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Abstract
In this paper methods for using multiple templates in tensor-based morphometry (TBM) are
presented and comparedtothe conventional single-template approach. TBM analysis requires non-
rigid registrations which are often subject to registration errors. When using multiple templates
and, therefore, multiple registrations, it can be assumed that the registration errors are averaged
and eventually compensated. Four different methods are proposed for multi-template TBM. The
methods were evaluated using magnetic resonance (MR) images of healthy controls, patients with
stable or progressive mild cognitive impairment (MCI), and patients with Alzheimer's disease
(AD) from the ADNI database (N=772). The performance of TBM features in classifying images
was evaluated both quantitatively and qualitatively. Classification results show that the multi-
template methods are statistically significantly better than the single-template method. The overall
classification accuracy was 86.0% for the classification of control and AD subjects, and 72.1%for
the classification of stable and progressive MCI subjects. The statistical group-level difference
maps produced using multi-template TBM were smoother, formed larger continuous regions, and
had larger t-values than the maps obtained with single-template TBM.
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Introduction
Morphometric techniques are widely utilized in computational neuroanatomy to study
differences in the anatomy of the brain across populations, for example, to identify the
effects of disease or changes due to aging. In addition, morphometry can be used in decision
support to characterize and diagnose a single patient.
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Various morphometric methods exist. Voxel-based morphometry (VBM) is a commonly
known technique where the density or concentration of gray-matter is measured locally after
accounting for global differences in anatomy (Ashburner and Friston, 2000). A high-
resolution voxel-based morphometry method based on RAVENS maps and HAMMER
elastic registration was proposed in (Shen and Davatzikos, 2003). An alternative approach is
to characterize differences in brain shape using deformation- or tensor-based morphometry
(DBM and TBM). In DBM and TBM, images are registered to a common reference space,
and the analysis is done by comparing the parameters of resulting deformation fields or
measures derived from them (Ashburner et al., 1998; Chung et al., 2001). In TBM, the most
often used measure is the determinant of the Jacobian matrix of the deformation field, often
referred to as Jacobian, which measures local volume change. Numerous studies have
beenpublishedinwhich morphometry methods have been used, for example, to study
Alzheimer's disease (Teipel et al., 2007; Hua et al., 2008a,b).

The conventional way to perform morphometry analysis is to use one template image to
which all study images are registered. Usually this template is an image of a single subject
(Chung et al., 2001; Leporé et al., 2008a), a generally available average template, or an
average template specifically generated for the particular application and data (Teipel et al.,
2007; Leporé et al., 2007; Hua et al., 2008a,b). As registrations between images are never
perfect, the use of different templates leads to different results. The characteristics ofa
template may cause either false-positive or false-negative findings in the resulting parameter
maps.

The bias caused by imperfect registration is a commonly known problem in atlas-based
segmentation. Multi-atlas segmentation has been presented as a solution to this problem:
several atlases are registered to the patient data and the propagated segmentations are
combined by techniques, such as, classifier fusion. It has been reported that segmentation
accuracy (Heckemann et al., 2006; Klein et al., 2005; Rohlfing et al., 2004; Warfield et al.,
2004; Lötjönen et al., 2010) and the classifications derived from the segmentations (Aljabar
et al., 2008; Chou et al., 2008) can be improved significantly by using multi-atlas
segmentation instead of single-atlas segmentation.

Recently, multi-atlas approach has been adopted in TBM analysis (Leporé et al., 2008b).
Each study image was registered to nine template images, and the resulting deformation
tensors were averaged in a reference space of a tenth template image to improve registration
accuracy and increase the statistical power of the analysis. In (Brun et al., 2009), the average
Jacobians were computed and used to study morphometry differences between twins.

Whereas the two previous multi-template TBM studies (Leporé et al., 2008b; Brun et al.,
2009) have addressed only group-level analysis, this paper uses multi-template TBM
methods for subject-level analysis. To our knowledge, this is the first study where a multi-
template TBM approach is 1) used to classify subjects, 2) extensively compared to single-
template TBM, and 3) applied to a large dataset. In addition, we presentnew methods to
utilize multiple templates in TBM. The methods are evaluated quantitatively by extracting
features from the TBM analysis and using them to classify the data, and by computing
sample size estimates. Visual evaluation is performed by examining the statistical group-
level differences. We use a large number of subjects (N=772) and also a large number of
templates (N=30). The objectives of this paper are to study how the multiple templates
should be utilized in the TBM analysis, what is the optimal way to compute classification
features from the TBM analysis, and whether the use of multiple templates leads to more
accurate and robust information for classification as compared to the single-template TBM
analysis.
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The methods proposed are applied to the diagnostics of Alzheimer's disease (AD). AD is a
neurodegenerative disease that causes atrophy in the cerebral cortex and subcortical
structures, such as the hippocampus and amygdala. In a recent paper, the International
Working Group for New Research Criteria for the Diagnosis of AD (Dubois et al., 2010)
propose the use of biomarkers as supporting evidence for diagnosis of AD. Medical
temporal atrophy measured with structural MRI is one of the proposed biomarkers. Mild
cognitive impairment (MCI) is a condition in which a patient has noticeable problems with
memory, language, or other mental functions but activities of daily living are preserved
(Petersen, 2004). It is a risk factor for AD, but not every MCI patient develops AD. In this
paper, those subjects who finally develop AD are referred to as progressive MCI (P-MCI)
and those who remain stable are referred to as stable MCI (S-MCI).

The paper is organized as follows: In Materials and methods section, the data used in the
study, the methods developed for the TBM, and the evaluation methods are introduced. The
Results section summarizes the results obtained. Finally, the methods and results are
discussed in Discussion section, and the conclusions are drawn in Conclusions section.

Material and methods
Data

The data used in the preparation of this article were obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). The ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit organizations, as a $60 million, 5-
year public–private partnership. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging, positron emission tomography, other biological markers, and
clinical and neuropsychological assessment can be combined to measure the progression of
mild cognitive impairment and early Alzheimer's disease. The determination of sensitive and
specific markers of very early AD progression is intended to aid researchers and clinicians
to develop new treatments and monitor their effectiveness, as well as lessen the time and
cost of clinical trials. The Principal Investigator of this initiative is Michael W. Weiner,
M.D., VA Medical Center and University of California – San Francisco. ADNI is the result
of efforts of many co-investigators from a broad range of academic institutions and private
corporations, and subjects have been recruited from over 50 sites across the U.S. and
Canada. The initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to participate in
the research — approximately 200 cognitively normal older individuals to be followed for 3
years, 400 people with MCI to be followed for 3 years, and 200 people with early AD to be
followed for 2 years.

The study group consisted of T1-weighted 1.5 T MR images of 772 subjects from the ADNI
database (Table 1a). Only the baseline images were used. The follow-up data of ADNI
database were used to determine the MCI subjects who had converted to AD (P-MCI) and
who had remained stable (S-MCI) during the study. For the P-MCI subjects, the mean time
and its standard deviation from the baseline to the moment when the dementia threshold was
reached was 18.1± 8.9 months. Detailed information on the conversions is presented in
Table 1a. The scanners used in the ADNI study are from General Electric (GE) Healthcare,
Philips Medical Systems, and Siemens Medical Solutions. The images used were sagittal 3D
MP-RAGE images with resolutions ranging from 0.9 mm×0.9 mm×1.20 mm to 1.3 mm×1.3
mm×1.20 mm. The 30 templates were obtained from the ADNI database, too. The template
images were 1.5 T T1-weighted MRIs of 10 control subjects, 10 MCI subjects, and 10 AD
subjects (Table 1b). The subjects were randomly selected from the ADNI database for each
group.
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Skull-stripping and intensity inhomogeneity correction was performed on both study and
template images using an unpublished in-house tool. To guarantee successful skull-
stripping, the results were manually checked, and the failed results were run with new
parameters until all the results were acceptable.

Methods
The conventional singe-template and the multi-template TBM approaches used in this study
are summarized in Fig. 1. The single-template (ST) TBM consists of the following steps:

1. Registrations: A template image is non-rigidly registered to each study image.
Registrations produce for each voxel of the template image the deformations
recquired to map it to the corresponding anatomical location in each study image.
The study images are typically collected from two study groups whose differences
are studied.

2. Jacobians: A scalar value quantifying the deformation is computed for each voxel
of each subject. The determinant of the Jacobian matrix was used in this study.

3. T-tests: The group-level differences of two study groups are computed using a
voxel-wise statistical test. A t-test was used in this study.

4. Features: If region of interest (ROI) based analysis is performed, the scalar values
are combined providing a single feature value for each ROI.

5. Classification: Data classification is performed using the feature values.

In multi-template TBM, an extra step is needed to combine the information from multiple
templates. The combination can be accomplished at different stages of the single-template
procedure (highlighted with red borders in Fig. 1A):

1. Mean deformation (MD): combination of the deformations (after Registrations
step),

2. Mean of Jacobians (MJ): combination of the Jacobians (after Jacobians step),

3. Mean of features (MF): combination of the feature values (after t-tests and Features
steps), and

4. Combination of classifiers (CC): combination of the classification results (after
Classification step).

The TBM steps defined in Fig. 1A are described in detail in the Registrations up to the
Classification section, and after that the different multi-template methods are presented in
Multi-template TBM methods section.

Registrations
In the standard TBM, a template image is registered with all the study images. Each of these
non-rigid registrations contains errors that decrease the accuracy of the TBM analysis. The
idea of multi-template TBM is to reduce these errors by averaging the result over several
templates. In multi-template TBM, all templates are registered with all the study images
(Fig. 1B). As information is fused from the registrations of multiple templates, a common
reference space is needed to spatially normalize the results from multiple templates, to
normalize the values of the morphometric analysis, and to establish a reference space in
which the results are presented.

The reference image used in this study is a mean anatomical template (MAT) generated
from all the template images as proposed by Guimond et al. (2000):
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1. one template image (floating image)was registered to each template image,

2. the mean deformation was computed,

3. all the template images were deformed to the floating image using the inverse
transformations,

4. the mean intensity was computed for each voxel from the deformed templates, and

5. the mean deformation was applied to the mean intensity image.

The mean anatomical template used in this study is shown in Fig. 2. For the conventional
single-template TBM using MAT as the reference image, the MAT was registered to each

study image. The resulting deformations are denoted as , s=1,…,nS, where nS is the
number of study subjects. The registration procedure of the multi-template TBM contained
two steps shown in Fig. 1B: First, all the template images, Tt, t=1,…,nT, where nT is the
number of templates, were non-rigidly registered to each study image, Ss, s=1,…,nS

(deformations ). Second, the reference image (MAT) was non-rigidly registered to each

template image (deformations ). In single-template TBM, the morphometic information

of the study subjects are contained in the deformations . In the multi-template methods,

this information exists in the deformations . To make the TBM results of all the
templates comparable, this information has to be normalized to a common reference space.

In practice, this was obtained by composing the deformations  and  for each pair

(t,s), t=1,…,nT, s=1,…,nS. This resulted in the deformation  of the MAT to the study
image Ss computed via the template image Tt. Consequently, it turned out that in multi-
template TBM the reference image is registered nT times to each study image, and each time
the registration is done via a different template image.

In this study, we are not interested in the differences in the global brain size. Therefore,
global differences in the pose and scale were removed from the data by registering the study
images and the template images to the reference space using 9-parameter affine
transformation. Consequently, all the images in Fig. 1B were in the same space and no
further affine registrations were required. The registration methods used are described in
detail in (Lötjönen et al., 2010).

Jacobians
The determinant of the Jacobian matrix of the deformations, the Jacobian, was selected as

the measure of local morphometry in this study. The Jacobian of the deformation ,

where  gives the coordinates of the voxel studied, is computed as:

(1)

where Dx/y/z denotes the deformation in x/y/z-direction. Flowchart in Fig. 1A shows the
actual deformations for which the Jacobians are computed using the different TBM methods.
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T-tests
TBM analysis is often used to search for statistically significant morphometric differences
between two study groups. The Jacobians of the subjects of two study groups were
compared voxel by voxel using a t-test. In order to make the distribution of data more
Gaussian, a logarithmic transformation was applied to the Jacobians prior the t-test. False
discovery rate (FDR) correction was performed to compensate for multiple comparisons
(Genovese et al., 2002).

In our classification study, the results of the t-tests were used to provide prior information on
the group-level differences between study groups. We used the results without the FDR-
correction in the classification studies. The flowchart in Fig. 1A shows the data for which
the t-tests were performed in different TBM methods.

Features
In addition to the group-wise analysis of size and shape differences, morphometic
information can be used to classify unseen images into oneof the study groups (Vemuri et
al., 2008; Fan et al., 2008; Misra et al., 2009; Klöppel et al., 2008). For this purpose, a set of
features was computed from the Jacobians both globally and for 83 structures obtained from
an atlas defined in the reference space (Heckemann et al., 2006).

A commonly used method to analyze the morphometric properties of structures is to
compute their volumes. As the Jacobian measures local volume change, a feature related to
the total volume of a structure is obtained by averaging the Jacobians within a structure:

(2)

where  is the Jacobian value (defined below) of subject s and R denotes the structure
studied.

However, a structure may contain regions that dilate and those that shrink in AD. If the
average is computed over the whole structure, these regions may cancel each other and the
feature obtained does not provide good classifications. Therefore, we computed the mean of
Jacobians from the dilating voxels only and from the shrinking voxels only, and used the
difference of the two mean values as a classification feature:

(3)

where  is the t-value from a group-level t-test and  a weighting function defined
as

(4)

where  is the p-value, pmax = 0.05 and pmin = 0.000001 are user-defined parameters,
and the p-values are constrained to the interval defined by pmin and pmax. The weighting
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 was used to focus the computations on the voxels that have statistically significant

group-level differences. It gives a voxel a larger weight the smaller the p-value  is, and

no weight is given to the statistically non-significant ( ) voxels. The threshold
pmin was used to avoid situations where just a few highly significant voxels would have a
too large impact on a feature value. Other types of weightings based on the t- or p-values
were studied, but no major differences were found.

Flowchart in Fig. 1A summarizes the data for which the feature values were computed in
each TBM method.

Classification
A regression-based classifier was used in all classification studies. A label – 1 was given to
the subjects of one study group and label 1 to the subjects of the other study group. Then,
linear regression model parameters were optimized using a training set, and the parameters
were applied to test set data. A test set subject was classified to the first group if the
regression value obtained was negative and otherwise to the second group. Finally, the
classification performance was computed from the results of the test set.

We used a bagging strategy to improve the robustness of the classifiers (Breiman, 1996;
Bauer and Kohavi, 1999): the training set was sampled 25 times randomly and each time a
new classifier was trained and applied to the test set. Then, the classification results were
combined by computing the mean of the regression values, and the class of a test set subject
was inferred. The sampling of the training set was performed so that an equal number of
samples (the size of the larger study group) were chosen from both study groups. Sampling
was done with replacement, so the same subject could appear multiple times in a training
set.

All the classification studies were implemented using Matlab (Matlab R2007b, The
MathWorks Inc.).

Multi-template TBM methods
In the single-template (ST) TBM, the MAT was used as the template image and the analysis

was performed using the Jacobians of the deformations , . Group-
level statistical analysis was performed by applying the t-test to the Jacobians of two groups
studied.

The first multi-template method used mean deformations (MD). The hypothesis behind the
multi-template approach was that the registration errors are compensated by averaging a set
of registrations. Therefore, a mean deformation was computed as:

(5)

We decided to use the Euclidean space instead of a log-Euclidean framework (Arsigny et al.,

2006) to reduce the computational burden as much as possible. The Jacobians  were
then computed from the resulting mean deformation,
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(6)

and used both to classify data and to study group-level differences.

In the second method, the mean of Jacobians (MJ) were computed for each voxel. In this
case, the Jacobians used in classification were computed as follows:

(7)

These Jacobians were used to study group-level differences as well. The method is
equivalent to the method used by Brun et al. (2009).

In the third multi-template method, the feature values were separately computed for each

template, , and then the mean feature values (MF) were computed as:

(8)

The last method based on multiple templates used each template individually in
classification, and then combined the classification results. The combination of classifiers
(CC) was performed by averaging the regression values of all the templates, and the subject
was classified based on the mean regression value.

The last two methods could not be used to qualitatively study group-level differences and
were used only in classification.

Evaluation
Evaluation was performed by comparing control subjects with Alzheimer's disease subjects
(controls vs. AD comparison) and stable MCI subjects with progressive MCI subjects (S-
MCI vs. P-MCI comparison). The comparison of S-MCI vs. P-MCI is especially important
considering the need for having a method for the detection of which subjects with mild
memory problems will progress to AD.

The overall evaluation procedure is shown in Fig. 1A. For the evaluation, the dataset was
divided randomly into two sets: 100 subjects were selected from each group as a group-level
dataset which was used to establish group-level statistical differences needed for the
qualitative evaluation and for the computation of the feature values in Eqs. (3)–(4), and the
remaining subjects (115 controls, 115 S-MCIs, 54 P-MCIs, and 88 ADs) established the
validation set that was used to evaluate the classification performance. The 30 template
subjects were used in the group-level dataset so that they were not used to evaluate the
classification accuracies of the methods.

For the visual analysis of group-level differences, the whole brain t-maps were visualized
using color overlays in three orthogonal directions. The same color scales were used for
each TBM method (controls vs. AD had different scale than S-MCI vs. P-MCI) so that the
absolute values and statistical power of each method could be compared.
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Evaluation of classification accuracies was performed using a cross-validation technique for
the validation set as follows: we randomly chose 5% of the subjects that were excluded from
the validation set and were classified using the remaining subjects as a training set. This was
repeated 100 times.

The first objective was to study how different multi-template methods compare to the single-
template method when each structure is used one by one in classification (one-dimensional
classifier). The comparison was performed statistically by comparing pair-wise the
classification accuracies of two methods using the non-parametric Wilcoxon signed rank

test. If there were no statistically significant voxels within a structure, the feature  could
not be computed. Consequently, the number of structures for which the feature values exists
varied between TBM methods. To make the comparison fair and simple, only those
structures that were available from each method were used in this comparison.

Next, the overall classification accuracy that can be reached using all the information
available was evaluated. We first tried multi-dimensional regression analysis combined with
stepwise feature selection for all the 84 structures. However, we noticed that the size of the
dataset was too small for such a high-dimensional classification problem, and the
classification accuracies did not improve from the results of the best single structures.
Therefore, we decided to use the same method as in the CC method for the combination of
templates, i.e., the average regression value computed over a set of ROIs was used as the
classification feature. If all the ROIs were used, the results of the worst ROIs would have
decreased the classification accuracy. Therefore, we used the group-level dataset to
determine an optimal set of ROIs: 1) the regression values of the n ROIs producing the best
single-structure classification accuracies were averaged and the classification accuracy was
computed using the average regression value as the classification feature, 2) the value n was
varied between one to 84, and 3) the n giving the optimal classification accuracy was
searched. The same classifiers and cross-validation methods were used for the group-level
dataset as for the validation set. However, as the group-level dataset was used to compute

the t-tests for the computation of feature  the optimal sets of ROIs was biased and could
not be applied to the validation set. Therefore, the optimal set of ROIs defined for the

feature  was used also for the feature .

We also computed the sample size that is required to hypothetically detect a change in
feature values. The sample size was estimated from

(9)

where σ is the standard deviation of the data, δ is the deviation to be detected, α is the
significance level (here α = 0.05), 1 – β is the power (here 1 – β = 0.8), and z is the standard
normal probability distribution.

Results
Visual evaluation of t-maps

Fig. 3 shows the t-maps of statistically significant regions for both controls vs. AD and S-
MCI vs. P-MCI comparisons. From the TBM methods studied such voxel-wise analysis can
be performed only for the single-template (ST) TBM, mean deformation (MD), and mean of
Jacobians (MJ) methods. In Fig. 3, red is used to show the regions of smaller values of the
Jacobians (atrophy) in the AD/P-MCI group and blue is used to show the regions with larger
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Jacobians (dilation) in the AD/P-MCI group. FDR-corrected results are shown only for the
controls vs. AD comparison because in the S-MCI vs. P-MCI comparison only a few voxels
survived from the FDR-correction.

The results show increased atrophy in temporal and parietal lobes in both controls vs. AD
and S-MCI vs. P-MCI comparisons. Multi-template methods produce larger t-values and
notable less noisier maps with larger continuous regions of significant morphometry
differences than the single-template method. The two multi-template methods give nearly
identical results.

Data classification
The results for single-structure classifications are shown in Figs. 4 and 5. The results are
presented for each TBM method and structure, and for each feature. The figures show the
results both structure by structure and in an ordered way in which the results of each TBM
method are ordered separately. The structures used are listed in Appendix. The best
classification accuracies are 82.0% for controls vs. AD comparison and 68.4% for S-MCI
vs. P-MCI comparison. The ordered graphs show clearly that the multi-template methods

yield better classifications than the single-template method, especially when the feature 
utilizing prior group-level statistical information is used. For example, when studying the
30th best ROIs of each TBM method, the classification accuracy of the single-template
TBM was the worst one in each graph.

Table 2 reports the p-values obtained by comparing pair-wise the classification accuracies of
two TBM methods. When comparing the average of the single-structure classification
accuracies in Figs. 4 and 5 (data not shown), the combination of classifiers method gave the
best results, and in three out of four cases the single-template method was the worst method.
The combination of classifiers was statistically significantly better than the MD and MJ

methods for feature , but for the feature  the differences were non-significant.
Tables 3 and 4 show the classification accuracies for structures producing the best results.

The overall classification accuracies for different TBM methods are shown in Table 5. The
best classification accuracies are 86.0% for the controls vs. AD comparison and 72.1% for
the S-MCI vs. P-MCI comparison. About 4–6% improvement (statistically significant,
p<0.05) was obtained with the best multi-template method as compared to the single-
template method.

Sample size estimates
In the sample size calculation we set δ to be 0.25 times the difference in the mean values of
the two study groups and the standard deviation of the AD or P-MCI group was used as the
σ. The whole validation set was used without cross-validation. The sample size estimates
were not computed for the CC method because the features used in it require a separate
training set, and therefore, the way how the validation set is divided into training and test
sets affects the sample size estimate. The results for the individual ROIs with the smallest
sample sizes are presented in Table 6. The results are consistent with the classification
results: the sample size estimates of the multi-template methods are smaller than the ones of

the single-template method, and the feature  yields smaller sample sizes than the feature

.
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Discussion
Various aspects of multi-template tensor-based morphometry were studied and compared to
conventional single-template TBM. We studied different features for TBM and different
methods to implement multi-template approach. The performance of the methods was
evaluated in the diagnostics of Alzheimer's disease, i.e., we compared the classification
accuracy between healthy controls and AD patients and between stable and progressive MCI
cases. In one-dimensional (one structure) classification of controls vs. AD subjects, all
multi-template methods were statistically significantly better than the single-template

method when the feature  was used (Table 2). In the classification of S-MCI and P-MCI
subjects, the combination of classifiers method was statistically significantly better when the

feature  was used (Table 2). When all the structures were combined in multi-
dimensional classification, the accuracyof the controls vs.AD classification was 79.6% for
the single-template method and 86.0% for the best multi-template method. The
corresponding figures for S-MCI vs. P-MCI classification were 68.3% and 72.1%.

The best multi-template method was the combination of classifiers, i.e., each template was
used separately in classification, and the classification results were combined (here using the
average of regression values). This method gave for both features studied and in both
controls vs. AD and S-MCI vs. P-MCI classifications the best average single-structure

classification accuracy, and when the feature  was used, the differences to the MD and
MJ methods were statistically significant (Table 2). This also means that the combination of
classifiers method was statistically significantly better than the method previously proposed
for the multi-template TBM by Brun et al. (2009).

The best one-dimensional classification accuracies obtained were 82.0% for the controls vs.
AD comparison, and 68.4% for the S-MCI vs. P-MCI comparison. For the multi-
dimensional classification, the best results were 86.0% and 72.1%, respectively. The related
classification accuracies presented recently in the literature have varied between 76% and
94% for controls vs. AD comparison (Vemuri et al., 2008; Fan et al., 2008; Chupin et al.,
2009; Wolz et al., 2010; Teipel et al., 2007; Klöppel et al., 2008) and between 65% and 85%
for S-MCI vs. P-MCI comparison (Misra et al., 2009; Chupin et al., 2009; Wolz et al., 2010;
Teipel et al., 2007). Our results are in concordance with these prior results. However, the
comparison of our results to the results of other studies is difficult, as many studies have
been performed using single-site data (Teipel et al., 2007; Klöppel et al., 2008), scanners of
a single manufacturer (Vemuri et al., 2008), notable smaller datasets (Teipel et al., 2007;
Klöppel et al., 2008; Misra et al., 2009), or shorter follow-up times (Chupin et al., 2009).
Also, it has to be noticed that the objective of this study was not to optimize the
classification accuracy, but to compare the multi-template methods with the single-template
method. Classification accuracy could possibly be improved by extracting more powerful
features from the data and by using more sophisticated multi-dimensional classification and
feature selection methods.

The best structures for the classification included amygdala, hippocampus and regions in the
medial temporal lobe. These are well-known areas of aberrations in AD, and therefore show
that the results are meaningful.

In the controls vs. AD comparison, the overall trend was that the feature  outperformed

the feature  (Tables 3 and 5). In other words, the utilization of the results of the group-
level statistical analysis improved the classification accuracy. The differences were more
obvious in the one-dimensional classification (Table 3) than in the multi-dimensional
classification (Table 5). In the S-MCI vs. P-MCI comparison, the differences between the
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features  and  were much smaller (Tables 4 and 5). In fact, in the multi-dimensional

classification the feature  was clearly better, but this is very likely due to the way how

the optimal set of ROIs was defined always from the feature values . Apparently, the
anatomical differences in the MCI groups are so heterogeneous that the statistical analysis
with group-level dataset cannot model all those differences accurately. In the controls vs.
AD comparison, the morphometry differences are so prominent and localized that the group-
level information on statistical differences is robust and can be used for unseen subjects. It
must be noticed that different features worked best for different structures. Therefore, it
might be useful to use different features for different structures, especially in multi-
dimensional classification.

The sample size estimate results (Table 6) support the findings of the classification studies.
The results underline the superiority of multi-template methods over the conventional

single-template method, and the feature  outperformed the feature . In other words,
use of prior group-level information increases the statistical power of the features.

The ADNI data have been acquired with different scanners in many sites. The data used here
were not divided based on the site or scanner, but only random division to the group-level
dataset and validation set. For comparison, we divided the dataset so that the subjects were
first ordered based on the imaging site and after that the subjects were divided in the group-
level dataset and validation set. In other words, all the subjects from one site were either in
the group-level dataset or in the validation set. This mimics the actual clinical situation,
where the dataset is continuously enlarged from the images acquired from the particular
clinical site. Using this data division, the best classification accuracy for the S-MCI vs. P-
MCI classification was 77.1%, i.e., 5% unit improvement as compared to the fully random
data division was obtained. Therefore, it can be concluded that there are notable differences
in the MCI data between different imaging sites, and the data used in classification should
be as uniform as possible. In the controls vs. AD comparison, the differences between the
study groups are so large that the inter-site differences do not have noticeable effects on the
results.

The methods were evaluated visually using the statistical maps of group-differences (Fig. 3).
It was observed that the maps obtained with the multi-template methods were smoother,
established larger continuous regions, and had larger t-values. The main application of this
study was the classification of subjects, where the group-level statistical maps were utilized
to provide prior information. A specific study should be performed to evaluate the
usefulness of the statistical group-level difference maps in detecting anatomical differences.

The major drawback of utilizing multiple templates in TBM analysis is the increase in the
computation time needed to make the registrations. The increase is linear as a function of the
number of templates used. The reference method, single-template TBM using a mean
anatomical template, requires only one registration for a target subject, which makes the
computations faster and no catenation of registrations is needed. In multi-atlas segmentation,
atlas selection methods have been shown to be useful (Aljabar et al., 2009; Lötjönen et al.,
2010). In these methods, only a subset of atlases, those that are the most similar to the study
image, are registered with the study image. Consequently, the computation time is
decreased, and at the same time the accuracy is improved. A similar selection of templates in
the TBM analysis using some intelligent heuristics would decrease the computation time
notably, and would probably improve the classification results, too. However, the
registration method used in this study enables relatively fast computation of TBM analysis
even with a large number of templates, as a single non-rigid registration takes under one
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minute, and with multi-core computers the registrations can be performed in parallel
(Lötjönen et al., 2010).

In the multi-dimensional classification, optimal sets of ROIs were defined from the group-
level dataset. However, this could be done only for the features that did not utilize the results
of group-level statistical analyses. Consequently, the multi-dimensional classification results

of the feature  would likely get better if a larger dataset that enables efficient multi-
dimensional classifications were available.

FDR-correction for multiple comparisons was used when the group-level differences were
studied. However, it was not used in the classification application because it would have
limited the analysis on only the most significant ROIs in the temporal lobe and it would
have made the analysis of the MCI subjects impossible. In the future studies, it should be
studied if the utilization of FDR-correction improves the classification accuracy of the
features computed from the temporal lobe.

This study is part of an EU funded research project PredictAD (www.predictad.eu) aiming at
developing a standardized and objective solution that would enable an earlier diagnosis of
Alzheimer's disease, improved monitoring of treatment efficacy and enhanced cost-
effectiveness of diagnostic protocols. In order to be clinically feasible, analysis methods
have to be computationally efficient. Therefore, to make computations fast, mean
deformations were computed in the Euclidean space. However, it is known that the
deformations do not live in the Euclidean space, but to obtain more accurate approximations
of the mean deformations the log-Euclidean framework presented by Arsigny et al. (2006)
should be used instead. The main objective of our paper was to study if multi-template
methods are able to improve the results of TBM analysis. Even with the mean deformations
computed in the Euclidean space this was proven. In the future studies it should be studied if
the utilization of the log-Euclidean framework still improves the results.

The methods presented are not limited to specific registration algorithms, brain MRIs, or AD
but can be applied with any registration algorithm to any images and study groups.

Conclusions
We presented methods to utilize multiple templates in tensor-based morphometry as
opposed to the conventionally used single template. Both visual and quantitative results
showed that the multi-template methods produce clear improvement to the single-template
method: the statistical maps are smoother with the multi-template method, and the
classification accuracies are statistically significantly better and the sample size estimates
are smaller for the features from the multi-template TBM methods.
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Appendix. List of structures
1. Global

2. Hippocampus right

3. Hippocampus left

4. Amygdala right

5. Amygdala left

6. Anterior temporal lobe, medial part right

7. Anterior temporal lobe, medial part left

8. Anterior temporal lobe, lateral part right

9. Anterior temporal lobe, lateral part left

10. Gyri parahippocampalis et ambiens right

11. Gyri parahippocampalis et ambiens left

12. Superior temporal gyrus, posterior part right

13. Superior temporal gyrus, posterior part left

14. Medial and inferior temporal gyri right

15. Medial and inferior temporal gyri left

16. Lateral occipitotemporal gyrus, gyrus fusiformis right

17. Lateral occipitotemporal gyrus, gyrus fusiformis left

18. Cerebellum right

19. Cerebellum left

20. Brainstem, spans the midline

21. Insula left

22. Insula right

23. Occipital lobe left

24. Occipital lobe right

25. Cingulate gyrus, anterior part left

26. Cingulate gyrus, anterior part right

27. Cingulate gyrus, posterior part left

28. Cingulate gyrus, posterior part right

29. Frontal lobe left, becomes middle frontal gyrus after subdivision of frontal lobe

30. Frontal lobe right, becomes middle frontal gyrus after subdivision of frontal lobe

31. Posterior temporal lobe left

32. Posterior temporal lobe right
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33. Parietal lobe left

34. Parietal lobe right

35. Caudate nucleus left

36. Caudate nucleus right

37. Nucleus accumbens left

38. Nucleus accumbens right

39. Putamen left

40. Putamen right

41. Thalamus left

42. Thalamus right

43. Pallidum, globus pallidus left

44. Pallidum, globus pallidus right

45. Corpus callosum

46. Lateral ventricle, frontal horn, central part and occipital horn right

47. Lateral ventricle, frontal horn, central part and occipital horn left

48. Lateral ventricle, temporal horn right

49. Lateral ventricle, temporal horn left

50. Third ventricle

51. Precentral gyrus left

52. Precentral gyrus right

53. Straight gyrus, gyrus rectus left

54. Straight gyrus, gyrus rectus right

55. Anterior orbital gyrus left

56. Anterior orbital gyrus right

57. Inferior frontal gyrus left

58. Inferior frontal gyrus right

59. Superior frontal gyrus left

60. Superior frontal gyrus right

61. Postcentral gyrus left

62. Postcentral gyrus right

63. Superior parietal gyrus left

64. Superior parietal gyrus right

65. Lingual gyrus left

66. Lingual gyrus right

67. Cuneus left
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68. Cuneus right

69. Medial orbital gyrus left

70. Medial orbital gyrus right

71. Lateral orbital gyrus left

72. Lateral orbital gyrus right

73. Posterior orbital gyrus left

74. Posterior orbital gyrus right

75. Substantia nigra left

76. Substantia nigra right

77. Subgenual frontal cortex left

78. Subgenual frontal cortex right

79. Subcallosal area left

80. Subcallosal area right

81. Pre-subgenual frontal cortex left

82. Pre-subgenual frontal cortex right

83. Superior temporal gyrus, anterior part left

84. Superior temporal gyrus, anterior part right
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Fig. 1.
A) The classification procedure of the TBM methods studied. The boxes with the red
borders show the locations where the multiple templates are combined. B) The flowchart of
the registration procedure.
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Fig. 2.
Three orthogonal slices from the mean anatomical template (MAT) used as the reference
image.
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Fig. 3.
T-maps of group-level dataset for three methods both for controls vs. AD and S-MCI vs. P-
MCI comparisons. Only the voxels with statistically significant differences (p<0.05) are
shown.
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Fig. 4.
Controls vs. AD comparison: single-structure classification accuracies for different features
and methods. Left: ROIs ordered as listed in the Appendix. Right: ROIs ordered based on
the classification accuracy.
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Fig. 5.
S-MCI vs. P-MCI comparison: single-structure classification accuracies for different
features and methods. Left: ROIs ordered as listed in the Appendix. Right: ROIs ordered
based on the classification accuracy.
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Table 3

Controls vs. AD comparison: classification accuracies (%) for some structures with the combination of
classifier method.

Amygdala right 80.2 81.7

Gyri parahippocampalis et ambiens left 76.1 80.2

Hippocampus left 61.7 78.8

Anterior temporal lobe, medial part right 68.8 76.6

Superior temporal gyrus, posterior part left 58.0 73.7

Insula right 66.9 73.6

Medial and inferior temporal gyri right 67.6 73.1

Lateral ventricle, temporal horn left 69.6 72.1

Neuroimage. Author manuscript; available in PMC 2013 January 24.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Koikkalainen et al. Page 27

Table 4

S-MCI vs. P-MCI comparison: classification accuracies (%) for some structures with the combination of
classifier method.

Amygdala left 64.9 62.5

Posterior temporal lobe right 64.1 60.6

Medial and inferior temporal gyri left 63.1 60.0

Gyri parahippocampalis et ambiens right 59.0 62.3

Anterior temporal lobe, medial part left 58.9 61.1

Hippocampus left 52.3 60.1
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Table 5

Overall classification accuracies (sensitivity/specificity) (%) when using all the structures simultaneously.

Controls vs. AD S-MCI vs. P-MCI

ST 78.9 (70/85) 79.6 (74/84) 68.3 (72/67) 66.4 (68/65)

MD 83.3 (78/88) 83.7 (78/88) 67.1 (69/67) 67.5 (64/69)

MJ 83.3 (76/89) 85.5 (79/91) 66.5 (65/68) 69.6 (74/68)

MF 83.4 (76/89) 86.0 (81/91) 71.0 (76/70) 63.0 (64/63)

CC 84.7 (78/90) 85.3 (79/90) 72.1 (77/71) 63.6 (65/63)
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Table 6

Sample size estimates for each TBM method (minimum sample size of individual ROIs).

Controls vs. AD S-MCI vs. P-MCI

ST 176 143 510 412

MD 155 141 492 406

MJ 156 143 479 410

MF 156 134 479 393
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