WASI) (Wechsler, 1999) and three subtests from the Woodcock-
Johnson Psycho-Educational Battery-III (Woodcock et al., 2001). The WASI consists of the
Vocabulary, Similarities, Matrix Reasoning, and Block Design subtests; the WJ-III subtests
included Letter-Word Identification, Passage Comprehension, and Calculation. These
measures are intended for the age range of the individuals included in the current study.
Standardized scores were used for all analyses.

Magnetic Resonance Imaging Acquisition Protocol
A three-dimensional T1-weighted (T1W) Spoiled Gradient Recalled (SPGR) echo sequence
from 1.5 Tesla scanners was obtained on each participant, with 1mm isotropic data acquired
sagittally from the entire head. Slice thickness of ~1.5mm was allowed for GE scanners due
to their limit of 124 slices. In addition, T2-weighted (T2W) and proton density-weighted
(PDW) images were acquired using a two-dimensional (2D) multi-slice (2mm) dual echo
fast spin echo (FSE) sequence. Total acquisition time was ~25 minutes and was often
repeated when indicated by the scanner-side quality control process. Some subjects were
unable to tolerate this procedure and received a fallback protocol that consisted of shorter
2D acquisitions with slice thickness of 3mm (Evans and Brain Development Cooperative
Group, 2006).

Magnetic Resonance Image Processing
In order to obtain local cortical thickness measurements for each subject, all MRI images
were processed by the CIVET pipeline (version 1.1.9) developed at the MNI for fully
automated structural image analysis (Ad-Dab'bagh et al., 2006; Kim et al., 2005;
MacDonald et al., 2000). Steps, detailed elsewhere (Karama et al., 2009), include 1)
Registering images to a standardized space; 2) producing high-resolution hemispheric
surfaces with 40962 vertices each; 3) registering surfaces to a high-resolution template to
establish inter-subject correspondence of vertices; 4) applying a reverse of step 1 to allow
cortical thickness estimations in the native space of each subject; 5) calculating cortical
thickness at each vertex using the t-link metric (Lerch and Evans, 2005); and 6) smoothing
using a 20-milimeter kernel.

Data Set
The data set for the present study was compiled based on availability of the requisite
psychometric data and quality control of the imaging data. Of the 433 participants at Visit 1,
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392 had MRI acquisitions that passed raw imaging data quality control (QC). Of these 392,
33 subjects were eliminated because they were less than 6 years of age and did not have
WASI scores (WASI norms start at 6). A further 9 were eliminated because WJ-III scores
were not available. Due to the sensitivity of post-acquisition processing methods that
produce corticometric measures on the native MR images, individuals with “fallback”
acquisition protocols, whether for T1W or T2W/PDW spectra, were excluded from the
present study because of insufficient resolution for precise cortical thickness estimation. Of
the 350 participants with the full complement of MRI and behavioral data, 107 had T1W
and/or T2W/PD fallback protocols, leaving 243 with adequate data. Finally, visual QC
(blinded to cognitive ability scores) of the native cortical thickness images was conducted to
eliminate scans with aberrations in cortical thickness estimations. Thirty-six scans
demonstrated obvious problems with the cortical thickness maps (e.g., in a few cases, parts
of the frontal lobe were truncated due to failed automatic brain masking while in other cases,
ringing artifacts led to fused gyri or clearly aberrant cortical thickness values) and were
eliminated from further analysis, leaving a final sample size of 207.

Table 1 shows demographic and IQ characteristics of the full Objective 1 Visit 1 sample and
the analyzed sample. With the exception of age, no statistically significant demographic
differences were documented. The higher mean age for the analyzed sample was mostly due
to excluding children below age 6.

Measurement Model and Variable Development
To define the measurement model, we used factor analysis to explore the patterns of
correlation among the 7 cognitive tests (Figure 1). Parallel analysis indicated that three
factors representing distinct cognitive domains could be distinguished. The calculation,
letter-word identification, and comprehension WJ-III tests defined the first domain (which
we labeled Academic Skills), the WASI Similarities and Vocabulary subtests, defined a
second domain (which we labeled Verbal Reasoning), and the Block Design and Matrix
Reasoning tests defined the third domain (which we labeled Spatial Reasoning). g was
defined as a higher-order factor accounting for correlations among the domains (Table 2).
Fit indices for the measurement model were good: RMSEA = .040, χ2

(11) = 14.65, χ2/df =
1.3, CFI = .99.

Second, we calculated a g score for each participant using the first unrotated principal factor
computed from principal axis factoring. This factor accounted for about 39% of the variance
in test performance, consistent with prior estimates. A second principal axis factor analysis,
followed by a Promax rotation, was computed to obtain factor scores for the three cognitive
ability domains. Both g scores and first-order factor scores were approximately normally
distributed (skewness and kurtosis values were all above −1 and below 1).

Third, the cognitive ability domain scores were regressed against g scores. Variance
unpredicted by g -- the residuals from these regression analyses -- was considered to
represent ‘g-independent’ Academic Skills, Verbal Reasoning, and Spatial Reasoning
scores. These ‘g-independent’ cognitive ability domain residual scores were of course
uncorrelated with the g score, and all three correlated positively only with their contributing
tests. Importantly, these ‘g-independent’ cognitive ability domain scores displayed a wide
range of values and were approximately normally distributed (see Figure 2) with skewness
and kurtosis values all above −1 and below 1.

Finally, we computed seven different g scores in order to estimate ‘g-independent’ scores
for each test. Each of these scores was based on only six tests instead of the available seven
to avoid inadvertently controlling for the contribution of the test of interest when controlling
for g. For instance, ‘Block Design’-free g scores were computed after removing the ‘Block
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Design’ test. We carried out one regression analysis for each test, using the appropriate g
score as the independent variable and the respective specific test score as the dependent
variable. Residuals from these regression analyses were considered to represent ‘g-
independent’ specific test scores. The test residuals displayed a wide range of values and
were approximately normally distributed with skewness and kurtosis values all between 1
and −1.

Handedness
A measure of hand preference was adapted from the Edinburgh Handedness Inventory
(Oldfield, 1971). It included handwriting and seven gestural commands. The criterion for
hand preference was defined as at least seven of eight responses with the same hand (Waber
et al., 2007).

Cortical Thickness Statistical Analyses
Statistical analyses were conducted using SurfStat, a statistical toolbox created for
MATLAB 7 (The MathWorks, Inc.) at the MNI (Worsley et al., 2004)
(http://www.math.mcgill.ca/keith/surfstat). Each individual’s absolute native-space cortical
thickness was linearly regressed against the measure of interest (e.g., g scores) using a first-
order linear model at each cortical thickness sampling point while accounting for the effects
of gender, age, a proxy measure of brain volume (pBV)1, and MRI scanners from the six
sites. Although handedness was initially included as a regressor, it did not contribute
significantly to the model and so was discarded.

In order to explore the associations between cortical thickness and the cognitive variables of
interest, the following model was fitted to each one of the 81924 cortical thickness sampling
points:

Y ~ b0 + b1CV + b2Age + b3Gender + b4Scanner + b5pBV + ε

Where:

Y = Cortical Thickness

CV = Cognitive variable of interest

pBV = proxy measure of Brain Volume

b0 = Y intercept

b1 to b5 = regression coefficients for effects of the different regressors

ε = error term

For each cortical thickness sampling point, the coefficient of the CV regressor, b1, was
estimated and a resultant t-test value calculated, thereby producing a three-dimensional t-
statistic map. A t-statistic threshold of statistical significance was established, taking into
account multiple comparisons via the False Discovery Rate (FDR) method (Benjamini and
Hochberg, 1995; Genovese et al., 2002). The FDR value is the expected proportion of false
positives among all cortical points where the t-value is above the selected threshold. Thus,
setting the threshold to an FDR of 0.05 implies that it is expected that 5% of all cortical
points having a t-value above threshold are false positives. Here, two thresholds were used:
a FDR of 0.05 was used as the statistically significant threshold while a FDR of 0.25 was
used to look for trends. While a FDR value of 0.25 is somewhat arbitrary, it is a threshold

1pBV is the sum of White Matter, Intracerebral Cerebrospinal Fluid (CSF) and Subcortical Gray Matter (i.e. it excludes cortical gray
matter from the calculation of brain volume). See Appendix A for rationale.
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that has frequently been used to look for trends (Isganaitis et al., 2009; Wang et al., 2010;
Zhang et al., 2010). For the purpose of visualization, resultant thresholded q values were
projected on an average surface template generated from the ICBM152 data set (Lyttelton et
al., 2007).

In order to assess whether or not findings differed with age, an 'age by cognitive variable of
interest' interaction term was added to the model. This was done for each cognitive variable.

RESULTS
Cortical thickness was positively associated with the full g score (i.e., the g score extracted
from the complete set of 7 tests) in a wide network of bilateral areas (Figure 3). The
magnitudes of these correlations for statistically significant foci were in the modest to
moderate range (0.15 to 0.34). Analogous analyses for the three cognitive ability domain
scores revealed a similar bilateral and distributed pattern of association (see left side of
Figure 4). Although not surprising given their high correlations with g, the highest peaks of
statistical significance for the three domains were within a few mm of those observed for the
full g scores.

Individual test scores for Block Design, Matrix Reasoning, Vocabulary, and Passage
Comprehension showed areas of significant association with cortical thickness. Matrix
Reasoning and Passage Comprehension exhibited distributed patterns of peak associations
very similar to those observed for g and the three cognitive domains; Vocabulary and Block
Design exhibited relatively limited areas of association with cortical thickness. Nonetheless,
the few observed areas of associations for these tests were within a few mm of peak areas
observed for the g score (see Figure 5).

For tables of significant peak coordinates for g, cognitive domains, and subtests, see
supplemental Tables S1 to S8.

Trend level associations were investigated for tests for which cortical thickness associations
were not demonstrated with the .05 FDR (i.e., Similarities, Letter-Word identification, and
Calculation) by applying the more lenient FDR = 0.25 threshold. This exercise revealed a
pattern of peak locations very similar to the one detected for g and the cognitive domains.
Extending the search for trends to Vocabulary and Block Design, which demonstrated
limited areas of associations at the original threshold, also led to a pattern of peak locations
similar to the one observed for g and the cognitive domains.

Finally, cortical thickness maps for the variance specific to the three cognitive domains (g-
adjusted residuals) revealed no areas of statistical association (Figure 4), nor were there
associations for any of the g-adjusted individual test scores (Figure 5), even with the more
lenient FDR = 0.25 threshold.

No 'age by cognitive variable of interest' interactions were observed.

DISCUSSION
The most important finding of the present work was that, after adjusting statistically for the
effects of g, no significant associations between cortical thickness and performance
remained for any of the cognitive domains or specific ability tests used here. This finding
persisted, moreover, when a more lenient threshold of significance was applied to look for
trends. Most of the association between the psychometrically distinct domains of cognitive
performance measured here and local cortical thickness is thus well captured by g. A
corollary implication is that there is no evidence, in this population-based sample, for the
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existence of areas in the brain where cortical thickness is specifically (i.e. ‘uncontaminated’
by the influence of g) related to levels of performance for particular abilities and skills.

It is possible, of course, that such areas do in fact exist but that the associated effect size for
cortical thickness in these regions is too small to be detected by the current means despite
the relatively large sample used here. An alternative is also that there are so many
differences in the specific brain areas various individuals use to do different tasks that no
one specific area stands out for g-independent performance on any given task at the group
level. Whatever the case, our findings suggest that patterns of associations between cortical
thickness and performance on complex tasks are likely not specific to these tasks.

Although specification of the nature of the processes that are common across tasks goes well
beyond the scope of the current study, the identification of multimodal association areas
suggests that the general intelligence factor reflects in part efficient higher-order integration
across modalities. The widespread nature of the identified areas of gray matter, moreover,
suggests that efficient functioning of these integrative regions could provide cognitive
“power” to the more specific functional domains, thereby accounting for the consistency of
identified regions despite the distinctions between ability domains established on a
psychometric basis. Moreover, variations in cortical thickness may bear functional
relationships to structural features not measured here, such as white matter tracts (He et al.,
2007).

Findings presented here should not be viewed as contradicting accepted and well
documented neuroscientific evidence for functional specialization of cortical regions.
Indeed, the focus here pertains to only one anatomical metric, cortical thickness, thought to
reflect the density and arrangement of neurons, neuroglia and nerve fibers (Narr et al.,
2007). This study did not include other structural brain measurements, nor did it consider
neurophysiological indicators of brain function. Along similar lines, results do not preclude
the possibility that ability test scores independent of g may be related to brain correlates in
older individuals (Haier et al., 2010). Nonetheless, within the framework of the sample and
theoretical model employed here, it is fair to conclude that cortical thickness is most clearly
related to general cognitive ability and not to specific ability domains, over and above their
own relations with general cognitive ability.

g, all three cognitive domain scores, as well as Matrix Reasoning and Passage
Comprehension test scores exhibited very similar patterns of association with cortical
thickness. This finding is consistent with the assumption that matrix reasoning-type tasks are
good indicators of fluid intelligence (Carpenter et al., 1990; Weschler, 1997), as well as that
reading comprehension is better correlated with general intelligence than are single word
reading or rote computation skills (Vellutino et al., 2000). A similar pattern of associations
at the trend level was observed for Block Design, Vocabulary, Similarities, Calculation, and
Letter-Word Identification. This consistency is reassuring and suggests that we may have
been underpowered to detect associations for these tests at the a priori determined
significance threshold. The existence of such a pattern common to all levels of the hierarchy
model further explains why controlling for g -- which represents shared variance across
tasks and domains -- eliminates cortical thickness associations for the more specific
cognitive domain and test scores.

Comparison with our previous work
The present study extended prior work in which we demonstrated, using the 4 subtests from
the WASI, that general cognitive ability was associated with measures of cortical thickness
across widespread areas of cerebral cortex, most prominently in multimodal association
areas (Karama et al., 2009). In the present study, we expanded the array of cognitive tests to

Karama et al. Page 8

Neuroimage. Author manuscript; available in PMC 2012 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



include 3 subtests of the WJIII, a widely used measure of academic skills, in addition to the
4 subtests from the WASI, a brief measure of IQ. Based on these 7 tests, we demonstrated a
measurement model consistent with prevailing psychometric models of intellectual function.
It included 3 distinct cognitive domains, representing verbal abilities, perceptual abilities
and academic skills, with shared variance accounting for approximately 40% of variance in
test performance and consistent with g. We then generated brain maps demonstrating
patterns of correlation with cortical thickness for g and the 3 cognitive domains, as well as
each of the 7 individual measures. Although there were some differences among these maps,
they generally involved patterns of peak association similar to those demonstrated for g.

It is noteworthy that the g against cortical thickness map presented in Figure 3 slightly
differs from the general cognitive ability against cortical thickness map shown in Figure 1 of
our previous work (Karama et al., 2009). The reasons for this are (a) the use here of a larger
battery of cognitive tests to estimate g; (b) the estimation of g by principal axis factoring
instead of principal component analysis which, in contrast to principal axis factoring, does
not exclude error variance from the estimate of g (Jensen and Weng, 1994); (c) a decrease in
sample size from 216 in our previous work to 207 here due to 9 subjects not having WJ-III
data; and (d) controlling here for a proxy measure of brain volume.

Issues and Caveats
It is noteworthy that the mean WASI IQ of the population studied here is slightly above
normal (mean ≈ 111). This is likely due to the use of strict exclusion criteria aimed at
recruiting only healthy subjects. Indeed, the exclusion of subjects having a medical illness
with CNS implications is likely to have eliminated subjects which, on average, have a lower
IQ. The corollary of this would be a higher average IQ for the selected sample when
compared with the usual samples used in the elaboration of cognitive test norms as the latter
do not usually use such stringent exclusion criteria.

Another issue along similar lines pertains to the exclusion of 36 subjects due to poor cortical
thickness maps. It is possible that such exclusion may have somewhat biased results. For
instance, subjects with a very thick cortex may have failed automated masking because of
relatively little CSF surrounding the cortex. The removal of such subjects may have led to a
decrease in cortex thickness variance with the consequences of decreasing our ability to
detect present but subtle cortical thickness associations with cognitive abilities.

Our findings may be highly dependent on the tests included here, which all have relatively
high known correlations with g and tend to be complex tasks that involve many different
mental processes. Had we included a task that relies on more specific mental procedures,
such as picture identification, our findings could have been different. Nonetheless, the
present findings suggest that neuroimaging studies focusing on cognitive performance may
benefit from including an assessment of g in order to help interpret what is general versus
what is specific.

Importantly, the existence of cortical thickness correlates for g as well as for the broad
ability domains says little about the etiology of g. Indeed, being correlational in nature,
results presented here are bound by the usual limitations associated with such data.
Documentation of a correlation between g and cortical thickness in specific regions of the
cerebral cortex does not mean, for example, that g is determined by characteristics of gray
matter and especially that g is predetermined by genetically fixed characteristics of gray
matter. Experimental studies have demonstrated that targeted experience can influence local
cortical thickness or volume (Draganski et al., 2004; Driemeyer et al., 2008; Haier et al.,
2009b), even in older adults (Boyke et al., 2008; Engvig et al., 2010). Potential impacts on
children in particular, in whom plasticity may be greater, have yet to be explored. In any
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event, it is entirely plausible that experiential influences could have an important impact on
gray matter structure in these key multimodal regions, especially in infants and young
children, with potential implications for subsequent intellectual functioning as an
epiphenomenon.

While cortical thickness may be one of many factors contributing to g (or vice versa), an
alternative could be that a third factor (e.g., nerve growth factor) or set of factors is/are
responsible for variation in both g and cortical thickness. While there is, to date, no
compelling evidence to support an alternative of this type, such a situation could imply that
increased cortical thickness is not in itself necessarily causative of increased g. That said, the
existence of correlations between cortical thickness and g in known association areas
suggests that the link between mental ability and cortical thickness in these areas is not an
inconsequential finding. Further, since local cortical thickness ‘explains’ at best only about
15% of the variance in g, multiple neurobiological factors, perhaps in combination with
cortical thickness, could contribute to the existence of differences in g (Jensen, 1998). Such
a view is in keeping with accumulating evidence for associations between general
intelligence and white matter integrity (Schmithorst et al., 2005), network efficiency (Li et
al., 2009; Song et al., 2008; van den Heuvel et al., 2009), developmental trajectories of
cortical thickness (Shaw et al., 2006), glucose metabolic rate (Haier et al., 2003; Haier et al.,
1988; Haier et al., 1992), N-acetyl-aspartate levels (Jung et al., 2005) as well as corpus
callosum thickness (Luders et al., 2007; Luders et al., 2010), as reviewed by Deary and
colleagues (Deary et al., 2010).

Strengths
An important strength of the current study is the relatively large representative sample of the
US population. Since the costs of recruiting a representative sample and of scanning large
numbers of individuals are generally prohibitive, most imaging studies have been based on
relatively small samples of convenience. Another strength includes the use, through a
measurement model, of latent rather than observed variables as this is known to reduce the
error in measurement of the abilities (Bollen, 1989; Schumacker and Lomax, 1996). Finally,
when using different sets of tests for different age groups, variance in performance between
subjects in different groups could be due to genuine cognitive differences between subjects
in different groups as well as to the specific characteristics of the sets of tests administered
to each age group. The use of the same set of tests across the entire age range studied here
allowed to avoid potential phenotypic heterogeneity caused by the use of different sets of
tests for different age groups.

Conclusion
In conclusion, after adjusting for the effects of g, we did not find significant associations
between cortical thickness and performance on more specific cognitive domains or ability
tests for a large representative sample of healthy children and adolescents. It follows that
cortical thickness correlates of cognitive performance on complex tasks are well captured by
g. An important implication is that patterns of associations between cortical thickness (and
perhaps other neural features) and performance on complex tasks are unlikely to be specific
to these tasks. Interpretation of results from cognitive neuroimaging studies may benefit
from including an estimation of g in analytic models to more accurately evaluate specificity.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Rationale for controlling for pBV instead of TBV2
1. There is a very strong correlation (>.75) between Cortical Gray Matter Volume and

Mean Cortical Thickness (see Figure A1)3.

2. Cortical Gray Matter Volume constitutes more than 40% of TBV.

3. Given the high proportion of TBV that is constituted by Cortical Gray Matter and
the very strong association between Cortical Gray Matter Volume and Cortical
Thickness, controlling for TBV leads to partially controlling for cortical thickness.

4. In other words, using TBV in the present context ends up being somewhat akin to
looking at the association between a behavioral measure and cortical thickness after
partially controlling for cortical thickness.

5. As can be seen in the unthresholded brain maps of Figure A2, peak areas of
association between cortical thickness and g after controlling for TBV or pBV are
in the same regions. However, controlling for TBV lowers the statistical
significance given that we are partially controlling for thickness -- note that the
essential difference between controlling for TBV and pBV is a shift in t value
levels (see color bar). Thresholding leads to a noticeable decrease in suprathreshold
extent.

6. Briefly, controlling for pBV avoids removing the effect of interest while still
allowing for a certain degree of control over the confounding effects of brain
volume.

Appendix B. Brain Development Cooperative Group
Key personnel from the six pediatric study centers are as follows: Children’s Hospital
Medical Center of Cincinnati, Principal Investigator William S. Ball, M.D., Investigators
Anna Weber Byars, Ph.D., Mark Schapiro, M.D., Wendy Bommer, R.N., April Carr, B.S.,
April German, B.A., Scott Dunn, R.T.; Children’s Hospital Boston, Principal Investigator
Michael J. Rivkin, M.D., Investigators Deborah Waber, Ph.D., Robert Mulkern, Ph.D.,
Sridhar Vajapeyam, Ph.D., Abigail Chiverton, B.A., Peter Davis, B.S., Julie Koo, B.S., Jacki
Marmor, M.A., Christine Mrakotsky, Ph.D., M.A., Richard Robertson, M.D., Gloria
McAnulty, Ph.D; University of Texas Health Science Center at Houston, Principal
Investigators Michael E. Brandt, Ph.D., Jack M. Fletcher, Ph.D., Larry A. Kramer, M.D.,
Investigators Grace Yang, M.Ed., Cara McCormack, B.S., Kathleen M. Hebert, M.A., Hilda
Volero, M.D.; Washington University in St. Louis, Principal Investigators Kelly Botteron,
M.D., Robert C. McKinstry, M.D., Ph.D., Investigators William Warren, Tomoyuki
Nishino, M.S., C. Robert Almli, Ph.D., Richard Todd, Ph.D., M.D., John Constantino, M.D.;
University of California Los Angeles, Principal Investigator James T. McCracken, M.D.,
Investigators Jennifer Levitt, M.D., Jeffrey Alger, Ph.D., Joseph O’Neil, Ph.D., Arthur

3Whether this is due to a single global effect (e.g. a global effect responsible for cortical thickness across the brain) and/or to the sum
of multiple local effects is unknown.
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Toga, Ph.D., Robert Asarnow, Ph.D., David Fadale, B.A., Laura Heinichen, B.A., Cedric
Ireland B.A.; Children’s Hospital of Philadelphia, Principal Investigators Dah-Jyuu Wang,
Ph.D. and Edward Moss, Ph.D., Investigators Robert A. Zimmerman, M.D., and Research
Staff Brooke Bintliff, B.S., Ruth Bradford, Janice Newman, M.B.A. The Principal
Investigator of the data coordinating center at McGill University is Alan C. Evans, Ph.D.,
Investigators Rozalia Arnaoutelis, B.S., G. Bruce Pike, Ph.D., D. Louis Collins, Ph.D.,
Gabriel Leonard, Ph.D., Tomas Paus, M.D., Alex Zijdenbos, Ph.D., and Research Staff
Samir Das, B.S., Vladimir Fonov, Ph.D., Luke Fu, B.S., Jonathan Harlap, Ilana Leppert,
B.E., Denise Milovan, M.A., Dario Vins, B.C.,, and at Georgetown University, Thomas
Zeffiro, M.D., Ph.D. and John Van Meter, Ph.D. Ph.D. Investigators at the Neurostatistics
Laboratory, Harvard University/McLean Hospital, Nicholas Lange, Sc.D., and Michael P.
Froimowitz, M.S., work with data coordinating center staff and all other team members on
biostatistical study design and data analyses. The Principal Investigator of the Clinical
Coordinating Center at Washington University is Kelly Botteron, M.D., Investigators C.
Robert Almli Ph.D., Cheryl Rainey, B.S., Stan Henderson M.S., Tomoyuki Nishino, M.S.,
William Warren, Jennifer L. Edwards M.SW., Diane Dubois R.N., Karla Smith, Tish Singer
and Aaron A. Wilber, M.S. The Principal Investigator of the Diffusion Tensor Processing
Center at the National Institutes of Health is Carlo Pierpaoli, MD, Ph.D., Investigators
Peter J. Basser, Ph.D., Lin-Ching Chang, Sc.D., Chen Guan Koay, Ph.D. and Lindsay
Walker, M.S. The Principal Collaborators at the National Institutes of Health are Lisa
Freund, Ph.D. (NICHD), Judith Rumsey, Ph.D. (NIMH), Lauren Baskir, Ph.D. (NIMH),
Laurence Stanford, PhD. (NIDA), Karen Sirocco, Ph.D. (NIDA) and from NINDS, Katrina
Gwinn-Hardy, M.D., and Giovanna Spinella, M.D. The Principal Investigator of the
Spectroscopy Processing Center at the University of California Los Angeles is James T.
McCracken, M.D., Investigators Jeffry R. Alger, Ph.D., Jennifer Levitt, M.D., Joseph
O'Neill, Ph.D.
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Figure 1.
Measurement model for the cognitive ability measures.
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Figure 2.
Distribution of g-independent cognitive ability domain scores. Note the approximately
normal distribution.
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Figure 3.
Results of cortical thickness regressed against g. An FDR threshold of 0.05 is used to control
for multiple comparisons across the brain. Colors, representing q values (which are metrics
used for FDR that can be viewed as analogues to p values), are superimposed on left and
right lateral average surface templates generated from the ICBM152 dataset. Results are
corrected for gender, age, total brain volume and scanner.
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Figure 4.
Results of cortical thickness regressed against each of the three domains before (left) and
after (right) controlling for g. Here also, an FDR threshold of 0.05 is used to control for
multiple comparisons across the brain and colors, representing q values, are superimposed
on left and right lateral average surface templates generated from the ICBM152 dataset.
Results are corrected for gender, age, total brain volume and scanner.
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Figure 5.
Results of cortical thickness regressed against the Passage Comprehension, Matrix
Reasoning, Block Design, and Vocabulary tests before (periphery) and after (center)
controlling for g. Here also, an FDR threshold of 0.05 is used to control for multiple
comparisons and colors, representing q values, are superimposed on left and right lateral
average surface templates generated from the ICBM152 dataset. Results are corrected for
gender, age, scanner, and a proxy measure of brain volume.
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Figure A1 (Appendix).
Plot of the association between Mean Cortical Thickness and Cortical Gray Matter Volume
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Figure A2 (Appendix).
Figures showing the association between g and cortical thickness after controlling for pBV
(White Matter + Intracerebral CSF + Subcortical Gray Matter) or TBV (White Matter +
Intracerebral CSF + Cortical and Subcortical Gray Matter). The top right g map is identical
to Figure 3 and is reproduced here for convenience to facilitate comparisons between
figures.
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Table 1

Demographic and WASI Full Scale IQ characteristics of original sample and of accepted sample

Objective 1 visit 1 Sample Accepted Sample Statistics

n=431 n=207

Age (yrs) 10.4±3.8 (range: 4.6 to 18.3 years) 11.8±3.5 (range: 6.0 to 18.3 years) t = 4.47, p < 0.001

Proportion of males 48.0% 44.4% χ2 = 0.72, p =.396

Proportion with low/medium/high adjusted
SES*

24.4%/40.8%/34.8% 22.2%/38.6%/39.1% χ2 = 1.16, p =.56

WASI-FSIQ** 110.7±12.5** 111.0±12.0 t = 0.29, p =0.29

Proportion of Whites/African Americans/
Other

73.5%/8.4%/18.1% 74.4%/8.2%/17.4% χ2 = 0.06, p =.97

When appropriate, means ± standard deviations are provided

*
Based on the US Departement of Housing and Urban Development method for comparing family income levels as a function of regional costs of

living

**
WASI IQ data available for only 380 subjects out of the 431 of the original sample

***
The 'Other' category includes American Indian, Alaskan Native, Asian, Native Hawaiian or Other Pacific Islander, and those for which

ethnicity or race was not provided or for which parents came from different racial or ethnic backgrounds
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Table 2

Pearson correlations between the Academic Skills, Verbal Reasoning, and Spatial Reasoning domains.

Domain Academic Skills Verbal Reasoning Spatial Reasoning

Academic Skills .76 .65

Verbal Reasoning .58
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