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Abstract
Determining the dynamics of functional connectivity is critical for understanding the brain. Recent
functional magnetic resonance imaging (fMRI) studies demonstrate that measuring correlations
between brain regions in resting state activity can be used to reveal intrinsic neural networks. To
study the oscillatory dynamics that underlie intrinsic functional connectivity between regions
requires high temporal resolution measures of electrophysiological brain activity, such as
magnetoencephalography (MEG). However, there is a lack of consensus as to the best method for
examining connectivity in resting state MEG data. Here we adapted a wavelet-based method for
measuring phase-locking with respect to the frequency of neural oscillations. This method
employs anatomical MRI information combined with MEG data using the minimum norm
estimate inverse solution to produce functional connectivity maps from a “seed” region to all other
locations on the cortical surface at any and all frequencies of interest. We test this method by
simulating phase-locked oscillations at various points on the cortical surface, which illustrates a
substantial artifact that results from imperfections in the inverse solution. We demonstrate that
normalizing resting state MEG data using phase-locking values computer on empty room data
reduces much of the effects of this artifact. We then use this method with eight subjects to reveal
intrinsic interhemispheric connectivity in the auditory network in the alpha frequency band in a
silent environment. This spectral resting-state functional connectivity imaging method may allow
us to better understand the oscillatory dynamics underlying intrinsic functional connectivity in the
human brain.
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Introduction
Measuring how neural regions interact is critical for understanding the dynamics of the
normal and disordered brain. “Functional connectivity” is thought to reflect these
interactions and is defined as “the correlation between spatially remote neurophysiological
events” (Friston et al., 1993). Correlation is used as a measure of functional connectivity
based on the principle that if two neuronal populations fire together, they are likely to be
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part of the same functional circuit. Traditionally, changes in the correlations between neural
populations are measured across tasks or cognitive states. Recently, it was discovered that
the activity in regions forming task-critical networks (for example the networks associated
with visual, auditory, memory, and sensorimotor functions Biswal et al., 1995; Cordes et al.,
2000; Vincent et al., 2006); correlate even when those tasks are not being performed (when
the subject is at “rest,” in light sleep, or even sedated; see Boly et al., 2008; Fox and Raichle,
2007 for reviews). Resting-state functional connectivity has garnered a great deal of interest
as a method for examining functional networks in a “natural” state. This interest arises from
two aspects of resting-state functional connectivity. First, because these networks arise
without being driven by a task, this method has the potential to illustrate fundamental
aspects the brain’s intrinsic functional organization (Fox and Raichle, 2007). Second, this
lack of task can allow us to examine functional connectivity in clinical populations where
behavioral responses may be abnormal (Greicius, 2008).

The majority of resting-state functional connectivity studies have been performed using
functional magnetic resonance imaging (fMRI). Because of the relatively poor temporal
resolution of fMRI (~.5-1 Hz and below) these studies have been restricted to examining
correlations in slow resting-state oscillations. These studies have demonstrated that there are
strong correlations within functional networks in the very low frequency (< .1 Hz) aspects of
the resting-state activity (Fox and Raichle, 2007). Correlations in this low frequency band
are surprising since most electrophysiological aspects of neural activity occur at a much
faster time scale. One likely possibility that has emerged is that these very slow fluctuations
in large part reflect slow changes in underlying higher frequency neural activity (He et al.,
2008; Leopold et al., 2003; Mantini et al., 2007; Nir et al., 2008). However, little is known
regarding the exact nature of correlated activity in these higher frequencies. To explore these
faster aspects of resting state functional connectivity requires methods to examine
interactions using electrophysiological measures of neural activity that have a higher
temporal resolution, such as magnetoencephalography (MEG).

Methods for measuring functional connectivity in non-invasive electrophysiological data
have generally examined task/condition differences in the correlation of the time-frequency
response of the neural activity arising from disparate brain regions (Jerbi et al., 2007; Lin et
al., 2004; Tass et al., 2003). These studies were designed to allow researchers to make
inferences about whether the task or cognitive state modifies functional connectivity. For
example, the spectrum of interregional correlations have been examined before and after
learning (Duzel et al., 2005; Ghuman et al., 2008), compared across attentional states (Gross
et al., 2004), and for different visual stimuli (Bar et al., 2006; Kaiser et al., 2004). Many of
these approaches were adapted from methods that have been used successfully to examine
functional connectivity using electrode recordings in animals (Engel et al., 2001; Roelfsema
et al., 1997; Varela et al., 2001).

There are many methodological issues that must be considered in resting-state functional
connectivity before adapting task-related approaches to resting-state data. These issues
appear because of the lack of a within-subjects comparison condition in resting-state studies.
For example, when examining resting-state functional connectivity between brain areas, one
must take into account the fact that some of the activity projected to each area originates
from common sensors. In task-based studies, crosstalk is somewhat mitigated because it is
present to some degree in all conditions and is reduced when a comparison across conditions
is performed.

Here we introduce a novel wavelet-based method for measuring resting-state phase-locking
between electrophysiological signals that are measured non-invasively, but mapped onto the
human brain, and introduce normalization to reduce a major crosstalk artifact. Wavelet-
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based analyses have the advantage of not requiring the data to be stationary (Percival and
Walden, 2000) and therefore are likely to be more appropriate for non-stationary neural data
than Fourier-based methods. It should be noted that while we primarily discuss this method
for MEG, in principle it could be used for any non-invasive electrophysiological measure of
brain activity, such as electroencephalography (EEG). After describing the method, we use
simulations to test the spatial sensitivity and specificity of the functional connectivity on the
cortical surface. We use these simulations to examine a key artifact that appears in non-
invasive resting-state functional connectivity analyses of electrophysiological data and
demonstrate a procedure for reducing much of this problem. Finally, we apply the method to
examine the spectral functional connectivity in the left (LH) and right hemisphere (RH)
auditory network using MEG with eight subjects. While these MEG results are primarily
used to validate the method, this is also the first demonstration of connectivity between the
LH and RH auditory cortices in a true resting state. Previous studies have used fMRI to
examine connectivity in this network (Cordes et al., 2000), but fMRI cannot be considered a
true resting state for the auditory cortex because of the noise the MRI produces; in contrast,
MEG is silent.

Methods
The method for calculating resting state functional connectivity was adapted from the
dynamic statistical parametric mapping method developed by Lin et al. (2004). Specifically,
the process involves six steps: 1) artifact removal 2) selection of “seed” region of interest
(ROI) 3) calculation of the inverse solution and projection onto the brain 4) wavelet
transformation of the signal 5) calculation of the phase-locking values (PLVs; Lachaux et
al., 1999) between the seed ROI and every other location in the brain 6) repeat steps 3, 4,
and 5 with empty room data and normalize the original PLVs by the empty room noise
PLVs to reduce crosstalk induced by the imperfect inverse solution. Note that when a linear
inverse operator is used, the order of steps 3 and 4 do not matter.

Artifact Removal
Removing artifacts due to heartbeats, eye blinks, eye movements, and other non-neural
sources is critical because some of these signals can dwarf the neural component of the
MEG data. The magnitude and ubiquity of these distortions can result in spurious phase-
locking and correlation over large portions of the brain.

For artifact removal, we first visually inspected the data for any respiratory artifacts. These
artifacts are generally uncommon in MEG data, particularly with the use of third-order
gradiometer compensation. However, if subjects have metal on or in their persons that they
have not removed, or are unaware of, these artifacts can be substantial (one subject in our
study was excluded for this reason). We then used a short-time Fast Fourier filter to band-
pass the data 1–50 Hz. This removed low frequency drift, any residual respiratory artifact,
60 Hz line noise, and any DC offset.

Cardiac artifacts were removed using an independent component analysis-based procedure
following Liu et al. (2010). Briefly, the MEG sensor data were decomposed into a number
of independent components (ICs) using EEGLAB (Delorme and Makeig, 2004). The ICs
was identified as being a cardiac artifact if the IC had a peak in its autocorrelation
coefficient between .6-1.5 Hz, the IC had a timecourse that contained periodic features that
were similar to those seen on an electrocardiogram, and had power in the MEG sensors that
experience suggested most often contained cardiac features. Across our 8 subjects, between
1 and 3 cardiac ICs were rejected and the remaining ICs were reassembled for further
processing.
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Typically, ocular-motor artifact rejection is accomplished by removing trials where eye
blinks are evident and when there are spikes in the MEG signal, which is impossible for a
resting-state analysis because of the lack of trials. Alternatively, artifacts are removed by
removing the component of the signal that corresponds to eye blinks or an electrooculogram
(EOG) channel using independent components analysis (ICA) or principle components
analysis (PCA). However, ICA/PCA methods leave some residual MEG signal that
corresponds to the artifact. Because the MEG signal from eye blinks can be up to 10 times
the magnitude of the brain signal this residual artifact signal can result in false positive
functional connectivity.

To monitor ocular muscle activity we measured EOG along with the MEG measurements.
The EOG timecourses were pseudo-Z transformed into standard deviation (SD) units (by
subtracting the mean across the epoch and dividing by the SD). These data were visually
inspected and the minimum size of each subject’s eye blinks in these units was determined
(mean = 1.64 [in SD units], min 1.5, max 2.0). Similarly, the MEG signal at each sensor was
transformed into SD units and points that exceeded a threshold of 5 SD from the mean
across the epoch were found. Centered about each point that exceeded these thresholds, the
data 300 ms before and 500 ms after these points were excluded from further analysis (on
average this removed 1200 ms per eye blink). These additional windows of data were
excluded so that sufficient pre- and post-artifact data were removed to ensure no artifacts
remained in the analyzed timecourses. These conservative thresholds and windows removed
on average 36% (SD = 26%) of the time points across our eight subjects.

Removing these data points creates discontinuities in the waveforms because some
contiguous points in the resultant data are not actually contiguous in time. We tested
whether these discontinuities cause any undue negative consequences for the analysis by
comparing the error caused by removing 35% of simulated 12 minute scans two different
ways. Specifically, we either removed 1200 ms windows randomly spread across the 12
minutes (i.e. simulating eye blinks and creating discontinuities) or randomly selected a
continuous 7.8 minute window out of the 12 minutes (i.e. 65% of the data) for analysis.
Comparing the error caused by these two different methods relative to the entire 12 minute
window allows us to examine whether the discontinuities in and of themselves were
detrimental. We found that neither method for removing 35% of the data caused any bias in
the phase-locking (beyond the bias towards higher phase-locking due to the reduced degrees
of freedom which was very small at all frequencies), though both methods did cause errors.
Comparing the magnitude of the errors for the different methods of removing 35% of the
data, we found that below 3 Hz the discontinuities caused significantly larger error
compared to the continuous 7.8 minutes. However, at higher frequencies no substantial
difference in the amount of error was seen. It should be noted that if smaller windows than
the very conservative 1200 ms for each eye blink is removed, the cutoff frequency at which
substantially greater error is present for the discontinuous data is higher than 3 Hz. This
analysis demonstrates that, for frequencies above 3 Hz, the discontinuities caused by this
method of eye blink removal does not cause substantial negative consequences to the data.

This method of removing the timepoints when the EOG channel exceeds a threshold is
preferred to an ICA/PCA approach under most circumstances because of the potential for
false positive phase-locking due to residual eye blink signal with the ICA/PCA approaches.
However, there are two cases where the ICA/PCA approach may be preferred. First, if the
scientific question relates to oscillatory dynamics below 3 Hz, then the discontinuities will
cause substantially excess error. Second, if a subject has excessive blinks resulting in
removal of too much of the data and the subjects are too valuable to eliminate from the
analysis (e.g. clinical populations).
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Seed Selection
Many methods exist for selecting the seed ROI. Seeds can be chosen based on functional
localization, anatomical landmarks, or some combination of both. One critical factor is to
ensure that ROIs are chosen independently of the analysis of interest. For example, as
described in the example with real MEG data below, we chose our seed ROIs based on an
independent functional localizer to find LH and RH auditory cortex. These locations were
used as seed ROIs. The MEG signal is averaged across each location in the seed ROI for the
seed timecourse.

Inverse Solution
The location of the cortical current sources cannot be precisely determined using the
measured magnetic fields from outside the head. Thus, we estimate the location of these
sources with the cortically constrained minimum norm estimate (MNE; Hämäläinen et al.,
1993) using the MNE™ software suite v2.7. Briefly, a linear inverse operator W is applied to
the measured signal to calculate the MNE

where x(t) is a vector that represents the MEG channel data at time t and y(t) is vector
representing the corresponding current projected onto the cortical surface. The estimated
activity at each source location is a weighted combination of all the data arising from all
sensors (as it is for most distributed source models). Thus, each source shares the same
underlying data to some degree; substantially so for sources that are close together in the
brain. This leads to “imperfections” due to the inverse solution where the activity in nearby
sources appears to be more similar than it actually is in the brain. The artifact caused by
these imperfections are discussed and addressed in detail later. The expression of W is
calculated using the L2 norm, which yields

where A is the free source orientation solution of the forward problem calculated using the
boundary element method. C and R are the noise and source covariance matrices
respectively. λ is a weighting factor that is used to avoid the magnification of errors in the
data and λ2≈(1/SNR). We used a value of 3 for this, as is often done in MEG analysis
(Hämäläinen, MNE software user’s guide version 2.7, 2009). R was depth-weighted to
overcome the superficial bias of the MNE with a depth factor of .8 (Lin et al., NeuroImage,
2006). Furthermore, because cortical neurons are known to be preferentially oriented
perpendicular to the cortical surface, we used a loose orientation constraint. Specifically, the
component of R normal to the surface was multiplied by 1 and the components transverse to
the surface was multiplied by .4. Typically in non-resting state scans, MEG measurements
that are taken while the subject is in the scanner (but not performing the task) are used to
calculate the noise covariance matrix (Hämäläinen et al., 1993). However, this would reduce
any spontaneous covariance in the data, which is precisely what we wish to examine in
studies of resting-state functional connectivity (Lin et al., 2004). Thus, the noise covariance
matrix was calculated from 12 minutes of continuous empty room MEG measurements
collected immediately prior to putting the subject in the scanner.
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Here we use the MNE inverse solution to project our MEG data onto the brain, however in
principle any distributed source model for calculating the inverse solution could be used in
this procedure. For example, beamformers, which are another type of inverse solution
method, could be used (Sekihara et al., 2001). However, in practice, beamformers assume
minimal covariance among sources for constraining the inverse solution. To implement this
assumption they use the neural data itself to build the covariance matrix and the process
removes spatial covariances in the data. This will remove precisely the coupling between
sources that we are trying to find when examining functional connectivity.

The wavelet transform
The MEG data at each source location were spectrally decomposed using a continuous
wavelet transform by temporally convolving the signal with a complex Morlet wavelet
centered at each frequency of interest f and at each time in the scanning run t, after artifact
removal (Lachaux et al., 1999). The Morlet wavelet is used because it has a Gaussian
window shape in both time and frequency while maintaining a sinusoidal underlying
structure. This wavelet structure yields easily interpretable results in the time and frequency
domain because they yield qualitatively similar data as when a time-frequency analysis is
done with a Fourier transform (though the wavelet is better suited for non-stationary data).
The Morlet wavelet is described by the equation:

where σ is the SD of the Gaussian in the time domain. To ensure stability of the wavelet
transform σ must be at least  and here we set σ to be . Because the wavelet convolution
introduces Gaussian temporal blurring with an SD of σ, the effective number of independent

samples (degrees of freedom for statistical tests) of the transformed time course is 
(Friston et al., 1995) where fs is the sampling frequency of the data and N is the number of
time points in the sample.

One question we examined was whether a different inverse solution (particularly a different
noise covariance matrix) was required for different frequencies. We found that using a
broadband signal (band passed to 1–50 Hz) or using the same frequency as we were
examining in the PLV calculation made negligible difference (the correlation coefficient
across source locations between these two different techniques was greater than .95 across
many frequencies and subjects). Thus, for simplicity, we used the same inverse solution,
based on the broadband signal, for all frequency bands.

Phase-locking
Resting-state phase-locking measures the variability over time of the phase difference
between the seed and the other cortical locations (Lachaux et al., 1999; Lin et al., 2004).
Specifically, the phase-locking value (PLV) is defined as:

where N is the number of time points in the sample and θseed(n) and θl(n) are the phase of
the wavelet convolved data in the seed ROI and the cortical locations “l” respectively. The
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PLV varies between 0 (a random phase relationship) and 1 (a consistent phase difference at
all time points).

Statistics
The statistical significance of the PLV in individuals can be calculated using the Rayleigh
statistic (Fisher, 1993), where the degrees of freedom are the effective number of
independent samples (as calculated above). When examining the significance across subjects
for PLVs between a seed location and every other location in the brain, we first use a
normalization appropriate for Rayleigh distributed data. Specifically, we took the square
root of the PLVs, which we confirmed normalized Rayleigh distributed data using the
D’Agostino’s K2 test. A t-test was used to test for significance and the critical values were
determined after Bonferroni correcting for multiple comparisons (specifically, 273, the
number of functional sensors and the maximal number of independent data sources
according to information theory). When examining the significance between ROIs a t-test
was performed at each frequency of interest. The critical values were determined after using
a cluster-level correction for multiple comparisons (described in detail in Maris and
Oostenveld, 2007). Briefly, all frequency points that were p < .05 were found, clusters in
adjacent frequencies were found, and the sum of the t-values in each cluster was determined
(cluster “mass”). A distribution was created by permuting the data and the statistical
significance of the cluster mass was determined. This method inherently controls for
multiple comparisons across frequencies because it has a global null hypothesis.

Subjects
Ten subjects (6 males, mean age = 26.8, SD = 4.4) participated in the MEG experiment. One
subject was excluded due to unusually large cardiac and respiratory artifacts and another
subject was excluded due to head movement in excess of .5 cm, thus eight subjects are
included in the analysis (5 males, mean age = 24.7, SD = 6.3). All subjects were naïve to the
goals of the experiment. The Institutional Review Board of the National Institutes of Health
approved all procedures and written informed consent was obtained for all subjects. Subjects
were compensated for their participation.

Recording
Neuromagnetic responses were recorded at 600 Hz using a 275 channel whole head MEG
system in a shielded room (VSM MedTech, Ltd., Canada). The magnetometer is equipped
with 275 radial gradiometers and synthetic 3rd order gradient noise cancellation was used.
Head position coils were placed at the nasion and left and right preauricular points to
coregister the anatomical MRI and the MEG sensors. Head position was determined at the
beginning and end of each run to ensure that head movements did not exceed .5 cm for any
subject. Eyeblinks and eye movements were recorded using a bi-polar EOG electrode placed
about each subject’s left eye.

Structural MRI
Structural MRI images were obtained separately using a 3-Tesla whole-body scanner (GE
Signa, USA). A high-resolution T1-weighted 3D volume was obtained for each subject. The
MEG data were coregistered with anatomical MR images using fiduciary headpoints.
Freesurfer™ was used to create a cortical surface model for each subject using an automatic
reconstruction algorithm. The cortical white matter was segmented providing a topologically
correct representation of the surface with approximately 150,000 vertices per hemisphere.
The cortical surface was then decimated to approximately 4,000 source dipoles per
hemisphere, approximately 1 dipole every 10 mm along the cortical surface.
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Behavioral tasks
Each subject first participated in a 12 minute rest-state scan where their task was to fixate on
a centrally presented cross. Subjects were not given any details about later tasks during the
rest-state scan. Having subjects fixate is important in MEG (as opposed to subjects having
their eyes closed or eyes open unfixated), because this reduces eye movement artifacts.
Following the rest-state scan the subjects were presented with a series of button-press trials.
Every 2 seconds, a white fixation cross in the middle of the screen would change to green or
purple for 200 ms. The subjects were instructed to press a button with their left index finger
when the cross turned green and a different button with their right index finger when the
cross turned purple. The subjects were presented with 70 trials in each condition. Finally,
using MEG compatible ear buds, the subjects were presented with a series of auditory clicks
trials binaurally. Each trial consisted of 500 ms of an 1910 Hz pure tone amplitude
modulated at 40 Hz followed by 1000 ms of silence. The subjects were presented with 100
trials and asked only to fixate on a centrally presented cross throughout the experiment.

MEG analysis for functional localizer
The noise-normalized, dynamic statistical parametric mapping procedure described in Dale
et al. (2000) was used to estimate task-related neural activity for each individual. This
technique yields f-distributed data that correspond to the significance of the activity at each
time point relative to the interstimulus period.

To localize LH primary motor cortex (M1), the locus of activity about the central sulcus
occurring between approximately 0 to 150 ms after subjects pressed the button with their
right hand was calculated. The portion of this activity anterior to the central sulcus was used
as the location of the LH M1 ROI for each subject.

To localize LH and RH auditory cortex, the activity between 50 and 550 ms after the onset
of the auditory clicks was averaged. The portion of the activity corresponding approximately
to Heschl’s gyrus was used as the location of the LH and RH primary auditory cortex ROI
for each subject.

Results and Discussion
Spatial sensitivity and specificity simulations

One major concern when employing a linear inverse solution with electrophysiological data
is that most inverse solutions act as a spatial filter where the data projected onto each point
in the brain is a combination of the data derived from each sensor location (Hämäläinen et
al., 1993). Therefore, some artifactual phase-locking will be introduced because each source
location shares some data with each other source location. An example of artifactual phase-
locking introduced by the imperfect inverse solution can be seen in figure 1a. To generate
this image, 8 minutes of empty room data were projected onto a subject’s cortical surface
using the MNE inverse operator. Phase-locking was then calculated for this empty room
noise between a seed ROI chosen in the LH sylvian fissure (near Heschl’s gyrus; the green
dot in figure 1a) and every other source location on the cortical surface. As can be seen, the
PLV analysis of these empty room noise data identified a cloud around the seed of
significant phase-locking (p < .05, corrected for multiple comparisons), even though there
was no neural signal between the seed and these other locations. To illustrate this point, we
graphed the PLV values for each dipole on the surface in terms of their distance from the
seed in the sylvian fissure (figure 2). As can be seen, even out to 7cm from the seed, false-
positive PLVs are seen in many dipoles (p<. 05 falls within 1 standard deviation of the mean
PLV). One point to notice is that, though there is a general falling off of the PLV by
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distance, the spatial distribution is extremely heterogeneous (the distribution is extremely
non-uniform in figure 1a with many local minima within the false positive cloud and the
standard deviations are large in figure 2). This is because the amount of data shared between
sources is dependant on both the distance between the sources and their relative geometries.

Can these false-positive PLVs be accounted for? Here we show that much of the crosstalk
arising from the imperfections in the inverse solution can be removed if the PLVs calculated
on empty room data are subtracted from the PLVs calculated on neural data. To demonstrate
this we ran a series of simulations where the same data were projected onto a seed source in
the LH sylvian fissure and onto a series of second target sources pseudo-randomly chosen in
the left hemisphere. The form of this simulated signal was

where t is time. The amplitude of the sine wave was chosen such that the PLV between the
seed and a RH auditory cortex ROI was approximately .14 (similar to that seen in our MEG
data below), this corresponded to a=2.6·10−8 A·m. The frequency of the sine wave was
chosen as 10 Hz, also corresponding to the peak frequency seen in the MEG data below.
Using the forward solution derived from the subject’s structural information and the
boundary element model, these data were then projected back onto the sensors. Noise was
then added which had the same covariance structure and amplitude as measured empty room
data. These data were then projected back onto the cortex using the MNE inverse solution
and the phase-locking between the seed and target sources from which the data arose was
calculated. An example of this simulation is seen in figure 1b where the sine wave signal is
present in both the sylvian fissure and a frontal pole location. We then compared the phase-
locking values seen for these simulated data with the values seen between the same sources
for empty room data without any simulated data. Figure 1c shows an example of the
difference between the simulated and empty room PLVs.

The difference between the simulated and empty room PLVs was closely related to the PLV
value seen in empty room data. Specifically, where the phase-locking of empty room noise
is the highest, the difference between the PLVs for the simulated signal and the empty room
data is near zero. However, when the empty room PLVs dropped below approximately .15
(which occurs when the sources are separated by approximately 4–6 cm; figure 2), the
phase-locking was significantly larger for the simulated data than for the empty room data.
Thus, after normalizing by the empty room data, there is a cloud of sources close to the seed
location where the PLV is suppressed (i.e. false negatives were seen in this cloud), after
which the measure becomes sensitive to PLV at approximately 4–6 cm. In these simulations
the false positive rate fell to chance everywhere in the brain except for in locations adjacent
to the target location. Note that, in task-based studies of functional connectivity, comparing
across conditions similarly reduces much of the false-positive PLVs induced by the
imperfect inverse solution.

When examining functional connectivity using fMRI, generally the correlation values are
compared to the correlation expected for random data. For electrophysiological data,
however, significant crosstalk between sources is introduced by the inverse solution, as
shown above. Thus, for these data, if the PLVs expected from random noise were used as
the null hypothesis the false positive rate would be high. However, by using the PLVs
derived from empty room noise as the null hypothesis, we trade this large cloud of false
positives (7–8 cm) for a smaller false negative cloud (4–6 cm).
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One potential concern is that the empty room data may not have the same properties as the
resting-state data. This is critical because if the phase distribution of the empty room data
were different than the resting-state data the empty room data may not accurately reduce the
crosstalk inherent in the inverse solution. The critical question is whether the normalizing
data and the resting state data have the same phase distribution, because the phase-locking
method removes the amplitude information. To address this concern we compared the PLV
for empty room data to phase shuffling the resting-state data. We phase shuffled recorded
resting-state data for 4 of our subjects and calculated PLVs for 3 different frequencies (5, 10
and 20 Hz) and 2 different seed regions (a total of 24 comparisons). This phase shuffling
was done such that the phase distribution of the data was not changed after the shuffle. The
average correlation between the phase shuffled data and the empty room data was .90
(standard deviation of .05). As a comparison, the average correlation between different
phase shuffles within the same subjects was .92 (standard deviation of .04). This
demonstrates that the empty room noise has very similar properties as the resting-state data.
This is not surprising because over a 12 minute scan, both the resting-state data and the
empty room noise have a nearly uniform phase distribution. Indeed, any random data with a
uniform phase distribution could be used for this normalization. Empty room data is a
convenient choice because it needs to be recorded for the noise covariance matrix and
contains many of the sources of noise present in MEG data. The fact that any random data
with a uniform phase distribution could be used for normalization provides a potential way
of using this method for examining resting-state functional connectivity in EEG data where
there is no direct equivalent of empty room data. More problematic for EEG is that empty
room data is not available for the noise covariance matrix in the inverse solution, therefore
the forward solution alone may have to be used in EEG for producing the source estimate.

Resting-state functional connectivity in the auditory network
To demonstrate the efficacy of this resting-state PLV method on real data, we first examined
phase-locking between LH and RH primary auditory cortex and for a control comparison
between LH motor cortex and RH auditory cortex (figure 3a). We found larger PLVs
between LH and RH auditory cortex than between LH motor cortex and RH auditory cortex
in the alpha (~7–15 Hz) frequency range (p = .006 corrected for multiple frequency
comparisons). In contrast to the PLV results, greater broadband power was seen in the LH
motor cortex than in RH and LH auditory cortex in all eight subjects. This excludes the
possibility that the greater PLV between RH and LH auditory cortex was due to greater
signal-to-noise ratio in the auditory cortex than the motor cortex (see Ghuman, Gotts, and
Martin [Submitted] for a full discussion of the effect of signal-to-noise ratio on correlation-
based measures of functional connectivity). The PLVs between LH and RH auditory cortex
were also greater for the resting-state data than for the empty room data in the same
frequency range (p = .034). Interestingly, alpha frequency band activity in the primary
auditory cortex has previously been shown to be modulated following auditory stimulation
(Basar et al., 2001; Lehtela et al., 1997; Schurmann et al., 1997; Tiihonen et al., 1991; van
Dijk et al., 2010). Additionally, patients with tinnitus have been shown to have abnormal
alpha phase-locking at rest (Schlee et al., 2009). Thus, previous studies have demonstrated
that activity in the alpha frequency bands is important to processing auditory information
and here we show that the same frequency band is also important to the intrinsic functional
connectivity in the auditory network.

We then examined the resting-state phase-locking between the LH/RH primary auditory
cortex and every other region in the brain. We found that at 10 Hz (the peak of intrinsic
phase-locking in the auditory network), significant PLVs were seen between primary
auditory cortex and the contralateral auditory network. Specifically, when the seed was in
the LH primary auditory cortex, significant PLVs were seen in contralateral primary
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auditory cortex (supporting the result in figure 3b) as well as in the adjacent superior and
middle temporal gyri, the ventral part of the RH somatomotor strip, and RH inferior frontal
cortex (figure 4 left). When the seed was placed in RH primary auditory cortex the PLVs
were weaker and sparser for the RH auditory seed than the LH auditory seed. However,
significant PLVs were still seen in contralateral primary auditory cortex, as well as the
adjacent superior and middle temporal gyri, and the ventral part of the LH somatomotor strip
(figure 4 right). We also examined the whole brain functional connectivity to the LH/RH
auditory cortex at 24 Hz, a frequency that is not expected to show significant phase-locking
(figure 3b). Indeed, no significant resting-state phase-locking was between RH or LH
auditory cortex and any other region of the brain (figure 5).

One thing to note is that these data also support the simulations shown in figure 1 and 2.
Specifically, if the raw PLVs are examined without comparing to the empty room data, it is
nearly impossible to draw any conclusions due to the large cloud of false positive PLVs
(figures 4 and 5). It is only when the statistical values of the resting-state PLVs vs. the
empty room PLVs are shown that the true resting-state functional connectivity is seen.

One difference between the real data and the simulation is that some residual significant
phase-locking was seen near the seed for the real data. This effect is clearly seen in figure 5
where the only significant patches of phase-locking are around the seed locations. This
result is surprising given that the simulations suggested that, if anything, there should be
false negative PLVs near the seed. Thus, this phase-locking is due to some factor that was
not taken into account in the simulations. One possible source of discrepancy is inaccuracies
in the forward model that cause the simulation to deviate slightly from the real data. The fact
that the patch around the seed location appears in both figures 4 and 5, but not in the
simulation, makes an inaccuracy in the forward solution a likely possibility, rather than an
artifact in the signal. Regardless, adhering to a rule of thumb of excluding PLVs within 4–6
cm of the seed will eliminate this concern.

More generally, it is critical to note that normalization by the empty room noise does not
eliminate all possible sources of crosstalk. There may be other artifacts that cause crosstalk,
such as inaccuracies in the forward model, unaccounted for physiological noise such as
muscle artifacts or movement artifacts not removed using the noise reduction procedures
described above, and other artifacts that arise from the neural data having a different noise
covariance structure than the empty room data. These sources of crosstalk were not present
in the simulated data (figure 2). Thus, although crosstalk is greatly reduced by using the
empty room normalization, many sources of crosstalk still must be considered. Because
most sources of crosstalk are located spatially close to the seed and target locations, it will
be largely removed by excluding all PLVs between sites 4–6 cm or less apart. Nevertheless,
it is certainly possible for artifactual crosstalk to occur even beyond 6 cm.

What about amplitude?
So far we have concentrated on examining phase relationships as the measure of functional
connectivity. A potentially complementary method for measuring functional connectivity is
amplitude correlation. Indeed, coherence, which is a measure of the linear correlation
between all properties of waveforms, is a combination of both amplitude correlation and
phase-locking. We calculated amplitude correlation by taking the absolute value of the
wavelet-transformed data and performing a Pearson’s correlation over time between pairs of
signals. Significantly greater amplitude correlation was seen between LH and RH auditory
cortex than between LH motor cortex and RH auditory cortex in the alpha frequency range
(figure 6a; p = .04 corrected for multiple frequency comparisons), similar to the PLV results
(figure 3). However, when examining the amplitude correlation at 10 Hz between the LH/
RH auditory cortex seeds and every other dipole on the cortex, the auditory cortex dipole
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contralateral to the seed failed to survive a correction for multiple comparisons based on the
number of MEG sensors (figure 6b). In fact, most of the dipoles that survived multiple
comparisons were close to the seed and, due to their proximity to the seed, are potentially
artifactual. Thus, the amplitude correlation results differed from the PLV results in two
ways. First, the amplitude correlation in cross-hemisphere auditory network was relatively
weak compared to phase-locking. This may be because of the well-described property of
weakly coupled oscillatory systems: phase-locking tends to be more sensitive to their
coupling than amplitude correlation (Pikovsky and Rosenblum, 2007). It is somewhat
surprising that no amplitude correlation was seen as they have been described in the resting-
state for data collected using intracranial EEG (He et al., 2008; Nir et al., 2008). However,
intracranial EEG has a much higher signal-to-noise ratio than non-invasive measures of
neural activity and thus may overcome the relatively poor sensitivity of amplitude
correlation. Second, even after normalizing by the empty room data, much greater artifactual
crosstalk was seen close to the seed. It is not clear why this occurred, however one
possibility is that artifacts other than the crosstalk inherent in the inverse model are greater
for amplitude correlation than for phase-locking. Thus, because amplitude correlation is less
sensitive to “true” coupling and because greater potentially artifactual amplitude correlation
close to the seed is seen, phase-locking may be better suited for measuring functional
connectivity in MEG.

Conclusion
We have described a method for detecting and describing the oscillatory dynamics of
functional connectivity in MEG resting-state data projected onto the brain. We examined the
spatial sensitivity and specificity of this phase-locking technique using simulated data and
showed how to use empty room data to account for much of the crosstalk that arises due to
the imperfect inverse solution. We then applied this technique to show that the auditory
network displays resting-state functional connectivity in the alpha frequency bands, even in
a silent environment. This finding further demonstrates the importance of accounting for the
crosstalk induced by the inverse solution. These simulations and data suggest that our
method may be useful for exploring functional connectivity in electrophysiological data.
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Figure 1.
Examples of the artifact caused by the imperfect inverse solution and simulation of the
correction for this artifact. a) Phase-locking for empty room data projected onto the brain. A
seed was placed in the LH sylvian fissure (green dot) and PLVs were calculated between
this seed and every other location in the brain. A large cloud of significant PLVs is seen
even though there is no phase-locked signal emanating from the brain. This false-positive
phase-locking occurs because, in most distributed source inverse solutions, the data in each
dipole on the brain is a linear combination of the data from all of the sensors (Hämäläinen et
al., 1993). Therefore, a large cloud of dipoles shares a significant portion of their data
resulting in false-positive phase-locking. A threshold of .1 was used because this
corresponds to a p-value of approximately .05 corrected for multiple comparisons. b)
Simulated resting-state phase-locking. A sine wave was placed in both the LH sylvian
fissure (green dot) and the LH frontal pole (blue dot) and PLVs were calculated between the
LH sylvian fissure seed and every other location in the brain. Due to the false-positive
phase-locking, it is difficult to differentiate the true phase-locking from the artifact. c)
Subtracting figure 1a from 1b demonstrates that when the false-positive phase-locking is
accounted for, the true phase-locking can be detected.
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Figure 2.
A systematic analysis of the artifact that results from the inverse solution. Phase-locking
values in empty room data as a factor of the Euclidean distance (rather than the distance on
the cortical surface) from a seed in the LH sylvian fissure. The means and standard
deviations of the empty room phase-locking data shown in figure 2 are plotted for all dipoles
in an annulus 0–1 cm from the seed, 1–2 cm from the seed, etc. The red line is the PLV that
corresponds to a p-value of .05 and the green line corresponds to a p-value of .05 corrected
for 273 comparisons (the number of functioning sensors). As can be seen, there is a general
trend for lower artifactual phase-locking with increasing distance from the seed. Also note
however that the standard deviations across the dipoles at each distance are quite large
demonstrating that this artifact is not completely spatially uniform about the seed.
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Figure 3.
a) Map of the extent of the LH auditory cortex, RH auditory cortex, and LH motor cortex
ROIs across the 8 subjects. b) Average phase-locking values with respect to frequency. The
average PLV between RH auditory cortex-LH auditory cortex during the resting-state, RH
auditory cortex-LH motor cortex during the resting-state, and RH auditory cortex-LH
auditory cortex for empty room data are plotted.
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Figure 4.
Resting-state phase-locking between LH and RH auditory cortex and the rest of the brain at
10 Hz. A t-test across 8 individuals of resting-state vs. empty room PLV reveals that the LH
auditory cortex shows significant (corrected for multiple comparisons) functional
connectivity to RH primary auditory cortex as well as the adjacent superior and middle
temporal gyri, RH inferior frontal cortex, and the ventral part of the somatomotor strip.
Functional connectivity starting from a seed in the RH auditory cortex is weaker and sparser
(though still significant), compared to the LH auditory cortex seed. Specifically, RH primary
auditory cortex demonstrated significant functional connectivity to LH auditory cortex, the
adjacent superior and middle temporal gyri, and a region that straddles the ventral part of the
somatomotor strip. Much as in the simulated and empty-room data (figures 1 and 2), the
mean resting-state PLV across 8 subjects is difficult to interpret because of the large artifact
due to the imperfect inverse solution. Much of this cloud remains for the mean empty-room
PLVs across the 8 subjects (empty room data was collected prior to each subject’s session).
The auditory network connectivity is only revealed for the statistical test of the resting-state
vs. empty-room phase-locking.
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Figure 5.
Resting-state phase-locking between LH and RH auditory cortex and the rest of the brain at
24 Hz. No regions showed significant resting-state phase-locking vs. empty-room phase-
locking except for small regions close to the seeds. This is because the mean PLV at 24 Hz
between the RH and LH auditory cortex was similar for the resting-state and for empty-
room data (figure 3b). Thus, almost the entire resting-state PLV cloud at 24 Hz is due to the
artifact caused by the crosstalk in the inverse solution.
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Figure 6.
Resting-state amplitude correlation in the auditory network. a) The average Pearson’s
correlation between RH and LH auditory cortex and between RH auditory cortex and LH
motor cortex as a factor of frequency. Significantly greater amplitude correlation was seen
in the alpha frequency range between RH auditory cortex and LH auditory cortex than
between RH auditory cortex and LH motor cortex (similar to the phase-locking between
these regions; figure 3b). b) Resting-state amplitude correlation between LH and RH
auditory cortex and the rest of the brain at 10 Hz. No regions of the auditory network
contralateral to the seed region showed significant resting-state vs. empty-room amplitude
correlation (after correcting for multiple comparisons). The only regions of significant
amplitude correlation were ipselateral and relatively close to the seeds. Due to the relative
proximity of these regions to the seeds, it is difficult to rule out the possibility that this is
artifactual amplitude correlation resulting from

Ghuman et al. Page 20

Neuroimage. Author manuscript; available in PMC 2012 July 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


