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Abstract

Imaging traits provide a powerful and biologically relevant substrate to examine the influence of
genetics on the brain. Interest in genome-wide, brain-wide search for influential genetic variants is
growing, but has mainly focused on univariate, SNP-based association tests. Moving to gene-
based multivariate statistics, we can test the combined effect of multiple genetic variants in a
single test statistic. Multivariate models can reduce the number of statistical tests in gene-wide or
genome-wide scans and may discover gene effects undetectable with SNP-based methods. Here
we present a gene-based method for associating the joint effect of single nucleotide
polymorphisms (SNPs) in 18,044 genes across 31,662 voxels of the whole brain in 731 elderly
subjects (mean age: 75.56 + 6.82SD years; 430 males) from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). Structural MRI scans were analyzed using tensor-based
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morphometry (TBM) to compute 3D maps of regional brain volume differences compared to an
average template image based on healthy elderly subjects. Using the voxel-level volume
difference values as the phenotype, we selected the most significantly associated gene (out of
18,044) at each voxel across the brain. No genes identified were significant after correction for
multiple comparisons, but several known candidates were re-identified, as were other genes highly
relevant to brain function. GABZ, which has been previously associated with late-onset AD, was
identified as the top gene in this study, suggesting the validity of the approach. This multivariate,
gene-based voxelwise association study offers a novel framework to detect genetic influences on
the brain.

Keywords

principal components regression; voxelwise; multivariate; gene-based; GWAS; GAB2 (max. 6
keywords)

1. Introduction

Recent efforts in imaging genetics have advanced the field rapidly from identifying heritable
features of the brain to genome-wide searches for specific genetic variants that might
account for functional and structural variations in large populations (Potkin et al., 2009a;
Potkin et al., 2009b; Shen et al., 2010; Stein et al., 2010b; Thompson et al., 2010). Variation
in the human genome may account for variations in brain integrity, and multi-national
consortia have been set up to discover and verify genetic effects on brain images (e.g., the
ENIGMA project; http://fenigma.loni.ucla.edu). In imaging genomics, the vast amount of
information in the images (>100,000 voxels) and across the genome (>12 million known
variants) requires powerful methods to relate genetic variants to the structure and function of
the brain. Power issues arise due to the small effect sizes, and the huge numbers of statistical
comparisons. Most techniques use some type of data reduction, limiting the number of
genetic variants studied or the number of imaging features studied, or both. The ultimate
goal of these gene-hunting studies is to create a method that addresses the gene discovery
problem in a statistically powerful and biologically meaningful way.

The current mainstay of gene-hunting efforts in imaging genetics is the genome-wide
association study (GWAS). Most genetic association tests relate individual SNPs to
phenotypes, but since there are, on average between 20 and 100 SNPS per gene (in our
dataset), and alleles at these SNPs are often highly correlated, a method which tests all the
SNPs in a gene at once (or most of the variance contributed by SNPS in a gene) would
reduce the number of tests required and be more powerful. We will hereafter refer to SNP-
Based approaches and gene-based approaches. This assesses associations between common
SNPs and features in an image. In typical GWAS studies, each genetic variant (usually a
SNP) is independently tested for its association to the phenotype — a mass univariate
method, where no data reduction is used across the genome. For example, Stein et al.
(2010b) performed a genome-wide search of around 500,000 SNPs, and found a novel
variant in the GR/NZB gene that is associated with temporal lobe volume. The gene
GRINZB encodes a glutamate receptor that is already the target of drugs (memantine) used
to treat Alzheimer’s disease (Parsons et al., 2007). Findings such as these are promising as
they have biological relevance without relying on a prior hypothesis about any specific SNP.
However, performing mass SNP-based tests on imaging summary measures (such as
temporal lobe volume, hippocampal volume, etc.) or ad hoc regions of interest (ROI),
collapses the brain measures into a single number. Studies using an ROI to define the
imaging phenotype may miss fine-grained differences throughout the brain, across subjects.
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In addition, a predefined ROI can lead to false-negative results if a true association signal
lies outside or only partially within a chosen ROI.

Several studies now perform genome-wide searches at each voxel across the brain (Hibar et
al., 2010). This approach avoids pre-selecting an ad foc region of interest in the brain and
does not require prior hypotheses about which genetic variants, or which regions of interest,
matter. Stein et al. (2010a) performed a genome-wide, brain-wide search, termed a
voxelwise genome-wide association study (VvVGWAS), in 740 subjects from the ADNI. The
experiment was extremely computationally intensive (27 hours on 500 nodes), performing
around 16 trillion tests of association. However, the correction for multiple comparisons was
commensurate with the number of tests performed. None of the variants identified was
significant after multiple comparisons correction, but several variants were promising
candidates for further analysis. In an alternative approach, Vounou et al. (2010) proposed a
method that leverages the sparseness of signals to simultaneously select SNP variants and
regions of association, reducing the number of SNPs and phenotypes tested. Future GWAS
studies in imaging will likely reduce the number of tests and multiple comparisons using
Bayesian priors. This can prioritize certain regions of the image or the genome, for later
meta-analysis across multiple datasets.

Gene-based association methods complement single-marker GWAS for implicating
underlying genetic variants in complex traits and diseases (Neale and Sham et al., 2004).
Given recent advances in high-throughput genotyping, densely-packed sets of SNPs, or
genetic markers, can capture increasing amounts of variation throughout the genome.
Methods that consider combinations of SNPs from the same gene should better describe
genetic associations than methods that rely on data from SNPs independently (Neale and
Sham et al., 2004; Schaid et al., 2004). Whole-gene testing is a biologically plausible
approach to the problem, as the ultimate unit of biological activity is the gene (or its protein
product; Potkin et al., 2009c). By associating the joint effect of multiple SNPs within a gene,
in this study we aimed to show that gene-based approaches can be more powerful than
traditional SNP-based approaches (with the relative power depending on how the genetic
variants affect the phenotype). For example, if a gene contains multiple causal variants with
small individual effects, SNP-based methods will miss these associations if a very stringent
significance threshold is used (as in GWAS). In addition, if multiple loci within a gene
combine to jointly affect a phenotype, this may also be missed by traditional GWAS. These
two scenarios are highly likely, especially if we accept the “common disease, common
variant” hypothesis (Reich and Lander, 2001), but they are not accounted for in methods that
test each SNP, one at a time.

A multi-SNP, gene-based test can consider the combined effect of each variant within the
gene, while accounting for linkage disequilibrium (LD) or correlation between markers. As
such, at least in theory it may detect associations missed by traditional SNP-based GWAS.
Related to this approach is “multi-locus fitting” - a developing field in quantitative genetics,
for the analysis of complex traits. Some multi-locus analyses use statistical methods
specialized for handling high-dimensional data, including regularized regression methods
such as ridge regression (Malo et al., 2008; Sun et al., 2009), the Bayesian lasso (Zou et al.,
2006; Wu et al., 2009), and neural network models (Lucek et al., 1998; Ott et al., 2001).
Another related approach is set-based association testing, implemented in the software Plink
(Purcell et al., 2007), which allows for the combination of univariate test statistics into a
single univariate test statistic using permutations. Gene-based tests also reduce the effective
number of statistical tests by aggregating multiple SNP effects into a single test statistic.
However, for gene-based tests to be feasible, the multivariate test statistics need to be
computationally efficient to implement. Here we assessed whether it would be feasible to
extend to a neuroimaging database, a gene-based association method using principal
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components regression (PCReg) as proposed by Wang and Abbott (2008) for single-valued
traits. We applied PCReg across all genes, to a large database of voxelwise imaging data.
We call our method a voxelwise “gene-wide” association study (vGeneWAS). By
performing association tests on whole genes, we greatly reduce the number of tests (from
437,607 SNPs down to 18,044 genes) while avoiding the problems associated with focusing
on ROIs or summary measures. Our framework shows how to conduct vGeneWAS studies,
and identify gene variants that warrant further study.

We hypothesized that vGeneWAS would, in some situations, have greater power to detect
associations than existing SNP-based methods. One such situation might be when a gene
contains many loci with weak individual effects. In addition, we expected that vGeneWAS
would have greater overall power than mass SNP-based methods, like vVGWAS, because of
the drastic reduction in the effective number of statistical tests performed.

2. Materials and methods

2.1 Study design and subjects assessed

ADNI is a large 5-year study initiated in 2003 as a public-private partnership between the
National Institute on Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical
companies, and non-pro t organizations. The ADNI study aims to identify and investigate
biological markers of Alzheimer’s disease through a combination of neuroimaging, genetics,
neuropsychological tests and other measures in order to develop new treatments, track
disease progression, and lessen the time required for clinical trials. The study was conducted
according to the Good Clinical Practice guidelines, the Declaration of Helsinki, and U.S. 21
CFR Part 50—Protection of Human Subjects, and Part 56—Institutional Review Boards.
Written informed consent was obtained from all participants before protocol-speci ¢
procedures were performed.

The study recruited 202 Alzheimer’s disease subjects (AD), 413 with mild cognitive
impairment (MCI), and 237 normal elderly controls (NC) who were assessed every 6 or 12
months for three years. Subjects went through extensive clinical and cognitive tests at the
time of each scan to determine and track diagnosis. Further information on inclusion criteria
and the study protocol may be found online (http://adni-info.org/). Baseline structural MRI
scans and genetic data for 818 subjects were obtained on or before May 5, 2010, from the
public ADNI database (http://www.loni.ucla.edu/ADNI/). Scans for 852 subjects were
available, but we excluded 121 subjects based on quality control measures (poor
registration, image quality) and to avoid a well documented problem in statistical genetics
known as population stratification (McCarthy et al., 2008). When performing association
tests on latent subpopulations of different ethnicities or relatedness, spurious associations
may arise due to differences in allele frequencies between groups, instead of true association
with the phenotype (Lander and Schork, 2001). Subjects were removed based on self-
reported ethnicity, later verified by multi-dimensional scaling (MDS) analysis (see previous
study: Stein et al., 2010b), leaving 172 AD patients (78 women/94 men; mean age +
standard deviation=75.54 + 7.62 years), 356 MCI subjects (130 women/226 men; mean age:
75.23+7.22), and 203 healthy elderly controls (93 women/110 men; mean age: 76.15 +
4.99). We did not split the subjects by diagnosis for this analysis in order to exploit the
broadest phenotypic continuum (Petersen et al., 2000) and maximize statistical power to
detect genetic associations (Cannon and Keller, 2006).

2.2 Imaging methods

Baseline MRI scans for each subject were analyzed using tensor-based morphometry (TBM)
as described previously (Hua et al., 2008). Briefly, high-resolution T1-weighted structural
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brain MRI scans were acquired at 58 ADNI sites on 1.5T scanners with a protocol
developed for multiple site consistency (Jack et al., 2008; ADNI also collected some data at
3T, which we did not analyze here; see Ho et al. 2010). Additional image corrections were
applied to all images in a processing pipeline including: GradWarp correction of geometric
distortion (Jovicich et al., 2006), B1-correction to adjust image intensity non-uniformity
(Jack et al., 2008), N3 bias correction to adjust intensity inhomogeneity across a scan (Sled
et al., 1998), and geometric scaling determined by a phantom scan acquired at each subject’s
scanning session to tune scanner and session-specific calibration errors (Jack et al., 2008).
Images were linearly aligned using a 9 parameter algorithm to the International Consortium
for Brain Imaging template (ICBM-53; Mazziotta et al., 2001) to align brain positions to a
common standard space, adjusting for global scaling.

The TBM analysis was performed following the protocol of our prior study, which showed
clinical and cognitive test scores correlated with temporal lobe volumes, in a subset of the
ADNI population (Hua et al., 2008). A minimum deformation template (MDT) was created
based on a random subset of the healthy elderly controls at baseline. The MDT provides an
unbiased representation of MRI scans expected from a group of average healthy elderly
persons. We generated maps of localized volume difference for each subject compared to
the MDT using an inverse-consistent, symmetric, intensity-based nonlinear warping
algorithm (Leow et al., 2006). Maps of localized volume differences (called Jacobian maps)
are estimated using the Jacobian determinant of the deformation matrix, which itself is a
voxel-level estimate of volume excess or deficit compared to the MDT. Jacobian maps for
each individual were then down-sampled using trilinear interpolation to a 4 x 4 x 4 mm3
voxel size to reduce computational burden. The value at each voxel in the Jacobian map
represents a percentage volume difference compared to the MDT; we used this voxel-based
measure of volume difference as the phenotype for genetic association tests.

2.3 SNP filtering and gene grouping

Genome-wide genotype data were collected at 620,901 markers on the Human610-Quad
BeadChip (Illumina, Inc., San Diego, CA). For details on how genetic data were processed,
please see Saykin et al., 2010, and Stein et al., 2010a. Different types of markers were
genotyped (including copy number probes), but only SNPs were used in this analysis.
Several SNPs were excluded from the analysis based on standard filtering criteria, measures
used in many other GWAS studies (Wellcome Trust Case Control Consortium, 2007): call
rate <95% (42,670 SNPs removed), significant deviation from Hardy-Weinberg equilibrium
P<5.7x1077 (871 markers removed), autosomal chromosomes only (10,686 SNPs
removed), and an lllumina GenCall quality control score of <0.15 to eliminate “no call”
genotypes (variable number of missing genotypes across subjects). We chose to remove
SNPs with a minor allele frequency <0.10 (161,354 SNPs removed) based on our sample
size. With our sample of 731 images, we are underpowered to detect associations with SNPs
where the minor allele frequency is less than 10%, unless effect sizes are large (Wang et al.,
2005; Flint et al., 2010). In addition, excluding SNPs with low minor allele frequencies
avoids the risk of finding significant associations where only a small subset of subjects have
the rare allele type and do not represent an accurate sampling of the phenotype of interest. If
a very low minor allele frequency cutoff is used (e.g., MAF < 0.01) in samples of fewer than
a thousand subjects, this may result in cases where an association is driven by a single
subject. Clearly, such a result may be unreliable and is unlikely to replicate, so the higher
MAF cut-off guards against this.

Due to the filtering based on Illumina GenCall quality control measures, individual subjects
have some residual missing genotypes at random SNPs throughout the dataset. Because
PCReg requires data without missing genotypes and to maximize the number of subjects
included in the analysis, we performed imputation using the software, Mach (version 1.0), to
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infer the haplotype phase and automatically impute the missing genotype data (Li et al.,
2009). After all rounds of quality control and preparation, 437,607 SNPs remained.

Using the retrieval interface of the software package PLINK (version 1.05;
http://pngu.mgh.harvard.edu/~purcell/plink/), SNP annotations were made by continuously
soliciting the TAMAL database (Hemminger et al., 2006) based chiefly on UCSC genome
browser files (Hinrichs et al., 2006), HapMap (Altshuler et al., 2005), and dbSNP (Wheeler
et al., 2006). The newly annotated SNPs were grouped by gene, where “gene” is defined by
the gene transcript region including both introns and exons. We chose not to include SNPs
upstream/downstream from the gene region. This may miss SNPs in promoter or regulatory
regions for a gene, but avoids choosing an arbitrary window that may select regulatory SNPs
for some genes, but not for other genes whose regulatory regions lie beyond the window
length. SNIPs that were not located in a gene were excluded (224,057 SNPs removed). All
splice variants were considered as belonging to the same gene. After applying SNP filtering
criteria, SNP annotation, and gene grouping, 18,044 genes were left for analysis out of the
estimated 20,000-25,000 protein coding genes in the human genome (International Human
Genome Sequencing Consortium, 2004).

2.4 Gene-based association statistics

Independent tests of statistical association with imaging measures were performed for each
gene at 31,622 voxels within a whole-brain mask of the MDT across 731 subjects. To test
the joint effect of a// SNPs in a gene on the volume difference at each voxel, we employed a
multiple partial- ~test. A multiple partial- ~test works by first estimating the fit of a
“reduced model” of any number of nuisance variables on a given dependent variable and
then estimating the fit of a second “full model” with the nuisance variables and any number
of independent variables on the same dependent variable. Each association test results in an
F statistic, which represents the joint effect of the independent variables on the dependent
variable, controlling for the effects of nuisance variables already in the model. The multiple
partial- £ statistic was calculated for each gene at each voxel using equation 1 below. kis
df(full)-df(reduced) and RSS is the residual sum of squares:

RSS(reduced) — RSS(full) RSS(full)
df (reduced) — df (ull) | df (full) @

Frafqun=

Multiple partial- ~tests are well suited for testing the effects of multiple predictors on a
given phenotype, but genetic data sometimes complicate testing because SNPs in the same
gene are often correlated due to high LD. When the SNP values in a cohort of subjects are
treated as a vector (whose components are the SNP value in each subject coded in an
additive manner: 0, 1, or 2), then the adjacent SNPs can make different subjects’ vectors
collinear. The dependence among these almost collinear SNP vectors in the multiple partial-
Ftest model can lead to improper signs of beta coefficient estimates, wildly inaccurate
magnitudes of beta coefficients, large standard error estimates (Kleinbaum et al., 2008), and
false inferences. The reason this occurs is that standard regression models require the
inversion of a set of “normal” equations, and when predictors (here SNP vectors) are highly
correlated, the equations are not of full rank. This leads to unstable or unreliable solutions.
One way out of this predicament is to use a type of regularized or penalized regression, such
as ridge regression (also known as sparse regression or Tikhonov regularization), which can
be used when there are high correlations among the predictors. Alternatively, dimension
reduction may be performed (which we do here), to create a set of predictors that explain the
variance in the data but that are no longer correlated.
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To avoid the complications of collinearity in the statistical model, we first performed
principal component analysis (PCA) on the SNPs within each gene, storing all of the
orthonormal basis vectors of the SNP matrix that explained the first 95% of the variance in
the set of SNPs. Basis vectors with the highest eigenvalues (higher proportions of explained
variance) were included until 95% of the SNP variance was explained, and the rest were
discarded. These new “eigenSNPs” approximate the information in the observed SNPs, but
lack the collinearity that disrupts the multiple partial-~test models. By first performing PCA
followed by a multiple partial-~test, our method may be considered a variant of PCReg and
produces F statistics equivalent to those proposed in Wang and Abbott (2008). In this study,
the independent variables built into the multiple partial- ~test full model were the column
vector output from PCA performed on each gene with age and sex as covariates. In this way,
we tested the joint predictive effect of variation throughout a gene on brain volume
variations on a voxel-by-voxel level.

The total number of tests of association for vGeneWAS is very high (18,044 genes x 31,662
voxels). Because of the massive processing requirement, we coded the PCA and multiple
partial-~test steps of PCReg using the R statistical package (version 2.9.2;
http://cran.r-project.org/) using the doMC “multi-core” package (version 1.2.1;
http://www.revolutionanalytics.com/) to split processing over multiple cores in a single
CPU. Processing was parallelized over a cluster of 10 high performance 8-core CPU nodes
using the Laboratory of Neuro Imaging (LONI) Pipeline (http://pipeline.loni.ucla.edu/). For
further data reduction, we only saved data on the gene with the lowest P-value at each voxel.
This is comparable to our prior work using voxelwise testing of all 500,000 genotyped
SNPs, where only the SNP with the lowest ~-value was retained at each voxel (Stein et al.,
2010a). The total time required to complete an analysis was approximately 13 days.

2.5 Comparison of SNP-based and Gene-based methods

To examine the situations where PCReg exhibits better (or worse) performance than
traditional simple linear regression, we compared the two methods directly on real genetic
data. Performing tests on real genetic data as opposed to simulated data is important because
the power of each method depends upon the underlying LD structure. Generating simulated
data that mimics a chosen LD structure can be just as biased as selecting actual genes,
though a significant treatment of the issue of power in PCReg is discussed in Wang and
Abbott (2008). We used temporal lobe volume (TLV) summary measures obtained by Stein
et al. (2010b), as the phenotype for testing associations for both methods. We performed a
genome-wide scan of every SNP from our filtered and annotated genotype data (only
including SNPs located within genes) using simple linear regression with SNPs coded
following an additive model. We took the top SNP from the analysis, and the rest of the
SNPs from the same gene, and performed PCReg on all of the SNPs in that gene. In
addition, we performed a gene-wide scan of all of the genes in our dataset using PCReg with
SNPs coded following the additive model. We selected the top gene from the analysis and
then ran individual tests of association using simple linear regression at each SNP within the
top gene. In this way, we were able to compare the performance of each method in cases
where the underlying genetic structure might favor one method over the other.

2.6 Statistical thresholds and correction for multiple comparisons

As we noted in Stein et al. (2010a), the minimum AP-value at each voxel, in the null case with
nindependent tests, approximately follows a probability density function (PDF) such that
(Ewens and Grant, 2001):

Fuin(¥)=n(1 — x)""! @
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The PDF derived from equation 2 is a Beta distribution with parameters a=1 and p=n. At
each voxel, selecting the minimum P-value for the top gene then follows a Beta(1, 7)
distribution, where nis the independent number of genes tested.

However, it is well known that the adjacent SNP values within genes are not statistically
independent (Frazer et al., 2007). Genetic loci are inherited in contiguous segments, and
some genes co-segregate in blocks. The allele frequencies and structure of genes that co-
segregate are more similar than would be expected by chance if they were assumed to be
independent. Because of this, the effective number of independent tests (M) is less than
the total number of tests performed (M). By determining Mc¢f, we obtain a more accurate
estimate of the total number of independent tests performed with vGeneWAS, given the LD
structure of our genotype data.

In our sample, we estimated Me¢ by performing permutation tests at three randomly
selected, uncorrelated voxels in the brain. We regressed each of the 18,044 genes on the
permuted residuals of the reduced model after including the age and sex covariates at each
run, and stored the minimum AP-value. Note that, in this case, the phenotype data is null.
However, because it is computed from the real data after adjusting for age and sex, the
phenotype data (image values) have the same range and statistical distribution as the data
tested for genetic associations. By using the genes, one at a time, as regressors on this null
data, one can develop a distribution of the resulting P-values, under null conditions, that can
be used to calibrate the significance values that are ascribed to the observed data. As only
the minimum P-value is retained (for the best fitting gene), one can build up a reference
distribution for the minimum A-values, to help gauge the level of surprise in seeing
associations in true data. We repeated this process 5000 times at each of the three randomly
chosen voxels and merged the data. The distributions of null minimum AP-values from each
voxel were nearly identical (Figure 1). Storing the minimum A-values of the permutation
tests yields the expected null Beta distribution given our data. We used a maximum-
likelihood function (betafit; Matlab, The Math Works, Inc.) that estimates the best fit for the
null Beta distribution by varying the p parameter of Beta(1,8). The value of B approximates
the effective number of independent tests (Megff) performed on our data. We then apply a
beta inverse transform using the approximated  parameter so that the distribution of A
values is now on uniform distribution that deviates from the null when there is a signal.

After correcting for the effective number of independent gene-based tests performed at each
voxel, we still need to correct for the multiple comparisons across voxels. We used the
original false discovery rate method (FDR; Benjamini and Hochberg, 1995), which
identifies whether there is any statistical thresholding of the uncorrected P-value maps that
keeps the rate of false positive results within a predefined threshold (we chose 5%, which is
conventionally used). This means that, if the results pass the FDR test, approximately 95%
of the voxels declared as significant associations will be true positives (averaged over many
experiments). In addition, we tested a less conservative variant of FDR, the positive FDR
(pFDR), which operates under the condition that at least one true positive finding exists in
the data (i.e., one of the null hypotheses is rejected) and yields g-value correction thresholds
similar to the original FDR method (Storey et al., 2003). The pFDR test is implemented in
the R statistical package called “qvalue” (Version 1.22.0).

2.7 Estimation of expected values in simulated maps

A certain amount of spatial smoothness is expected among voxels in an image. This is most
likely explained by the non-independence of volume difference measures at adjacent voxels.
Relative volume maps were generated using tensor-based morphometry (TBM), which relies
on non-linear registration of each subject’s imaging data to a common template. The degree
of spatial smoothness in the Jacobian maps derived from the gradient of a deformation field
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depends on the choice of the regularizer used by the warping algorithm (Laplacian, elastic,
fluid, sKL, etc.) and on the resolution of numerical grid chosen to solve the differential
equations whose solution is the deformation field. Volume difference maps based on the
deformation field vectors are spatially smooth, as are any resulting statistical maps. In
addition to image smoothness, certain noncontiguous voxels in distant regions of the brain
can have surprising covariance patterns despite their spatial separation (Fillard et al., 2006).

We examined whether the size of voxel clusters associated with the same gene from our
vGeneWAS analysis differed from the cluster sizes expected under the null hypothesis of no
association at all, given the non-independence of signals at adjacent voxels in our images. In
addition, we wanted to determine whether the number of unique, top genes from across the
brain significantly differed from the number of top genes expected by chance. We generated
simulated cluster maps by first creating a correlation matrix of rvalues representing the
Pearson’s correlation between any given voxel and all other voxels in the brain. Next, we
randomly selected (without replacement) a voxel, Vg, and all corresponding voxels with an
7 value (proportion of variance explained) greater than 0.8 from the correlation matrix. We
chose to only select voxels from the correlation matrix with an /2 greater than 0.8 because
this provided the largest cluster size estimates in the simulated output maps. The /2 value of
each voxel-to-voxel relationship was then used to divide the interval [0,1] of a uniform
distribution such that the correlation between a voxel and V¢ was directly related to the area
under the curve occupied by that voxel’s area under the curve or “bucket.” The size of each
voxel’s bucket was recalculated each time we chose a new V. We selected a random
number on the interval [0,1], and, depending on its value (which “bucket” it fell in),
assigned the same categorical variable link (e.g., a, b, ¢) to Vg and the voxel whose bucket
was selected from the uniform distribution. This linked the two voxels. The probability of a
given voxel being chosen from the uniform distribution was directly related to how
correlated it was to V5. We continued the process by randomly choosing a new Vg from the
correlation matrix. If a randomly selected voxel V¢ did not contain a linking variable, but
selected a voxel from the uniform distribution that already contained a link, then Vg was
assigned the linking variable of the voxel selected from the uniform distribution. If Vg
already contained a linking variable and the voxel chosen from the uniform distribution had
not previously been assigned a variable, the two voxels were linked using the existing
linking variable of V. If both Vg and the voxel selected from the uniform distribution
already contained a linking variable, we kept each variable as-is and then continued with the
process. Finally, voxels that were not correlated to any other voxels in the image, with an 72
value greater than 0.8, were assigned a non-linking random variable. After iterating through
every voxel in the image, each voxel had a categorical variable that either linked it to other
voxels or only to itself. We ran this entire simulation process 100 times, generating a new
simulated cluster map each time. By considering the correlation of a given voxel to all other
voxels in the image, as opposed to using a single summary measure of smoothness
throughout an image, we were able to model the expected clustering among adjacent voxels
and non-independent, spatially separated clusters.

Based on the 3D pattern of voxels and the variables linking voxels together, we used a
nearest neighbor algorithm to measure cluster sizes of adjacent voxels with the same linking
variable value. Using the cluster size estimates from each simulated map, we were able to
determine the expected distribution of cluster sizes based directly on our study dataset. In
addition, we used the total number of unique linking variables in each simulation as an
estimate of the number of independent voxels in our dataset. Because non-independent,
correlated voxels may tend to be associated with the same gene, we can use the total number
of independent voxels to estimate the number of top associated genes we would expect to
find in null cluster maps made from our actual test data. We used the estimated number of
independent voxels, V;j, to randomly select (with replacement) a gene from the set of 18,044
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genes and repeated the selection V; times. We found the number of unique genes represented
for each simulated output map and then took the average.

3. Results

3.1 Comparison of methods

To examine the differences between gene-based and SNP-based association methods (which
are more standard), we compared the results of PCReg to linear regression using temporal
lobe volume (TLV) data from a previous study (Stein et al., 2010b) as the phenotype. We
chose to focus on the top gene or SNP identified by each method in order to examine
performance when the variant chosen is deliberately selected to favor one of the two
methods. GR/N2B was identified as the gene with the SNP variant that was most
significantly associated with TLV (P = 4.03x107"). We identified each of the 129 SNPs
within the GRINZB gene, and then performed linear regression at each SNP and PCReg as a
single gene test with TLV as the phenotype. The —logo(~P-value) of each SNP-based test is
shown in Figure 2a with single gene test results overlaid (black dotted line). It is clear that
the main effect detected with linear regression is much greater in this case. It is important to
note that we tested each of the 129 SNPs within the GR/INZB gene, which would require any
significant P-values identified to be corrected for multiple comparisons before further study.
In this example, however, there are several SNPs that beat the Bonferroni-corrected
significance threshold (a = 3.8x1073). In comparison, the gene-based test of GRIN2B using
PCReg was a single test not requiring correction for multiple comparisons and maintained a
nominal significance value (P=0.012). Also, we compared BEST73 - the gene identified to
be most significantly associated with TLV via PCReg - with the linear regression output of
each SNP within the gene (Figure 2b). The significance of the main effect of the gene-based
test is much stronger (P = 2.9x107%) than the best linear regression result (P= 0.063). This
demonstrates a case where variance components from individual markers that are not
significant via linear regression may be combined into a single significant test statistic.

3.2 Relation of gene significance to number of SNPs

Wang and Abbott examined whether the power to detect associations in genetic data is
influenced by the number of eigenSNPs included in a PCReg model. They found that
models with greater numbers of eigenSNPs do not have increased power to detect
associations (Wang and Abbott, 2008). However, each additional eigenSNP included in the
model uses a degree of freedom. It is then possible that PCReg and similar regression
methods are biased toward selecting effects of smaller versus larger genes (Chapman and
Whittaker, 2009). We examined or results for gene-size bias and verified that the number of
eigenSNPs in the PCReg model within the top genes from our run of vGeneWAS was not
correlated with the observed A-value, using a Pearson’s product-moment correlation test (7=
0.0045; P=0.42). In addition, we verified that the number of eigenSNPs in each of the
18,044 genes at a single voxel was not correlated with its significance level (r= 0.0066; P=
0.29). We also compared the number of eigenSNPs in each gene (mean and median: 14.3
and 9) with the number of eigenSNPs in the top genes from our analysis (mean and median:
13.6 and 5). It remains possible that we missed effects of very large genes, but this is
inevitable in small samples as the number of eigenSNPs needed to adequately encode the
majority of variation in large genes tends to approach the sample sizes, reducing the
available numbers of degrees of freedom for the whole-gene tests.

3.3 Voxelwise GeneWAS

We generated maps of significance where each color-coded voxel in the brain shows the A~
value of the most highly associated gene at that voxel (Figure 3). There are several spatially
contiguous regions throughout the brain with raw minimum P-values lower than A< 1077, In
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addition, some of the top genes identified show symmetric clustering across hemispheres.
Brain structures are highly symmetric between hemispheres, at least for most brain regions,
S0 symmetric genetic associations may be biologically plausible because the volumes of
symmetric structures co-vary across subjects, so they may share similar genetic
determinants. However, evidence of symmetric patterns of association in the brain does not
necessarily imply biological plausibility (Fillard et al., 2006).

We used a simulation-based test to build the expected null distribution of cluster sizes given
our image data. We compared the distribution of the cluster size values in simulated maps to
the cluster sizes obtained from vGeneWAS. The proportion of the null (simulated) maps that
contained small clusters is much greater than in vGeneWAS, while the proportion of the
vGeneWAS map that contained large clusters was greater than in the null maps (Figure 4).
The minimum and maximum cluster sizes for the simulated maps were 1 and 14 voxels (64
and 896 mm3), respectively. The minimum and maximum cluster sizes for vGeneWAS were
1 and 429 voxels (64 and 27456 mm3). This demonstrates that a large proportion of clusters
of voxels associated with the same top gene are larger than would be expected based on
completely null data, even taking into account the non-independence of voxels in our
dataset.

Based on our simulated cluster maps, we used the number of unique clusters as an estimate
of the number of independent voxels. The estimate of the number of independent voxels
based on 100 runs of the simulation tests was 11900.8 + 50.6 (mean + standard deviation)
out of the 31662 total voxels. We performed tests to estimate the number of genes we should
expect to find in our analysis based on the non-independence of voxels in our data. We used
the number of independent voxels estimated from the simulation to randomly select (with
replacement) from our list of 18,044 genes. We tallied the number of unique genes
represented for each simulated cluster map and found the average was 8721.4 + 44.9 (mean
+ standard deviation). We measured the total number of unique genes to be 5333 from our
run of voxelwise GeneWAS. The number of observed genes is significantly lower than the
number of genes expected based on the null cluster maps (P < 0.01). Combined with our
cluster size comparisons, this suggests that the top genes identified in our analysis tend to
have a much more broadly distributed effect than expected based on null data, even taking
into account the intrinsic spatial non-independence of our data. The top 20 genes most
significantly associated with any voxel are listed in Table 1.

The GRB-associated binding protein 2 gene, GABZ, is the most significantly associated
gene in our analysis and has previously been linked to late-onset Alzheimer’s disease
(LOAD) (Reiman et al., 2007). Reiman et al. (2007) identified 10 SNPs from the GAB2
gene that were significantly associated with LOAD and APOE allele status in 1411 cases
and controls from 20 NI1A-sponsored Alzheimer’s Disease Centers. Replication attempts in
independent samples have yielded mixed results (Ramirez-Lorca et al., 2009; Lin et al.,
2010; Chapuis et al., 2008), but large meta-analyses of several databases shows that GAB2
may indeed have a moderate effect on the development of LOAD (lkram et al., 2009;
Schjeide et al., 2009). Specifically, the meta-analysis of the marker rs2373115 in nine
studies has an odds ratio of 0.85 and a 95% confidence interval for the odds ratio of [0.76,
0.94]. In addition, the AlzGene website lists GABZ as being in the top 20 genes likely
related to Alzheimer’s disease (September 3, 2010; http://www.alzgene.org/). /n vivo testing
shows that GABZis over-expressed in certain brain regions such as the hippocampus and
posterior cingulate cortex in patients with LOAD (Reiman et al., 2007). Experiments with
small-interfering RNA (siRNA) and GABZreveal that the normal function of GAB2
proteins prevents the formation of serine-262 phosphorylated tau tangles (Reiman et al.,
2007). No studies, to our knowledge, have considered morphometric effects of GAB2
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variants. The GABZ associations show a symmetric signal in the white matter superior to the
lateral ventricles (Figure 5).

The second most highly associated gene, leucine-rich repeat and death domain containing
protein (LRDD), is expressed in the brain and may mediate cell apoptosis and DNA repair
(Telliez et al., 2000). In addition, LRDD has been implicated in the p53 tumor-suppression
pathway likely by signaling cell apoptosis in response to DNA damage (Brown et al., 2009).
LRDD was the most significantly associated gene in a cluster of voxels in a white matter
tract of the occipital lobe, possibly the optic radiations (Figure 5).

Associations with protein tyrosine phosphatase receptor type beta, P7TPRB, are detected in
the cerebellum (Figure 5). PTPRB interacts with neural receptors and cell-adhesion
molecules and is involved in neurite development and neuronal differentiation (Ishiguro et
al., 2008). PTPRB has also previously been associated with alcohol and drug abuse via
genome-wide search (Ishiguro et al., 2008). In addition, an expression study found that
PTPRB encoded proteins are present in the gastric mucus and other tissues of gastric cancer
patients (Wu et al., 2006).

The fourth and fifth most significantly associated genes are zinc finger protein 462
(ZNF462) and immunoglobin superfamily member 5 (/GSF5), respectively. ZNF462is the
most significantly associated gene in a cluster of voxels in the upper-left grey matter of the
parietal lobe (Figure 5). Interestingly, /GSF5 shows symmetrical clusters of association in
the temporal lobe and the surrounding cerebrospinal fluid (CSF) at the base of the brain
(Figure 5). Neither gene is well studied, but /GSF5 may be involved with junction cell
adhesion (Hirabayashi et al., 2003).

Other genes of interest identified in our analysis include ARALAR, which encodes a
calcium-binding mitochondrial protein that is highly expressed in the brain (del Arco and
Satrustegui, 1998). ARALAR has previously been associated with autism (Ramoz et al.,
2004), but the claims are controversial (Rabionet et al., 2006). CHRMS5, is a muscarinic
acetylcholine receptor M5 coding gene and has previously been associated with
schizophrenia (De Luca et al., 2004). S100B, encodes a zinc-binding protein over-expressed
in patients with Alzheimer’s disease and interacts with Tau proteins (Yu et al., 2001).

3.4 Correction for multiple comparisons

After permutation testing to determine the effective number of independent gene tests, we
need to model the function parameters so that we can transform the data for correction for
multiple comparisons. The effective number of independent tests was estimated to be
15,636, which is a moderate reduction from the 18,044 genes measured directly in this
experiment. We therefore chose to model the null distribution as Beta(1, 15636). The
probability density function (PDF) of Beta(1, 15636) on the normalized histogram of
observed P-values fits the data well with only small deviations from the original Beta(1,
18044) (Figure 6a). We note, however, that our estimate is determined both by SNP density
and degree of coverage in the SNP marking scheme of our study. Experiments that use
different SNP-chips, include sex chromosomes, or use different annotation methods may
encounter different estimates. To determine how well the expected null distribution
compares to the observed PDF, we compare each distribution directly in a Q-Q plot (Figure
6b). The expected null distribution also fits the observed data well.

P-values suitable for multiple comparison correction via FDR methods should have a
probability distribution on the interval [0,1] that is uniform in the null case, i.e., its
cumulative distribution is diagonal in the null case (Benjamini and Hochberg, 1995; this is
the basis for the false discovery rate method). Our Beta-distributed experimental ~-values
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need to be corrected so that they meet the assumptions of the FDR model. Using the analytic
B parameter from the null Beta distribution, we fit a cumulative distribution function (CDF)
to our observed data yielding a new distribution of corrected P-values that deviate from the
uniform distribution only when the data are not null. A histogram of the observed corrected
P-values (Figure 6¢) shows that the cumulative distribution is approximately equivalent to a
uniform distribution. A Q-Q plot of the expected null distribution corrected A-values against
the observed corrected P-values shows that the two distributions differ (Figure 6d). A Q-Q
plot of two identical distributions will lie on the null 45-degree diagonal line (y = x). There
are two things that can cause a Q-Q plot to deviate from the null: incorrectly modeling a
distribution or significant data. The line representing the observed compared to the expected
results in the Q-Q plot in Figure 6d is steeper than and deviates from the null line at lower A
values. This suggests that the distribution of £ values is left skewed and more dispersed
than the theoretical uniform distribution (Thode et al., 2002). It is possible to apply a further
correction to our observed £ distribution by using a Q-Q plot of an analytic null distribution
versus the theoretical uniform distribution as a hash table. However, we are only selecting
the genes with the lowest ~-value at each voxel so monotonic ~P-value corrections will not
change the distribution of A,-values.

We used two methods to control the FDR of the corrected ~P-values (~;). We used the
original FDR method (Benjamini and Hochberg, 1995), which appropriately controls for
multiple comparisons when the covariance of test statistics shows a positive regression
dependency (Benjamini and Yekutieli, 2001). We found that the false discovery rate for the
second most highly associated gene in our results (LRDD) could only be controlled at a
threshold of ¢g=0.30 (i.e., allowing a 30% false discovery rate) after applying a statistical
threshold of P,=5.36x1074. In addition, the pFDR g-value threshold (Storey et al., 2003)
was g = 0.23 for the most significantly associated gene at any voxel (GABZ2). In other words,
the vGeneWAS results could not be controlled at the conventional false discovery rate, but
show promise.

3.5 Post hoc analysis

Voxelwise GeneWAS results in a map that shows only the top gene at each voxel. The top
gene at each voxel may be the most significant gene in a certain region, but it may also have
a more distributed effect throughout the brain, with effects in additional regions where it is
not the top gene. In addition, genes that do not have a large main effect might never be
selected in this type of analysis, but still could have a large distributed effect on the brain.

We tested the effect of the top gene in our analysis, GABZ, at every voxel across the brain
using PCReg. We stored each P-value in a map and applied the original FDR method.
Voxels surviving the FDR threshold are shown in Figure 7. These are post hoc tests, so are
exploratory, and require replication in independent samples, but it is quite clear that GAB2
has a much greater distributed effect on the brain than could be determined from the
vGeneWAS results. Future implementations of vGeneWAS might consider the effects of
multiple genes at a voxel to account for the case where a gene is significant in its effect of
explaining variations in the image, but is not necessarily the top gene. In addition,
vGeneWAS could be further improved by considering the distributed effects of genes. If a
gene has an effect over a large region, but is not the top voxel, it will be completely
overlooked in the current implementation of vGeneWAS. Adaptation of cluster-level
inference to these maps would be of interest, as well as tests that combine cluster extent and
height (Hayasaka and Nichols, 2004). Existing adaptations of the original FDR method, such
as “searchlight” FDR, could be useful here as it produces region correction thresholds that
are sensitive to small clusters of positive signals in imaging data, but appropriately
conservative in its correction of false positives (Langers et al., 2007).
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To understand the contributions of each individual SNP in the GABZ gene, we performed
post hoc association tests for each SNP with the phenotype value from the top voxel in the
brain. It should be noted, however, that choosing the GABZ gene to compare the results of
SNP-based linear regression with gene-based PCReg provides P-values which are biased by
the previous gene-wide brain-wide search because GABZwas identified using PCReg.
There were 20 SNPs from the GABZ2gene in our genotyped data. Of these, only three passed
the nominal significance level in SNP-based association tests (= 0.05). The most
significant SNP identified, rs7927923, has A= 9.1x1073. The other two significant SNPs,
rs1981405 and rs1893447, showed effects with £=0.027 and P= 0.049, respectively. A
total of 16 SNPs out of 20 are in high LD with the most significantly associated SNP (72 >
0.6). Only one of the SNPs from our analysis overlapped with SNPs used in previous GAB2
association studies, most likely because we are using different genotyping platforms.
Clearly, the gene-based test was more powerful at detecting an association in this case than
each SNP tested individually (compare the dotted line with the colored dots in Figure 8).

3.6 Power comparisons

To assess the differences in power afforded by vGeneWAS relative to existing SNP-based
methods, we compared the £;-values from vVGWAS obtained in our previous study by Stein
et al. (2010a), with the P.-values resulting from vGeneWAS (Figure 9). The proportion of
P.-values greater than a given FDR threshold for each method is directly related to
differences in effect sizes. The FDR of the results from vGWAS could only be controlled at
a threshold value of g = 0.50, whereas the FDR threshold for vGeneWAS is somewhat
lower, although not passing the conventional FDR level (¢ = 0.30; Figure 9). This suggests
that the vGeneWAS method may have more power, in principle, to detect genetic
associations, although neither test controlled the false discovery rate at the conventional
level.

4. Discussion

4.1 Methodological overview

Here we present a method to conduct a voxelwise gene-wide association study
(vGeneWAS), testing the aggregate effect of multiple SNPs within each gene. In summary,
(1) we implemented a gene-based association test using principal components regression
(PCReQ); (2) we performed association tests at every voxel within a full brain mask where
the value at each voxel was the local volume difference relative to the mean template while
controlling for age and sex; (3) we generated a beta distribution of ~-values by selecting
only the most significant gene at each voxel; (4) with permutation tests, we estimated the
effective number of tests performed; (5) we corrected for multiple comparisons in a two step
procedure - we estimated p using the CDF of the analytic Beta distribution and then
corrected the new uniform distribution using two different FDR methods.

None of the genes identified passed the standard FDR threshold (g = 0.05). However, many
of the genes identified have previously been associated with brain differences or disorders.
The top gene identified is a known Alzheimer’s risk gene, GABZ, lending plausibility to the
method. Many of the genes identified are highly expressed in the brain or differentially
expressed, depending on disease status. The findings in this study warrant further
examination and replication attempts.

4.2 Assessment of the model

Our method selects the top gene at each voxel, to reduce the amount of data. Choosing only
the top gene at each voxel, however, can hinder the extensibility of our results. This may
miss many genes with distributed effects, if the main effect of the gene is never the largest at
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any voxel. Future implementations of vGeneWAS could consider the relationship among
voxels when performing association tests. Liu et al. (2009) used parallel ICA to relate brain
network data from fMRI to SNP data. They selected only a small set of 367 predefined
SNPs based on a set of candidate genes for schizophrenia; this does not leverage all of the
available data in the genome. Similar approaches have been attempted on voxel-based
morphometry (VBM) data from structural MRI (Jagannathan et al., 2010). However, this
approach used the same subset of SNPs used by Liu et al. (2009). Vounou et al. (2010)
proposed a method called sparse reduced-rank regression (SRRR) which uses the sparseness
of signals to simultaneously select phenotypes and genotypes. Power estimates suggest that
SRRR is more powerful than using individual tests at each voxel; this may prove to be very
useful in the future.

Principal components regression (PCReg) is an efficient method to test the joint association
of all SNPs within a gene simultaneously. PCReg detected associations with genes missed
by SNP-based regression (Figure 2b). By leveraging the LD in a gene, PCReg encodes
variance throughout a gene to test for associations. We identified situations where SNP-
based regression models may have more power (Figure 2a). If a single SNP has a large main
effect, then testing the joint effect of all SNPs within that gene may dilute the association;
the cumulative P-value from gene-based tests may be lower. However, when one considers
the drastic reduction in the number of independent tests when comparing SNP-based linear
regression with PCReg, gene-based testing offers advantages.

Another concern with PCReg and related regression models is that each predictor added to
the regression model consumes a degree of freedom. There may then be some detection bias
in the regression model, where smaller genes are found to be more significantly associated
with the phenotype than larger genes, because the regression models of small genes have
more degrees of freedom (Chapman and Whittaker, 2009). While we did not observe this
effect, it is an important factor to consider when interpreting results. Additionally, SNPs
combined into a single test statistic in PCReg could have different directions of effects,
disrupting the power to detect an association. However, the situation where a gene contains
SNPs with negative correlations with respect to the phenotype may be relatively rare as it
requires two nearby loci to be in LD with different causal variants (Chapman and Whittaker,
2009).

Other multivariate regression methods may offer greater power to detect genetic associations
than PCReg, which is used here as an example. Wang and Elston (2007) compress genome-
wide genotyping data across subjects using a Fourier transform, and assign weights to the
low-frequency components in a regression model. This method is similar to PCReg, as it
collapses the number of genetic tests performed while capturing much of the variance across
markers. Kernel-based methods have been implemented as non-parametric gene-based tests
to increase power over SNP-based methods; however, these methods have only been
implemented in case-control studies (Mukhopadhyay et al., 2010). Ridge regression (Malo
et al., 2008; Sun et al., 2009) and lasso-based penalized regression (Zou et al., 2006; Wu et
al., 2009) can both powerfully detect associations in genetic data. In fact, direct comparisons
between ridge regression, lasso-based penalized regression, and PCReg show that the first
two methods may be more powerful than PCReg depending on the underlying genetic
architecture (Bovelstad et al., 2007; Benner et al., 2010). However, ridge regression and
especially lasso-based penalized regression are extremely computationally intensive
compared to PCReg. There is a huge computational requirement to complete a vGeneWAS
analysis, which searches the whole image in addition to the whole genome. Due to this, we
decided to strike a balance between power and computational complexity to complete the
analysis in a feasible time frame. Future implementations of vGeneWAS could be improved
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by using additional multivariate regression methods, although they may need to be modified
for speed.

A current limitation of our method, as described here, is that in its current form family-based
designs (such as pedigree structures) cannot be used. The patterns in allele frequencies in a
family cohort depend on kinship, and mixed-effects models would be required to control for
kinship structure. Several such methods exist for SNP-based linear regression, such as
Efficient Mixed-Model Association (EMMA,; Kang et al., 2008). However, to the best of our
knowledge, multivariate mixed-model regression has not been attempted in a genetic
context. One multivariate gene-based method called versatile gene-based association
(VEGAS) avoids multivariate mixed-model regression by converting SNP-based P-values
into a multivariate gene-based test statistic (Liu et al., 2010). As there are already many
methods for SNP-based mixed-model regression, VEGAS is aptly suited to perform gene-
based association tests in family-based populations. As the VEGAS test statistic is
determined by SNP-based P-values, it will not be able to detect associations where the
cumulative P-values are not significant. In this way, if a series of SNPs contribute a small
amount of variance in a gene, VEGAS will miss them, because the SNP-based method will
as well.

While this is one of the largest imaging genetics studies to date, our sample size still may be
underpowered to detect moderate effects of genetic variants on the brain. Future studies in
imaging genetics are likely to benefit from meta-analysis, which aggregates GWAS results
from multiple cohorts to determine reproducible genetic associations. This aggregation of
large datasets can be used to boost power to detect SNPs with smaller effects. One such
effort now underway is the ENIGMA project (ENIGMA Consortium, 2011). In cases where
there is not enough data available to perform a true meta-analysis, discovery and replication
datasets may be useful. In early tests using brain images, some genetic associations seen in a
discovery cohort have been replicated in independent samples (e.g., Rajagopalan et al.,
2011). However, our main purpose in this study is to demonstrate a method to conduct
voxelwise, gene-based analyses, which will become more powerful as imaging databases
continue to grow rapidly worldwide in size and content. In assessing whether our results
may generalize to new datasets, we note that we examined only a tight age range in our
study (elderly subjects), and this may affect the genes found to have morphometric effects
on the brain. If the genes have a varying expression pattern over time some of the top genes
detected in our analysis may not be dominant during other parts of the lifespan. Although we
controlled for age effects on brain structure in our analysis, it is still unknown whether the
identified genetic associations with brain morphology are under some age-related influence;
it is also not known if these genes are expressed in a typical/atypical age-related fashion.
Datasets drawn from different parts of the lifespan would offer maximal power to detect
genetic variants relevant for brain structure (as discussed in Braskie et al., 2011; see
Rajagopalan et al., 2011, for an example).

One limitation of GWAS analyses is that they overlook rare variants, which are also
emerging as key players in the genetic underpinnings of mental disorders (Bansal et al.,
2010). Our method does not consider these rare variants, but may play an important role in
explaining variance in complex traits that is not accounted for by common variants.
Examination of rare variants is still relatively costly (as it requires deep sequencing of large
numbers of subjects). Some types of rare variant can be genotyped on SNP-chip platforms
(such as copy number variants) they require separate analytical techniques from those
considered in this paper (Bansal et al., 2010). Each of these limitations will be more feasible
to address when the cost of deep sequencing drops and sample sizes are large enough to
reliably implicate many genes simultaneously.
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Our gene-based test may be more powerful than univariate methods in certain cases, but not
always. The five top genes identified in the present study do have some biological
plausibility; some are known to be expressed in the brain and implicated in brain disorders.
However, there are other genes missing in the short list of genes in the present findings that
are frequently found using univariate approaches and strongly implicated in complex
behavioral pathologies across mammalian species, such as the BONF val66met substitution.

To explain this, we note that the analysis of currently available imaging genetics data is very
underpowered. In addition, sample sizes needed to reliably detect a genetic association are
even greater when multiple genes are assessed or when genome-wide search is conducted.
By contrast, the BDNFval66met substitution is often treated as a candidate gene, and if that
is done, it is conventionally agreed that its effects must only satisfy a nominal significance
level of £<0.05, if no other genes or SNPs within it are tested. In our own work on a
different cohort scanned with DTI (Chiang et al., 2010a), we were able to detect robust
associations between the BONF val66met polymorphism and fiber integrity (fractional
anisotropy) assessed with DTI. We were also able to replicate these associations in two non-
overlapping (independent) samples of subjects. Even so, the significance level used (P<
0.05) was far more lenient than the very strict thresholds required to control for false
positives when the whole genome is searched. As such, false negative results in a GWAS
study (e.g., not finding a significant association of the BDNFval66met substitution when it
is in fact a true association) does not mean that a gene does not affect a phenotype, just that
an association was not detected at the very stringent statistical cutoff applied to account for
multiple comparisons across the genome.

A review of the literature also suggests that BODNF val66met, while a popular target of
study, has a mixed history. The BDNFval66met substitution has been inconsistently
implicated in mood disorders, Alzheimer’s disease, and quantitative measures of memory
(Bagnoli et al., 2004; Combarros et al., 2004; Nacmias et al., 2004; Nishimura et al., 2004;
Tsai et al., 2004; Desai et al., 2005; Matsushita et al., 2005; Vepsalainen et al., 2005). In a
secondary, post hoc, analysis, we tested the effect of the BDNFval66met allele in this
current sample using standard univariate regression (with a dominant model, controlling for
age and sex) and it did not survive correction for multiple spatial comparisons. An
association test of the BDNF val66met allele with the hippocampal volume of the 731
subjects in this dataset did not survive the nominal significance level of £=0.05. As such,
we were not able to use BDNF as a “gold standard” gene; arguably, there are not yet any
such genes with universally replicable associations on brain structure that can be used to
gauge the face validity of novel methods.

Another limitation is that any approach that stops after selecting only one gene per voxel is
not biologically plausible as a model of phenotypes with complex genetic determination. As
such, the development of gene-based tests should be considered as a way station towards a
more sophisticated treatment of complex genetic effects, in pathway or gene-gene
interaction models (Inkster et al., 2010). However, testing gene-gene interactions in the
vGeneWAS framework is computationally intractable as the number of tests quickly
approaches 7Cy=n!/((n—k)'k!) at each voxel in the whole brain to test for interactions among
all sets of kdifferent genes drawn from an overall pool of A/ genes. Additionally, interaction
effect sizes are generally much smaller than the main effects we are searching for in this
paper, so our sample size would need to be much larger to accommodate the necessary
correction for multiple comparisons and smaller effect sizes (Cordell, 2009). As genome-
wide interaction analysis (GWIA; Marchini et al., 2005) is computationally intensive and
underpowered with current imaging datasets, we recently developed an alternative method
(Chiang et al., 2011b,c) to detect likely gene-gene interactions among SNPs, without having
to compute all MA-1)/2 pairwise or all n!/((n-k)!k!) Ath-order interactions on the genome.
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Two advantages of this genetic network analysis, relative to genome-wide interaction
analysis (GWIA) are apparent: (1) genetic correlation can tap into the natural latent structure
of gene action in a brain image; (2) voxel clustering by genetic affinity leads to high power
to find SNPs with correlated effects in genome-wide scans.

4.3 Biological significance of the findings

Gene-based tests of association across the genome and brain have not been attempted
before, to our knowledge. Recently, imaging genetics studies have focused on single-locus
associations with summary brain volume measures or 3D statistical parametric maps.
vGeneWAS advances the burgeoning field of imaging genetics by providing the framework
to perform multivariate, gene-based association tests. It does not restrict analyses by
requiring prior hypotheses about a specific causal variant or ad hoc region of interest.
vGeneWAS is the first attempt to apply gene-based tests to morphometric imaging data and
opens up more possibilities to discover putative genetic variants that contribute to
differences in brain structure. This may help when the main effect of each variant in a gene
is too small to detect with traditional SNP-based methods.

Although vGeneWAS is a multivariate, gene-based method, we identified genes previously
associated with brain disease using SNP-based tests. Many variants in the GABZ2gene are
implicated in the development of late-onset Alzheimer’s disease (LOAD) and are thought to
interact with the APOE epsilon 4 allele. In the pattern of effects for GAB2 on the brain
(Figure 7), the highlighted areas are generally periventricular, and ventricular enlargement is
a prominent characteristic of AD (de Leon et al., 1989; Chou et al., 2010). As we noted in
our prior papers on TBM in Alzheimer’s disease (Hua et al., 2008), there is occasionally a
ring of voxels around the lateral ventricles that show partial volume effects that mostly like
reflect ventricular expansion. Clearly, the ventricular expansion itself indirectly results from
the diffuse loss of brain parenchyma, so the changes detected there may also reflect, to some
extent, atrophic processes more remote than the voxels singled out in the voxel-based maps.
LRDD s highly expressed in the brain and is involved with DNA repair including signaling
apoptosis in tumor cells. PTPRB is associated with addiction to drugs and alcohol and may
be involved with tumor regulation (Telliez et al., 2000; Wu et al., 2006; Ishiguro et al.,
2008; Brown et al., 2009). Based on gene expression and links to brain diseases, many of the
genes identified in our analysis may have differential morphometric effects across the brain.
In addition to some of the more well-studied genes, we identified many genes such as /GSF5
and ZNF462that have little research available to infer their plausibility. However, almost all
of the genes identified in our analysis are highly expressed in the brain, which at least
suggests that the genes may have a role in brain function. Further analysis is required to
examine to what extent each gene variant identified in our analysis mediates brain
differences.

Many of the associations identified here seem to have a plausible story, but we need to
consider that some of the patterns of association, especially clusters of association, may be
due to short-range spatial correlations in the images. Adjacent voxels in brain scans tend to
covary, as do Jacobian maps used to represent a localized measure of volume difference.
These methods rely on non-linear algorithms that generate spatially smooth deformations. In
addition to the simulated (null) cluster size maps in this study, Stein et al. (2010a) found that
a small amount of spatial clustering is seen even if the genetic data is null. Also, voxels were
down-sampled which may introduce partial volume effects. However, performing a
vGeneWAS scan on non-down-sampled, original sized images is estimated to take 4,372
days (or approximately 12 years) to complete. To this end, the extent to which a gene affects
regions of the brain should be interpreted cautiously; however, certain patterns of gene
effects that appear in non-adjacent structures or in large clusters may signal gene effects not
attributable purely to spatial smoothing or partial volume effects.
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To better understand the contribution of genes to global versus local brain structure
differences, we conducted association analysis on both (1) the globally normalized brain
images and (2) estimates of total intracranial volume (eTIV) that contain information on
overall differences in brain scale. We searched for specific gene effects on global brain
volume differences using our gene-based method. We computed brain volume measures
(eTIV) from our dataset using the automated FreeSurfer package (Fischl et al., 2002). Using
the eTIV measure as the phenotype we tested each of the 18,044 genes for association.
Looking at the top genes that we found in our analysis of the normalized images, none of the
top 20 most highly associated genes was associated with eTIV phenotype. This provides
further evidence that the genetic effects we are detecting exert influences on regional brain
volumes rather than simply reflecting non-specific effects on the overall volume of the
brain.

Additionally, results should be interpreted cautiously when global anatomical normalization
is used. By removing, as far as possible, the effects of individual brain size variation from
the data, it is possible to discover genes that may have a specific effect on a particular
structure, above and beyond any overall genetic effects on brain size (as brain size itself is
heritable). Global normalization is commonly performed in all brain mapping studies, as
many extraneous factors affect an individual’s head size, body size or height that may not be
relevant for cognition or for understanding brain function. Global anatomical normalization
adjusts for this source of variance in the data, to a large extent, making more localized
effects easier to identify. Even so, by applying global anatomical normalization, some genes
may be missed that influence the total size of the brain. In fact, if a gene were responsible
for influencing brain size, but had a uniform effect on all brain regions, it would be missed
in the current analysis, as global effects are discounted. As such, in addition to mapping
gene effects, it makes sense to also perform genetic analyses of whole brain size, as has been
performed in two recent studies (Paus et al., 2011; ENIGMA Consortium, 2011).

In conclusion, our method may be used to perform gene-based tests on any 3D brain maps,
such as data from voxel-based morphometry, diffusion tensor imaging, and cortical surface
data. In addition, we found a set of candidate genes that may substantially affect brain
morphometry and warrant further study.
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Figure 1.

A histogram shows the minimum null ~values obtained from permutation tests. Data from 3
different voxels are shown on the same graph (blue, red, and black lines); they are obtained
from 3 randomly chosen, uncorrelated voxels in the brain (5000 permutations each). The
distributions are nearly identical, and agree with each other, as well as accurately reflecting
the effective number of independent tests (Mggs).
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Genetic association plots for univariate linear regression versus multi-locus PCReg. The -
logqg(P-value) of each SNP in GRINZB (a) and BEST3 (b) is plotted against its position in
the gene. Each of the points is color coded by level of LD (compared to the top SNP, #he
purple diamond dof) as measured by 72. The —log;o(P-value) of the gene-based PCReg test
for each gene is overlaid on the plot for comparison (dotted black line). Plots were generated
using the LocusZoom software (http://csg.sph.umich.edu/locuszoom/).
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Figure 3.

A color-coded significance map of the top gene at each voxel. Sections are shown at 8mm
intervals throughout the brain. The top of each panel represents the anterior of the brain and
bottom the posterior of the brain. The images are in radiological convention (the left side of
the image is the patient’s right hemisphere). Color coding is based on the —logo(~-value);
warmer colors represent more significant associations.
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Figure 4.

Cluster sizes in vGeneWAS (red line) are compared with an average of simulated null maps
(black line). We took the logyg of the number of voxels in a cluster (not in mm3) across the
brain in both maps for scaling purposes and for ease of comparison. The logyq cluster sizes
are then plotted using a density function such that the total area under each line is equal to 1.
The average simulated null map contains a larger proportion of small cluster sizes than
vGeneWAS (higher peaks in the black line at values close to the origin on the x-axis). The
vGeneWAS map contains a larger proportion of large cluster sizes than the average
simulated null map (the red line is higher at larger values and is more extended). A single
slice view of the vGeneWAS and average simulated null cluster maps are pictured for
comparison (/nset). Every unique cluster is assigned its own color. There are more unique
clusters than distinct colors making visual inspection difficult, but in general the clusters in
the vGeneWAS maps are larger.
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Figure5.

Regions in the brain associated with the top 5 genes from our vGeneWAS analysis (where
the uncorrected P-value at a given voxel is overlaid on the minimum deformation template).
The slices chosen best represent the regions where each gene was the most significantly
associated gene in the brain. Images read from inferior to superior (left to right of the page)
following radiological convention and with the top and bottom of each panel representing
the anterior and posterior of the brain, respectively.
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Figure®6.

(a) The normalized histogram of observed P-values. The dashed line represents the
cumulative distribution function (CDF) of Beta(1, 18044) where Mg¢s is based on the
number of genes tested. The solid line represents the CDF of Beta(1, 15636) where Mg is
an estimate of the number of independent tests from permutation testing. (b) The Q-Q plot
shows the observed P-values versus those expected from a Beta(1, 15636) distribution
(black dots). The solid gray line represents a purely null distribution of P-values. (c) The
histogram of corrected P-values (~,) approximately follows a uniform distribution. (d) The
Q-Q plot of the observed £ versus those expected from a null distribution.

Neuroimage. Author manuscript; available in PMC 2012 June 15.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Hibar et al.

Page 34

GAB?2

NWRERUUONOW

Figure?7.

Map of P-values for GABZ2 at every voxel in the brain after correction for multiple
comparisons across voxels (but not corrected for search across the genome, as we are only
testing one gene) using the original FDR method. A-values significant after FDR correction
(at g = 3.4x107%) are color-coded. Warmer colors are more significant. GAB2has a more
distributed effect on the brain than is evident in the vGeneWAS results.
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Figure8.

Genetic association plot, for different SNPs in the GABZ gene, at the top voxel from our
analysis. The -logyo(P-value) of each SNP in GABZ2is plotted against its position in the
gene. Each of the points is color coded by level of LD (compared to the top SNP, the purple
diamond dof) as measured by /2. The —log;o(P-value) of the gene-based PCReg test for
GABZ at this voxel is overlaid on the plot for comparison (dotted black line). In this case,
the gene-based test shows a greater effect size than univariate tests on any of the component
SNPs treated independently. This shows that the gene-based test can be more powerful than
performing separate tests on component SNPs.
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Figure9.

vGeneWAS may control the false discovery rate better than vVGWAS. The cumulative
distribution function (CDF) of P.-values from vGeneWAS (solid green line) is compared to
the CDF of P.-values from vGWAS (Stein et al. 2010a; solid black line). Three lines
represent different correction thresholds of g = 0.05 (red dashed line), g = 0.30 (black
aashed line), and g = 0.50 (blue dotted line).
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